metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

cis-{1-Butyl-3-[2-(phenyl­sulfan­yl)eth­yl]-4-imidazolin-2-yl-κ2C2,S′}di­chlorido­platinum(II)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangdong 528458, People's Republic of China
*Correspondence e-mail: yaohg518@126.com

Edited by H. Ishida, Okayama University, Japan (Received 22 May 2020; accepted 28 October 2020; online 3 November 2020)

The asymmetric unit of the title compound, [PtCl2(C15H20N2S)], comprises one PtII ion, one N-heterocyclic carbene(NHC)-thio­ether ligand and two chloride ions. The PtII ion is four-coordinated by one C atom and one S atom of the NHC-thio­ether ligand, and by two chloride ions, forming an approximately square-planar geometry. In the crystal, the mol­ecules are linked via C—H⋯Cl and C—H⋯π inter­actions, forming a layer parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­gen heterocyclic carbene (NHC) exhibits attractive advantages such as simple operation and mild conditions in organic catalytic synthesis (Enders et al., 2007[Enders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606-5655.]). In addition, as a neutral two-electron donor, NHC is currently regarded as the most effective ligand for the synthesis of new organometallic complexes owing to its unique features (Hahn & Jahnke, 2008[Hahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122-3172.]; Nelson & Nolan, 2013[Nelson, D. J. & Nolan, S. P. (2013). Chem. Soc. Rev. 42, 6723-6753.]). The first distinctive characteristic is the strong donor property of NHC ligands, which makes the inter­action with metal center closer (Perrin et al., 2001[Perrin, L., Clot, E., Eisenstein, O., Loch, J. & Crabtree, R. H. (2001). Inorg. Chem. 40, 5806-5811.]; Chianese et al., 2003[Chianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663-1667.]). The second one is that NHC can be flexibly modified by introducing functional groups onto the nitro­gen atoms of the N-heterocycle ring. Over the past two decades, numerous attempts have been made to construct diverse donor-functionalized NHCs and their organometallic complexes, and N-, O- and P-functionalized NHCs have been developed and applied in organic synthesis, drug discovery and materials science (Kühl, 2007[Kühl, O. (2007). Chem. Soc. Rev. 36, 592-607.]). However, there are still rare investigations of NHC with S-donor complexes (Liu et al., 2017[Liu, Y., Kean, Z. S., d'Aquino, A. I., Manraj, Y. D., Mendez-Arroyo, J. & Mirkin, C. A. (2017). Inorg. Chem. 56, 5902-5910.]). As soft and electron-rich ligands, thio­ethers usually have versatile coordination chemistry, and can form strong M—S bonds with the metal center (Bierenstiel & Cross, 2011[Bierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574-590.]; Yuan & Huynh, 2012[Yuan, D. & Huynh, H. V. (2012). Molecules, 17, 2491-2517.]). The development of new organometallic complexes bearing NHC-thio­ether ligands (Rosen et al., 2013[Rosen, M. S., Stern, C. L. & Mirkin, C. A. (2013). Chem. Sci. 4, 4193-4198.]) is thus highly desirable. In recent years, NHC complexes with group 10 metals have received increasing attention because of their catalytic activities. In contrast to complexes of lighter homologues, PtII-NHC complexes have been less well studied. The novel title metal PtII complex combined with an NHC-thio­ether ligand was designed and synthesized.

The asymmetric unit of the title complex is composed of one PtII ion, one NHC-thio­ether ligand, and two chloride ions. As shown in Fig. 1[link], the PtII ion is four-coordinated by one C atom and one S atom of the NHC-thio­ether ligand, and by two chloride ions in a nearly square-planar environment. The thio­ether side chain coordinates to the PtII atom in a chelating fashion, forming a six-membered ring with a distorted boat conformation. The Pt—C and Pt—S bond lengths are 1.968 (12) and 2.266 (3) Å, respectively, while the C—Pt—S bond angle is 87.93 (11)°. The two Pt—Cl bond lengths are different from each other [Pt1—Cl1 = 2.360 (3) Å and Pt1—Cl2 = 2.329 (3) Å]. In the crystal, mol­ecules are linked via C—H⋯Cl and C—H⋯π inter­actions (Table 1[link]), forming a layer parallel to the ab plane (Figs. 2[link] and 3[link]). A weak intra­molecular C—H⋯π inter­action is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C10/C9/N2/C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯Cl2i 0.93 2.58 3.485 (12) 163
C2—H2⋯Cg1 0.93 2.98 3.828 (13) 151
C14—H14ACg1ii 0.97 2.82 3.480 (13) 126
Symmetry codes: (i) [x-1, y, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The structure of the title complex, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A packing diagram of the title compound, showing intra- and inter­molecular C—H⋯π inter­actions (dashed lines).
[Figure 3]
Figure 3
A view of the crystal packing of the title complex. Dashed lines denote the inter­molecular C—H⋯Cl hydrogen bonds.

Synthesis and crystallization

N-Heterocyclic carbene (NHC)-thio­ether ligand was synthesized by a slight modification of a reported procedure (Liu et al., 2017[Liu, Y., Kean, Z. S., d'Aquino, A. I., Manraj, Y. D., Mendez-Arroyo, J. & Mirkin, C. A. (2017). Inorg. Chem. 56, 5902-5910.]). Butyl-imidazole and 2-chloro­ethyl­benzene sulfide (molar ratio 1: 1) were dissolved in aceto­nitrile at 393 K for 2 days to obtain a dark-brown liquid, and then the solvent was removed by evaporation. The residue was washed repeatedly with diethyl ether, and a brownish-yellow solid was obtained.

The title complex was synthesized from the reaction of the NHC-thio­ether ligand with potassium tetra­chloro­platinate. A reaction tube was charged with the NHC-thio­ether ligand (0.1710 g, 0.576 mM) and 6 ml of aceto­nitrile. The tube was evacuated and back-filled with nitro­gen. Then a solution of potassium tetra­chloro­platinate (0.200 g, 0.480 mM) in 2 ml of water was added in the dark. Keeping it in the dark, the reaction mixture was allowed to stir at 353 K for 24 h. The mixture was concentrated in vacuo and purified by silica gel column chromatography. Pale-yellow rectangular crystals were obtained from the solution at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The anisotropy of displacement ellipsoid of atom C9 was restrained with ISOR.

Table 2
Experimental details

Crystal data
Chemical formula [PtCl2(C15H20N2S)]
Mr 526.38
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 8.4254 (3), 10.1535 (4), 20.2262 (10)
V3) 1730.30 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 8.53
Crystal size (mm) 0.12 × 0.11 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.310, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11246, 3045, 2911
Rint 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.073, 1.10
No. of reflections 3045
No. of parameters 190
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.27, −0.90
Absolute structure Flack x determined using 1166 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.020 (7)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

cis-{1-Butyl-3-[2-(phenylsulfanyl)ethyl]-4-imidazolin-2-yl-κ2C2,S'}dichloridoplatinum(II) top
Crystal data top
[PtCl2(C15H20N2S)]Dx = 2.021 Mg m3
Mr = 526.38Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 6072 reflections
a = 8.4254 (3) Åθ = 2.3–29.3°
b = 10.1535 (4) ŵ = 8.53 mm1
c = 20.2262 (10) ÅT = 100 K
V = 1730.30 (13) Å3Block, colourless
Z = 40.12 × 0.11 × 0.09 mm
F(000) = 1008
Data collection top
Rigaku Oxford Diffraction SuperNova, Dual, Cu at zero, AtlasS2
diffractometer
3045 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source2911 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.050
Detector resolution: 5.2684 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1012
Tmin = 0.310, Tmax = 1.000l = 2422
11246 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0237P)2 + 8.5737P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.073(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.27 e Å3
3045 reflectionsΔρmin = 0.90 e Å3
190 parametersAbsolute structure: Flack x determined using 1166 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
6 restraintsAbsolute structure parameter: 0.020 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.63221 (5)0.45155 (4)0.36816 (2)0.01172 (13)
Cl10.8671 (4)0.3701 (3)0.41687 (15)0.0251 (7)
Cl20.7685 (3)0.4970 (3)0.27062 (15)0.0166 (7)
S10.5012 (4)0.3876 (3)0.46058 (16)0.0132 (6)
N10.3999 (10)0.6337 (9)0.2997 (5)0.013 (2)
N20.2959 (10)0.4495 (10)0.3301 (5)0.013 (2)
C10.4671 (13)0.5293 (12)0.5109 (6)0.017 (3)
C20.3753 (16)0.6352 (11)0.4903 (6)0.022 (3)
H20.3246790.6334180.4494060.027*
C30.3602 (18)0.7440 (11)0.5317 (6)0.023 (3)
H30.3013930.8164850.5179160.027*
C40.4319 (15)0.7454 (13)0.5932 (7)0.026 (3)
H40.4217050.8186960.6205010.031*
C50.5187 (15)0.6376 (14)0.6141 (7)0.028 (3)
H50.5655560.6378280.6556950.034*
C60.5362 (14)0.5289 (13)0.5730 (6)0.023 (3)
H60.5940690.4562090.5872080.028*
C70.2978 (14)0.3408 (13)0.4385 (6)0.017 (3)
H7A0.2704310.2592510.4607550.021*
H7B0.2250270.4084160.4535830.021*
C80.2785 (13)0.3224 (11)0.3637 (7)0.016 (3)
H8A0.3581180.2614210.3474930.019*
H8B0.1746440.2857570.3541930.019*
C90.1750 (14)0.5213 (13)0.3000 (6)0.020 (3)
H90.0698890.4955030.2943790.024*
C100.2414 (14)0.6358 (12)0.2805 (6)0.015 (3)
H100.1903450.7039450.2583510.018*
C110.4343 (14)0.5184 (11)0.3288 (6)0.016 (3)
C120.5054 (15)0.7492 (12)0.2959 (6)0.018 (3)
H12A0.4776710.8017170.2575100.021*
H12B0.6143700.7199950.2906870.021*
C130.4914 (14)0.8325 (11)0.3576 (6)0.018 (3)
H13A0.5332780.7834930.3949010.022*
H13B0.3801630.8500670.3662290.022*
C140.5803 (14)0.9636 (13)0.3520 (6)0.023 (3)
H14A0.6918320.9464770.3436810.028*
H14B0.5387951.0129620.3147040.028*
C150.5640 (17)1.0449 (15)0.4139 (7)0.037 (4)
H15A0.6209251.1261630.4087260.055*
H15B0.4538471.0634160.4218150.055*
H15C0.6067560.9969860.4507670.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0068 (2)0.0125 (2)0.0158 (2)0.00009 (17)0.0003 (2)0.0010 (2)
Cl10.0119 (14)0.0317 (17)0.0317 (18)0.0032 (16)0.0018 (16)0.0097 (14)
Cl20.0094 (15)0.0230 (15)0.0174 (16)0.0007 (11)0.0022 (12)0.0003 (12)
S10.0116 (15)0.0097 (15)0.0183 (17)0.0005 (11)0.0018 (13)0.0005 (13)
N10.004 (5)0.014 (5)0.022 (6)0.001 (4)0.004 (4)0.000 (4)
N20.010 (3)0.012 (3)0.016 (3)0.000 (2)0.001 (2)0.001 (2)
C10.011 (6)0.020 (7)0.020 (7)0.000 (5)0.004 (5)0.006 (6)
C20.013 (6)0.024 (7)0.030 (7)0.002 (6)0.002 (7)0.003 (6)
C30.029 (7)0.010 (6)0.029 (8)0.005 (6)0.002 (7)0.003 (5)
C40.021 (7)0.023 (7)0.033 (9)0.006 (5)0.011 (6)0.018 (7)
C50.017 (7)0.042 (9)0.026 (9)0.001 (6)0.005 (6)0.012 (7)
C60.013 (7)0.025 (8)0.032 (8)0.007 (5)0.004 (5)0.000 (6)
C70.015 (6)0.022 (7)0.016 (7)0.007 (5)0.002 (5)0.001 (6)
C80.008 (6)0.016 (6)0.023 (7)0.003 (4)0.005 (6)0.004 (6)
C90.012 (7)0.031 (8)0.018 (7)0.005 (5)0.012 (5)0.005 (6)
C100.015 (6)0.013 (6)0.017 (7)0.010 (5)0.003 (5)0.004 (6)
C110.014 (6)0.012 (7)0.020 (7)0.005 (5)0.007 (5)0.003 (5)
C120.013 (7)0.022 (7)0.018 (7)0.003 (5)0.002 (5)0.010 (6)
C130.010 (6)0.021 (6)0.023 (8)0.000 (5)0.005 (5)0.003 (6)
C140.016 (6)0.022 (7)0.031 (8)0.000 (5)0.003 (5)0.003 (6)
C150.039 (8)0.024 (7)0.047 (9)0.001 (7)0.017 (7)0.007 (8)
Geometric parameters (Å, º) top
Pt1—Cl12.360 (3)C6—H60.9300
Pt1—Cl22.329 (3)C7—H7A0.9700
Pt1—S12.266 (3)C7—H7B0.9700
Pt1—C111.968 (12)C7—C81.533 (18)
S1—C11.786 (12)C8—H8A0.9700
S1—C71.834 (12)C8—H8B0.9700
N1—C101.390 (15)C9—H90.9300
N1—C111.343 (15)C9—C101.349 (17)
N1—C121.474 (15)C10—H100.9300
N2—C81.465 (15)C12—H12A0.9700
N2—C91.393 (14)C12—H12B0.9700
N2—C111.360 (14)C12—C131.513 (17)
C1—C21.388 (17)C13—H13A0.9700
C1—C61.385 (17)C13—H13B0.9700
C2—H20.9300C13—C141.532 (16)
C2—C31.394 (16)C14—H14A0.9700
C3—H30.9300C14—H14B0.9700
C3—C41.383 (19)C14—C151.507 (18)
C4—H40.9300C15—H15A0.9600
C4—C51.383 (19)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C5—C61.388 (19)
Cl2—Pt1—Cl190.54 (11)N2—C8—C7109.9 (10)
S1—Pt1—Cl187.93 (11)N2—C8—H8A109.7
S1—Pt1—Cl2174.77 (11)N2—C8—H8B109.7
C11—Pt1—Cl1179.0 (4)C7—C8—H8A109.7
C11—Pt1—Cl290.4 (4)C7—C8—H8B109.7
C11—Pt1—S191.1 (4)H8A—C8—H8B108.2
C1—S1—Pt1108.5 (4)N2—C9—H9127.0
C1—S1—C7101.4 (6)C10—C9—N2106.0 (10)
C7—S1—Pt1109.2 (4)C10—C9—H9127.0
C10—N1—C12123.6 (10)N1—C10—H10126.1
C11—N1—C10110.1 (10)C9—C10—N1107.7 (10)
C11—N1—C12125.9 (9)C9—C10—H10126.1
C9—N2—C8126.2 (9)N1—C11—Pt1131.4 (8)
C11—N2—C8123.2 (9)N1—C11—N2105.7 (9)
C11—N2—C9110.5 (10)N2—C11—Pt1122.8 (8)
C2—C1—S1122.8 (9)N1—C12—H12A109.5
C6—C1—S1116.6 (10)N1—C12—H12B109.5
C6—C1—C2120.7 (12)N1—C12—C13110.8 (10)
C1—C2—H2120.5H12A—C12—H12B108.1
C1—C2—C3118.9 (12)C13—C12—H12A109.5
C3—C2—H2120.5C13—C12—H12B109.5
C2—C3—H3119.7C12—C13—H13A109.0
C4—C3—C2120.7 (12)C12—C13—H13B109.0
C4—C3—H3119.7C12—C13—C14112.7 (10)
C3—C4—H4120.1H13A—C13—H13B107.8
C3—C4—C5119.8 (12)C14—C13—H13A109.0
C5—C4—H4120.1C14—C13—H13B109.0
C4—C5—H5119.9C13—C14—H14A109.3
C4—C5—C6120.2 (13)C13—C14—H14B109.3
C6—C5—H5119.9H14A—C14—H14B108.0
C1—C6—C5119.7 (12)C15—C14—C13111.7 (11)
C1—C6—H6120.2C15—C14—H14A109.3
C5—C6—H6120.2C15—C14—H14B109.3
S1—C7—H7A109.3C14—C15—H15A109.5
S1—C7—H7B109.3C14—C15—H15B109.5
H7A—C7—H7B107.9C14—C15—H15C109.5
C8—C7—S1111.8 (8)H15A—C15—H15B109.5
C8—C7—H7A109.3H15A—C15—H15C109.5
C8—C7—H7B109.3H15B—C15—H15C109.5
Pt1—S1—C1—C262.3 (11)C8—N2—C9—C10175.0 (11)
Pt1—S1—C1—C6118.3 (9)C8—N2—C11—Pt13.2 (16)
Pt1—S1—C7—C814.3 (10)C8—N2—C11—N1174.1 (10)
S1—C1—C2—C3177.4 (10)C9—N2—C8—C7108.8 (12)
S1—C1—C6—C5178.0 (10)C9—N2—C11—Pt1178.8 (8)
S1—C7—C8—N267.4 (11)C9—N2—C11—N11.5 (14)
N1—C12—C13—C14171.7 (10)C10—N1—C11—Pt1179.0 (10)
N2—C9—C10—N10.9 (13)C10—N1—C11—N22.0 (14)
C1—S1—C7—C8128.8 (9)C10—N1—C12—C1386.3 (13)
C1—C2—C3—C42 (2)C11—N1—C10—C91.8 (14)
C2—C1—C6—C52.5 (19)C11—N1—C12—C1385.0 (14)
C2—C3—C4—C50 (2)C11—N2—C8—C766.0 (14)
C3—C4—C5—C61 (2)C11—N2—C9—C100.4 (14)
C4—C5—C6—C10 (2)C12—N1—C10—C9170.7 (11)
C6—C1—C2—C33.2 (19)C12—N1—C11—Pt16.7 (19)
C7—S1—C1—C252.6 (11)C12—N1—C11—N2170.3 (10)
C7—S1—C1—C6126.8 (10)C12—C13—C14—C15179.8 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C10/C9/N2/C11 ring.
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl2i0.932.583.485 (12)163
C2—H2···Cg10.932.983.828 (13)151
C14—H14A···Cg1ii0.972.823.480 (13)126
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+1/2.
 

References

First citationBierenstiel, M. & Cross, E. D. (2011). Coord. Chem. Rev. 255, 574–590.  Web of Science CrossRef CAS Google Scholar
First citationChianese, A. R., Li, X. W., Janzen, M. C., Faller, J. W. & Crabtree, R. H. (2003). Organometallics, 22, 1663–1667.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnders, D., Niemeier, O. & Henseler, A. (2007). Chem. Rev. 107, 5606–5655.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHahn, F. E. & Jahnke, M. C. (2008). Angew. Chem. Int. Ed. 47, 3122–3172.  Web of Science CrossRef CAS Google Scholar
First citationKühl, O. (2007). Chem. Soc. Rev. 36, 592–607.  Web of Science PubMed Google Scholar
First citationLiu, Y., Kean, Z. S., d'Aquino, A. I., Manraj, Y. D., Mendez-Arroyo, J. & Mirkin, C. A. (2017). Inorg. Chem. 56, 5902–5910.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNelson, D. J. & Nolan, S. P. (2013). Chem. Soc. Rev. 42, 6723–6753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPerrin, L., Clot, E., Eisenstein, O., Loch, J. & Crabtree, R. H. (2001). Inorg. Chem. 40, 5806–5811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRosen, M. S., Stern, C. L. & Mirkin, C. A. (2013). Chem. Sci. 4, 4193–4198.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYuan, D. & Huynh, H. V. (2012). Molecules, 17, 2491–2517.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds