organic compounds
of 2-[(naphthalen-2-yl)methyl]isothiouronium bromide
aInstitute of Physics AS CR, v.v.i., Na Slovance 2, 182 21 Prague 8, Czech Republic
*Correspondence e-mail: eigner@fzu.cz
Herein we report the 12H13N2S+·Br−, which crystallizes in the monoclinic P21/c centrosymmetric The contains one 2-[(naphthalen-2-yl)methyl]isothiouronium cation and one bromide anion. The methylene carbon lies in plane of the naphthalene core. In comparison with reference structures, elongation of C—S bonds as well as tilting of the isothiouronium group is observed. Given the ionic nature of the compound, the structure is held by charge-assisted N—H⋯Br hydrogen bonds, with a noteworthy contribution of dipole–dipole interactions, which form bilayers in the structure. The bilayers are held by the weak London forces.
of 2-[(naphthalen-2-yl)methyl]isothiouronium bromide, CCCDC reference: 2044275
Structure description
Isothiouronium salts have been investigated because of their ability to bind anions by charge-assisted hydrogen bonds (Yeo & Hong, 1998; Seong et al., 2004). Despite their potential in crystal engineering, only 23 crystal structures of 2-(arylmethyl)isothiouronium salts are present in the CSD (Groom et al., 2016). In our studies of isothiouronia, we have managed to synthesize and crystallize naphthalene-2-ylmethyl-bearing isothiouronium bromide, and we report here its structure and a comparison with similar crystal structures.
The title compound crystallizes in the monoclinic P21/c centrosymmetric with one 2-[(naphthalen-2-yl)methyl]isothiouronium cation and one bromide anion in the see Fig. 1. The naphthalene core is almost perfectly planar, with a maximum deviation of 0.026 (3) Å for atom C6. The C11 atom can be considered to be in the plane of naphthalene core, with a deviation of 0.039 (3) Å from the mean plane. The single bonds around carbon C11 and S1 allow for the of the isothiouronium group.
There are no 2-[(naphthalen-2-yl)methyl]isothiouronia structures in the the CSD; therefore, we decided to compare the title compound with 2-benzylisothiouronia structures. The published structures of 2-benzylisothiouronia can be divided according to the Car—Cme—S—Cth torsion angle into linear and non-linear groups. Since the relevant torsion angle of the title compound is −68.1 (3)°, only the non-linear 2-benzylisothiouronia, will be used as a reference group [CCDC codes EBIFOK (Ishii et al., 2000), IGECIG (Raptopoulou et al., 2002), JALSOE (Mikolajczyk et al., 1989), SEFRUQ (Barker & Powell, 1998), TAWVAP (Stergiou et al., 2005), TOBNEE (Gayathri et al., 2008) and YOCRUE (Fun et al., 2008)]. The C2—C11 bond length of 1.495 (5) Å in the title compound is within the usually observed values among the reference group, while the C11—S1 and S1—C12 bond lengths of 1.855 (3) Å and 1.771 (3) Å respectively are larger than usually observed, with average values of 1.819 Å and 1.739 Å. The C2—C11—S1 and C11—S1—C12 angles of 111.7 (2) and 96.98 (15)°, respectively, are less obtuse than the average values among the reference group, 115.21 and 103.91°. This deviation is most likely caused by the difference of electronic behaviour between the benzyl group and the 2-naphthylmethyl unit.
The C11—S1 bond is almost perpendicular to the naphthalene core, with C1—C2—C11—S1 and C3—C2—C11—S1 torsion angle values of 91.8 (3) and −88.0 (3)°, respectively. Among the reference group, such a conformation is unusual, with average values being 61.45 and 120.53°. The isothiouronium group is significantly tilted, with C11—S1—C12—N1 and C11—S1—C12—N2 torsion angles of −68.5 (3) and 110.7 (3)°, respectively. Such a tilt is not observed among the reference group, where the average values are 20.46 and 160.94°. The tilting of the group can be explained by the steric demands of the 2-naphthylmethyl unit on the packing.
The N—H⋯Br charge-assisted hydrogen bonds (Table 1) have the most significant impact on of 2-[(naphthalen-2-yl)methyl]isothiouronium bromide, with every isothiouronium cation forming three hydrogen bonds, one of them bifurcated, with bromide anions. This is a major difference from the structure of 2-benzylisothiouronium chloride (Barker & Powell, 1998), the only structure of 2-arylmethylisothiouronium with simple halide anion, where the isothiouronium group forms four charge-assisted hydrogen bonds with four different chloride anions. The charge-assisted hydrogen bonds form layers in the structure through five chains, N1—H1n1⋯Br1⋯H2n1iii—N1iii, and N2—H1n2⋯Br1ii⋯H2n2ii—N2ii classified as C12(4) and N1—H1n1⋯Br1⋯H1n2iv—N2iv—C12iv—N1iv, N1—H2n1⋯Br1i⋯H1n2v—N2v—C12v—N1v, and N1—H2n1⋯Br1i⋯H2n2i—N2i—C12i—N1i classified as C12(6) [symmetry codes: (i) x, y − 1, z; (ii) x, −y + , z − ; (iii) x, y + 1, z; (iv) x, −y + , z + ; (v) x, −y + , z + ], see Fig. 2. The layers are connected by dipole–dipole interactions between C12 and Br1vi [symmetry code: (vi) −x, y − , −z + ] with a distance of 3.535 (4) Å into bilayers along the (100) plane, see Fig. 3. The bilayers are held by weak only.
Synthesis and crystallization
Thiourea (0.23 g, 3 mmol) was dissolved in 25 ml of anhydrous acetonitrile. The solution was then treated with 2-(bromomethyl)naphthalene (0.55 g, 2.5 mmol). The reaction mixture was stirred for 4 h at room temperature. The resulting white precipitate was filtered and washed with diethyl ether and left to dry at room temperature, resulting in yield 0.72 g (97%) of 2-[(naphthalen-2-yl)methyl]isothiouronium bromide.
The 2-[(naphthalen-2-yl)methyl]isothiouronium bromide (20 mg) was dissolved in 10 ml of methanol and left to slowly evaporate at room temperature. After 5 d, colorless platelets were collected.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2044275
https://doi.org/10.1107/S2414314620015114/sj4217sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620015114/sj4217Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620015114/sj4217Isup3.mol
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007), MCE (Rohlíček & Hušák, 2007); program(s) used to refine structure: Jana2006 (Petricek et al., 2014); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: Jana2006 (Petricek et al., 2014) and publCIF (Westrip, 2010).C12H13N2S+·Br− | F(000) = 600 |
Mr = 297.2 | Dx = 1.637 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: -P 2ycb | Cell parameters from 3162 reflections |
a = 16.2976 (8) Å | θ = 7.4–67.1° |
b = 6.1294 (2) Å | µ = 6.04 mm−1 |
c = 12.2221 (6) Å | T = 120 K |
β = 99.070 (4)° | Platelet, colourless |
V = 1205.65 (9) Å3 | 0.21 × 0.08 × 0.01 mm |
Z = 4 |
Rigaku Oxford Diffraction Gemini ultra, AtlasS2 diffractometer | 2162 independent reflections |
Radiation source: X-ray tube | 1699 reflections with I > 3σ(I) |
Mirror monochromator | Rint = 0.057 |
Detector resolution: 5.1783 pixels mm-1 | θmax = 67.2°, θmin = 5.5° |
ω scans | h = −19→18 |
Absorption correction: analytical CrysAlisPro (Rigaku OD, 2015) | k = −7→6 |
Tmin = 0.522, Tmax = 0.917 | l = −14→13 |
12512 measured reflections |
Refinement on F2 | 40 constraints |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.081 | Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0016I2) |
S = 1.18 | (Δ/σ)max = 0.017 |
2162 reflections | Δρmax = 0.48 e Å−3 |
157 parameters | Δρmin = −0.36 e Å−3 |
4 restraints |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.12634 (2) | 0.79627 (6) | 0.40347 (3) | 0.02124 (12) | |
S1 | 0.09471 (5) | 0.11747 (14) | 0.09911 (6) | 0.0181 (2) | |
N1 | 0.09225 (19) | 0.2979 (5) | 0.2973 (2) | 0.0222 (9) | |
N2 | 0.08363 (19) | 0.5365 (5) | 0.1520 (2) | 0.0221 (9) | |
C1 | 0.2898 (2) | 0.3770 (6) | 0.1961 (3) | 0.0188 (10) | |
C2 | 0.2633 (2) | 0.2128 (6) | 0.1229 (3) | 0.0193 (10) | |
C3 | 0.2926 (2) | 0.2072 (6) | 0.0196 (3) | 0.0211 (10) | |
C4 | 0.3465 (2) | 0.3612 (6) | −0.0066 (3) | 0.0224 (11) | |
C5 | 0.4332 (2) | 0.6914 (6) | 0.0454 (3) | 0.0222 (10) | |
C6 | 0.4595 (2) | 0.8519 (6) | 0.1203 (3) | 0.0252 (11) | |
C7 | 0.4283 (2) | 0.8638 (6) | 0.2208 (3) | 0.0245 (11) | |
C8 | 0.3725 (2) | 0.7122 (6) | 0.2466 (3) | 0.0222 (10) | |
C9 | 0.3453 (2) | 0.5398 (6) | 0.1715 (3) | 0.0192 (10) | |
C10 | 0.3751 (2) | 0.5322 (6) | 0.0686 (3) | 0.0198 (10) | |
C11 | 0.2043 (2) | 0.0410 (6) | 0.1493 (3) | 0.0208 (10) | |
C12 | 0.0894 (2) | 0.3369 (5) | 0.1920 (3) | 0.0177 (10) | |
H1c1 | 0.270001 | 0.38133 | 0.266045 | 0.0226* | |
H1c3 | 0.27426 | 0.093362 | −0.032466 | 0.0253* | |
H1c4 | 0.365563 | 0.354385 | −0.076939 | 0.0269* | |
H1c5 | 0.45425 | 0.686312 | −0.023628 | 0.0266* | |
H1c6 | 0.499614 | 0.957074 | 0.104151 | 0.0302* | |
H1c7 | 0.44616 | 0.979455 | 0.272054 | 0.0294* | |
H1c8 | 0.351646 | 0.722293 | 0.315701 | 0.0267* | |
H1c11 | 0.211892 | 0.018125 | 0.227929 | 0.0249* | |
H2c11 | 0.216623 | −0.09448 | 0.115986 | 0.0249* | |
H1n1 | 0.096 (3) | 0.403 (5) | 0.344 (3) | 0.0267* | |
H2n1 | 0.101 (3) | 0.169 (3) | 0.324 (3) | 0.0267* | |
H1n2 | 0.091 (3) | 0.552 (7) | 0.0843 (11) | 0.0266* | |
H2n2 | 0.086 (3) | 0.646 (4) | 0.196 (3) | 0.0266* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0348 (2) | 0.01257 (19) | 0.01671 (19) | 0.00035 (15) | 0.00505 (13) | 0.00032 (13) |
S1 | 0.0234 (4) | 0.0138 (4) | 0.0174 (4) | −0.0010 (3) | 0.0041 (3) | −0.0024 (3) |
N1 | 0.0367 (16) | 0.0108 (14) | 0.0198 (15) | 0.0000 (13) | 0.0066 (12) | 0.0011 (12) |
N2 | 0.0337 (16) | 0.0142 (15) | 0.0193 (14) | −0.0026 (12) | 0.0068 (12) | −0.0022 (11) |
C1 | 0.0220 (16) | 0.0188 (17) | 0.0164 (16) | 0.0038 (14) | 0.0056 (12) | 0.0012 (13) |
C2 | 0.0202 (16) | 0.0183 (17) | 0.0191 (16) | 0.0011 (14) | 0.0023 (12) | 0.0005 (14) |
C3 | 0.0262 (17) | 0.0185 (17) | 0.0184 (16) | 0.0016 (14) | 0.0026 (13) | −0.0028 (14) |
C4 | 0.0249 (17) | 0.025 (2) | 0.0180 (16) | −0.0020 (14) | 0.0058 (13) | −0.0025 (13) |
C5 | 0.0228 (17) | 0.0234 (19) | 0.0205 (17) | −0.0008 (15) | 0.0040 (13) | 0.0018 (14) |
C6 | 0.0248 (17) | 0.023 (2) | 0.0274 (18) | −0.0030 (14) | 0.0024 (14) | 0.0036 (14) |
C7 | 0.0276 (18) | 0.0184 (18) | 0.0262 (18) | −0.0023 (14) | 0.0001 (14) | −0.0011 (14) |
C8 | 0.0227 (17) | 0.0231 (19) | 0.0207 (17) | 0.0005 (14) | 0.0029 (13) | −0.0045 (14) |
C9 | 0.0176 (16) | 0.0199 (18) | 0.0192 (16) | 0.0035 (13) | 0.0001 (12) | 0.0013 (13) |
C10 | 0.0216 (16) | 0.0179 (18) | 0.0195 (16) | 0.0006 (14) | 0.0017 (13) | 0.0019 (13) |
C11 | 0.0270 (18) | 0.0173 (18) | 0.0183 (16) | 0.0041 (14) | 0.0043 (13) | 0.0026 (13) |
C12 | 0.0190 (16) | 0.0127 (18) | 0.0228 (16) | −0.0014 (12) | 0.0077 (12) | −0.0003 (12) |
S1—C11 | 1.855 (3) | C4—C10 | 1.423 (5) |
S1—C12 | 1.771 (3) | C4—H1c4 | 0.96 |
N1—C12 | 1.302 (4) | C5—C6 | 1.366 (5) |
N1—H1n1 | 0.86 (3) | C5—C10 | 1.419 (5) |
N1—H2n1 | 0.86 (2) | C5—H1c5 | 0.96 |
N2—C12 | 1.316 (4) | C6—C7 | 1.404 (5) |
N2—H1n2 | 0.860 (19) | C6—H1c6 | 0.96 |
N2—H2n2 | 0.86 (3) | C7—C8 | 1.372 (5) |
C1—C2 | 1.370 (5) | C7—H1c7 | 0.96 |
C1—C9 | 1.411 (5) | C8—C9 | 1.424 (5) |
C1—H1c1 | 0.96 | C8—H1c8 | 0.96 |
C2—C3 | 1.419 (5) | C9—C10 | 1.419 (5) |
C2—C11 | 1.495 (5) | C11—H1c11 | 0.96 |
C3—C4 | 1.361 (5) | C11—H2c11 | 0.96 |
C3—H1c3 | 0.96 | ||
C11—S1—C12 | 96.98 (15) | C5—C6—H1c6 | 119.84 |
C12—N1—H1n1 | 121 (2) | C7—C6—H1c6 | 119.84 |
C12—N1—H2n1 | 122 (3) | C6—C7—C8 | 120.7 (3) |
H1n1—N1—H2n1 | 117 (3) | C6—C7—H1c7 | 119.63 |
C12—N2—H1n2 | 117 (3) | C8—C7—H1c7 | 119.63 |
C12—N2—H2n2 | 120 (2) | C7—C8—C9 | 120.3 (3) |
H1n2—N2—H2n2 | 121 (4) | C7—C8—H1c8 | 119.84 |
C2—C1—C9 | 121.8 (3) | C9—C8—H1c8 | 119.84 |
C2—C1—H1c1 | 119.12 | C1—C9—C8 | 122.1 (3) |
C9—C1—H1c1 | 119.12 | C1—C9—C10 | 119.1 (3) |
C1—C2—C3 | 118.9 (3) | C8—C9—C10 | 118.7 (3) |
C1—C2—C11 | 121.5 (3) | C4—C10—C5 | 122.6 (3) |
C3—C2—C11 | 119.5 (3) | C4—C10—C9 | 118.3 (3) |
C2—C3—C4 | 120.8 (3) | C5—C10—C9 | 119.2 (3) |
C2—C3—H1c3 | 119.59 | S1—C11—C2 | 111.7 (2) |
C4—C3—H1c3 | 119.58 | S1—C11—H1c11 | 109.47 |
C3—C4—C10 | 121.1 (3) | S1—C11—H2c11 | 109.47 |
C3—C4—H1c4 | 119.45 | C2—C11—H1c11 | 109.47 |
C10—C4—H1c4 | 119.45 | C2—C11—H2c11 | 109.47 |
C6—C5—C10 | 120.7 (3) | H1c11—C11—H2c11 | 107.17 |
C6—C5—H1c5 | 119.66 | S1—C12—N1 | 119.8 (3) |
C10—C5—H1c5 | 119.66 | S1—C12—N2 | 118.4 (3) |
C5—C6—C7 | 120.3 (3) | N1—C12—N2 | 121.8 (3) |
C9—C1—C2—C3 | 0.0 (2) | C7—C8—C9—C10 | −1.8 (5) |
C9—C1—C2—C11 | −179.8 (3) | C8—C9—C1—C2 | 179.4 (3) |
C1—C2—C3—C4 | 0.3 (5) | C10—C9—C1—C2 | −0.6 (5) |
C11—C2—C3—C4 | −179.9 (3) | C4—C10—C9—C1 | 1.0 (5) |
C2—C3—C4—C10 | 0.0 (3) | C4—C10—C9—C8 | −179.0 (3) |
C3—C4—C10—C5 | 178.0 (3) | C5—C10—C9—C1 | −177.8 (3) |
C3—C4—C10—C9 | −0.7 (5) | C5—C10—C9—C8 | 2.2 (5) |
C4—C10—C5—C6 | −179.5 (3) | C1—C2—C11—S1 | 91.8 (3) |
C9—C10—C5—C6 | −0.8 (5) | C3—C2—C11—S1 | −88.0 (3) |
C10—C5—C6—C7 | −1.1 (5) | C2—C11—S1—C12 | −68.1 (3) |
C5—C6—C7—C8 | 1.5 (5) | C11—S1—C12—N1 | −68.5 (3) |
C6—C7—C8—C9 | 0.0 (3) | C11—S1—C12—N2 | 110.7 (3) |
C7—C8—C9—C1 | 178.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1n1···Br1 | 0.86 (3) | 2.54 (3) | 3.332 (3) | 153 (3) |
N1—H2n1···Br1i | 0.86 (2) | 2.49 (2) | 3.350 (3) | 180 (3) |
N2—H1n2···Br1ii | 0.860 (19) | 2.55 (3) | 3.381 (3) | 164 (4) |
N2—H2n2···Br1 | 0.86 (3) | 2.68 (3) | 3.434 (3) | 147 (3) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+3/2, z−1/2. |
Funding information
This research was supported by project LO1603 under the Ministry of Education, Youth and Sports National Sustainability Programme I of the Czech Republic..
References
Barker, J. & Powell, H. R. (1998). Acta Cryst. C54, 2019–2021. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Fun, H.-K., Jebas, S. R., Razak, I. A., Deepak D'Silva, E., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1195–o1196. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gayathri, D., Velmurugan, D., Hemalatha, P., Veeravazhuthi, V. & Ravikumar, K. (2008). Acta Cryst. E64, m848–m849. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ishii, Y., Matsunaka, K. & Sakaguchi, S. (2000). J. Am. Chem. Soc. 122, 7390–7391. Web of Science CSD CrossRef CAS Google Scholar
Mikolajczyk, M., Lyzwa, P., Drabowicz, J., Wieczorek, M. & Bujacz, G. (1989). Angew. Chem. Int. Ed. Engl. 28, 97–98. Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petricek, V., Dusek, M. & Palatinus, L. (2014). Z. Kristallogr. 229(5), 345–352. Google Scholar
Raptopoulou, C. P., Terzis, A., Mousdis, G. A. & Papavassiliou, G. C. (2002). Z. Naturforsch. 57, 645–650. CSD CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Rohlíček, J. & Hušák, M. (2007). J. Appl. Cryst. 40, 600–601. Web of Science CrossRef IUCr Journals Google Scholar
Seong, H. R., Kim, D. S., Kim, S. G., Choi, H. J. & Ahn, K. H. (2004). Tetrahedron Lett. 45, 723–727. CrossRef CAS Google Scholar
Stergiou, D. V., Skoulika, S., Evmiridis, N. P. & Veltsistas, P. G. (2005). Chem. Mater. 17, 1307–1312. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yeo, W. S. & Hong, J. I. (1998). Tetrahedron Lett. 39, 8137–8140. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.