organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2H-[1,3]Thia­zolo[5,4,3-ij]quinolin-3-ium chloride monohydrate

CROSSMARK_Color_square_no_text.svg

aUniversity of Graz, Institute of Chemistry, Schubertstr. 1, 8010 Graz, Austria
*Correspondence e-mail: ferdinand.belaj@uni-graz.at

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 November 2020; accepted 5 November 2020; online 10 November 2020)

The structure of the title hydrated mol­ecular salt, C10H8NS+·Cl·H2O, obtained by the reaction of sodium quinoline-8-thiolate Na(Quin-8-S) with CH2Cl2 and an aqueous solution of [Bu4N]Cl, contains π-stacked cations [plane-to-plane separation = 3.338 (4)–3.356 (4) Å] and features chains built by alternating Cl anions and H2O mol­ecules connected by O—H⋯O hydrogen bonds. The cation shows whole-mol­ecule disorder over two flipped orientations in a 0.853 (3):0.147 (3) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The crystal structure analysis of the title compound is the first structure determination of this tricyclic cation. The anhydrous iodide compound has previously been synthesized (Kim et al., 1993[Kim, D. G., Sokolova, S. V., Lukina, V. V. & Volkova, S. A. (1993). Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tek. 36, 107-10.]). All atoms lie on general positions but the cation is planar within experimental accuracy. It is disordered over two orientations with occupation factors of 0.853 (3) and 0.147 (3) that both occupy approximately the same space (Fig. 1[link]). The cations show π-stacking in the a-axis direction (Fig. 2[link]), with the cations and inversion centers alternating. The distances between their least-squares planes are alternately 3.338 (4) and 3.356 (4) Å. The chloride anions, together with the water mol­ecules, form O—H⋯Cl hydrogen bonded (Table 1[link]) zigzag chains running parallel to the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯Cl1 0.84 2.34 (1) 3.174 (2) 174 (2)
O1—H12⋯Cl1i 0.84 2.40 (1) 3.240 (2) 178 (2)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the disordered cation of the title compound. The bonds of the minor disorder component [14.7 (3)%] are drawn with thin lines. The probability ellipsoids are drawn at the 30% probability level, the H atoms are drawn with arbitrary radii.
[Figure 2]
Figure 2
Stereoscopic ORTEP plot (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]) of the packing. The atoms are drawn with arbitrary radii. The cations in the less occupied orientations and the H atoms of the cations were omitted for clarity. The hydrogen bonds are indicated by dotted lines.

Synthesis and crystallization

During an attempt to obtain [Bu4N][Quin-8-S], an aqueous solution of [Bu4N]Cl was added to an aqueous solution of Na(Quin-8-S). The solution was then extracted with CH2Cl2 giving a yellow organic phase, which was then evaporated yielding a yellow oil. After a few hours, yellow–orange crystals of 2H-[1,3]thia­zolo[5,4,3-ij]quinolin-3-ium chloride monohydrate had formed in the oil.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The thia­zolo-quinolinium cation is disordered over two orientations, which refined to site occupation factors of 0.853 (3) and 0.147 (3), respectively. The same anisotropic displacement parameters were used for the ring atoms of the less occupied orientation and the equivalent bonds were restrained to have the same lengths.

Table 2
Experimental details

Crystal data
Chemical formula C10H8NS+·Cl·H2O
Mr 227.70
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.0543 (11), 7.8252 (11), 18.223 (3)
β (°) 94.752 (7)
V3) 1002.5 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.55
Crystal size (mm) 0.32 × 0.15 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.695, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6361, 1968, 1474
Rint 0.056
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.096, 1.04
No. of reflections 1968
No. of parameters 179
No. of restraints 16
H-atom treatment Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.32, −0.30
Computer programs: APEX2 and SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and modified ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

2H-[1,3]Thiazolo[5,4,3-ij]quinolin-3-ium chloride monohydrate top
Crystal data top
C10H8NS+·Cl·H2OF(000) = 472
Mr = 227.70Dx = 1.509 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0543 (11) ÅCell parameters from 1699 reflections
b = 7.8252 (11) Åθ = 2.8–26.1°
c = 18.223 (3) ŵ = 0.55 mm1
β = 94.752 (7)°T = 100 K
V = 1002.5 (3) Å3Plate, deep yellow
Z = 40.32 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1968 independent reflections
Radiation source: Incoatec microfocus sealed tube1474 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.056
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.695, Tmax = 1.000k = 79
6361 measured reflectionsl = 1222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: mixed
wR(F2) = 0.096Only H-atom displacement parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.026P)2 + 0.8115P]
where P = (Fo2 + 2Fc2)/3
1968 reflections(Δ/σ)max = 0.001
179 parametersΔρmax = 0.32 e Å3
16 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The thiazolo-quinolinium cation was disordered over two orientations which refined to site occupation factors of 0.853 (3) and 0.147 (3), respectively. The same anisotropic displacement parameters were used for the ring atoms of the less occupied orientation (EADP of SHELXL) and the equivalent bonds were restrained to have the same lengths (SAME of SHELXL).

The positions of the H atoms of the water molecule were taken from a difference Fourier map, the O-H distances were fixed to 0.84 Å, and the H atoms were refined with a common isotropic displacement parameter without any constraints to the bond angles.

The H atoms of the CH2 groups were refined with a common isotropic displacement parameter and idealized geometries with approximately tetrahedral angles and C-H distances of 0.99 Å (AFIX 23 of SHELXL).

The H atoms of the quinoline rings were put at the external bisectors of the C-C-C angles at C-H distances of 0.95 Å and a common isotropic displacement parameter was refined for these H atoms (AFIX 43 of SHELXL).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.39598 (12)0.13216 (12)0.57556 (4)0.0214 (3)0.853 (3)
C20.3490 (11)0.2798 (6)0.6496 (2)0.0205 (10)0.853 (3)
H210.24820.23380.67880.029 (6)*0.853 (3)
H220.46550.29760.68290.029 (6)*0.853 (3)
N30.2867 (3)0.4431 (4)0.61387 (13)0.0153 (6)0.853 (3)
C40.2379 (4)0.5808 (4)0.65067 (19)0.0233 (8)0.853 (3)
H40.24340.57960.70290.027 (4)*0.853 (3)
C50.1786 (10)0.7272 (6)0.61150 (19)0.0234 (14)0.853 (3)
H50.14360.82640.63720.027 (4)*0.853 (3)
C60.1707 (6)0.7285 (6)0.5367 (2)0.0246 (10)0.853 (3)
H60.13090.82970.51110.027 (4)*0.853 (3)
C70.2144 (18)0.5684 (10)0.4181 (3)0.0204 (11)0.853 (3)
H70.17560.66160.38700.027 (4)*0.853 (3)
C80.2661 (13)0.4161 (7)0.3889 (3)0.0208 (13)0.853 (3)
H80.26600.40720.33690.027 (4)*0.853 (3)
C90.3202 (9)0.2702 (7)0.43232 (19)0.0200 (10)0.853 (3)
H90.34970.16510.40980.027 (4)*0.853 (3)
C100.3286 (7)0.2850 (4)0.50763 (17)0.0149 (9)0.853 (3)
C110.2783 (8)0.4407 (5)0.53779 (18)0.0134 (10)0.853 (3)
C120.2196 (16)0.5844 (5)0.4958 (3)0.0183 (9)0.853 (3)
Cl10.56970 (10)0.56684 (9)0.80204 (4)0.0255 (2)
O10.9855 (2)0.4364 (2)0.77707 (10)0.0274 (5)
H110.8735 (5)0.4705 (12)0.7800 (10)0.037 (7)*
H120.969 (3)0.3406 (4)0.7567 (4)0.037 (7)*
S20.1620 (9)0.8059 (9)0.5181 (4)0.0328 (18)0.147 (3)
C220.206 (9)0.734 (3)0.6134 (7)0.0328 (18)0.147 (3)
H2210.31330.79910.63860.029 (6)*0.147 (3)
H2220.09200.75180.64040.029 (6)*0.147 (3)
N230.254 (3)0.550 (3)0.6109 (10)0.0328 (18)0.147 (3)
C240.302 (3)0.445 (2)0.6669 (12)0.0328 (18)0.147 (3)
H240.29060.48530.71550.027 (4)*0.147 (3)
C250.369 (8)0.280 (4)0.6575 (16)0.0328 (18)0.147 (3)
H250.41970.21390.69850.027 (4)*0.147 (3)
C260.360 (3)0.215 (3)0.5881 (12)0.0328 (18)0.147 (3)
H260.37760.09530.58210.027 (4)*0.147 (3)
C270.336 (7)0.275 (6)0.4491 (17)0.0328 (18)0.147 (3)
H270.39140.16960.43680.027 (4)*0.147 (3)
C280.269 (9)0.382 (6)0.394 (3)0.0328 (18)0.147 (3)
H280.25100.34490.34400.027 (4)*0.147 (3)
C290.228 (13)0.553 (7)0.414 (2)0.0328 (18)0.147 (3)
H290.20430.63600.37690.027 (4)*0.147 (3)
C300.220 (12)0.602 (3)0.487 (2)0.0328 (18)0.147 (3)
C310.259 (7)0.480 (5)0.5414 (13)0.0328 (18)0.147 (3)
C320.327 (6)0.317 (4)0.5245 (14)0.0328 (18)0.147 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0242 (5)0.0167 (5)0.0228 (4)0.0006 (4)0.0008 (3)0.0036 (3)
C20.023 (3)0.0264 (19)0.0107 (16)0.0043 (16)0.0047 (16)0.0083 (14)
N30.0105 (13)0.0221 (15)0.0134 (13)0.0035 (11)0.0019 (10)0.0009 (11)
C40.0187 (18)0.033 (2)0.0190 (16)0.0096 (15)0.0062 (14)0.0105 (15)
C50.014 (4)0.0217 (19)0.0346 (19)0.0044 (15)0.0052 (15)0.0142 (15)
C60.0154 (19)0.020 (3)0.038 (2)0.0044 (18)0.0019 (16)0.0085 (19)
C70.011 (3)0.027 (3)0.0225 (18)0.003 (2)0.0034 (15)0.0107 (16)
C80.0154 (17)0.037 (4)0.0101 (15)0.005 (3)0.0005 (13)0.0014 (17)
C90.014 (2)0.027 (2)0.0187 (19)0.0008 (16)0.0056 (19)0.009 (2)
C100.0109 (15)0.0163 (19)0.0169 (19)0.0035 (16)0.0020 (17)0.0015 (14)
C110.005 (2)0.024 (3)0.0111 (14)0.004 (2)0.0006 (12)0.0009 (13)
C120.0078 (15)0.020 (2)0.027 (2)0.005 (2)0.001 (2)0.0029 (17)
Cl10.0225 (4)0.0236 (4)0.0308 (4)0.0005 (3)0.0038 (3)0.0017 (3)
O10.0209 (11)0.0319 (12)0.0291 (11)0.0027 (9)0.0003 (9)0.0007 (9)
S20.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C220.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
N230.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C240.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C250.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C260.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C270.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C280.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C290.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C300.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C310.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
C320.015 (3)0.028 (4)0.054 (4)0.001 (2)0.009 (2)0.006 (3)
Geometric parameters (Å, º) top
S1—C21.827 (4)O1—H120.84
S1—C101.758 (4)S2—C301.758 (6)
N3—C21.484 (5)S2—C221.827 (6)
C2—H210.99C22—N231.484 (6)
C2—H220.99C22—H2210.99
N3—C41.329 (4)C22—H2220.99
N3—C111.383 (4)N23—C241.329 (5)
C4—C51.395 (5)N23—C311.384 (5)
C4—H40.95C24—C251.395 (7)
C5—C61.360 (5)C24—H240.95
C5—H50.95C25—C261.360 (7)
C6—C121.409 (5)C25—H250.95
C6—H60.95C26—C321.411 (7)
C7—C81.366 (5)C26—H260.95
C7—C121.420 (5)C27—C281.366 (6)
C7—H70.95C27—C321.419 (6)
C8—C91.423 (5)C27—H270.95
C8—H80.95C28—C291.423 (7)
C9—C101.374 (4)C28—H280.95
C9—H90.95C29—C301.373 (6)
C10—C111.394 (4)C29—H290.95
C11—C121.403 (5)C30—C311.394 (6)
O1—H110.84C31—C321.402 (6)
N3—C2—S1106.6 (2)C30—S2—C2290.3 (14)
N3—C2—H21110.4N23—C22—S2106.9 (11)
S1—C2—H21110.4N23—C22—H221110.3
N3—C2—H22110.4S2—C22—H221110.3
S1—C2—H22110.4N23—C22—H222110.3
H21—C2—H22108.6S2—C22—H222110.3
C2—S1—C1091.98 (16)H221—C22—H222108.6
S1—C10—C9129.2 (3)C24—N23—C31116 (3)
S1—C10—C11112.3 (2)C24—N23—C22128.2 (18)
C9—C10—C11118.4 (4)C31—N23—C22116 (2)
C10—C11—N3114.6 (3)N23—C24—C25123 (3)
C12—C11—N3121.4 (3)N23—C24—H24118.5
C10—C11—C12124.0 (3)C25—C24—H24118.5
C11—N3—C2114.5 (3)C26—C25—C24118 (3)
C11—N3—C4121.7 (3)C26—C25—H25121.0
C2—N3—C4123.8 (3)C24—C25—H25121.0
N3—C4—C5119.1 (4)C25—C26—C32123 (3)
N3—C4—H4120.5C25—C26—H26118.5
C5—C4—H4120.5C32—C26—H26118.5
C6—C5—C4120.3 (4)C28—C27—C32122 (4)
C6—C5—H5119.8C28—C27—H27118.8
C4—C5—H5119.8C32—C27—H27118.8
C5—C6—C12122.1 (4)C27—C28—C29116 (5)
C5—C6—H6118.9C27—C28—H28121.9
C12—C6—H6118.9C29—C28—H28121.9
C8—C7—C12118.6 (6)C30—C29—C28123 (5)
C8—C7—H7120.7C30—C29—H29118.6
C12—C7—H7120.7C28—C29—H29118.6
C7—C8—C9123.5 (6)C29—C30—C31118 (3)
C7—C8—H8118.3C29—C30—S2127 (3)
C9—C8—H8118.3C31—C30—S2115 (2)
C10—C9—C8118.4 (5)N23—C31—C30112 (3)
C10—C9—H9120.8N23—C31—C32127 (3)
C8—C9—H9120.8C30—C31—C32121.1 (17)
C11—C12—C6115.3 (4)C31—C32—C26112 (3)
C11—C12—C7117.1 (4)C31—C32—C27118 (2)
C6—C12—C7127.6 (5)C26—C32—C27130 (3)
H11—O1—H12102.2 (17)
C10—S1—C2—N31.3 (5)C30—S2—C22—N233 (4)
S1—C2—N3—C4179.3 (3)S2—C22—N23—C24178 (2)
S1—C2—N3—C110.8 (6)S2—C22—N23—C312 (5)
C11—N3—C4—C50.6 (6)C31—N23—C24—C255 (5)
C2—N3—C4—C5179.0 (6)C22—N23—C24—C25171 (5)
N3—C4—C5—C60.1 (8)N23—C24—C25—C269 (6)
C4—C5—C6—C120.5 (10)C24—C25—C26—C3214 (6)
C12—C7—C8—C91.9 (17)C32—C27—C28—C2914 (9)
C7—C8—C9—C102.8 (13)C27—C28—C29—C3012 (12)
C8—C9—C10—C111.9 (9)C28—C29—C30—C311 (13)
C8—C9—C10—S1178.0 (5)C28—C29—C30—S2177 (6)
C2—S1—C10—C9178.5 (6)C22—S2—C30—C29177 (8)
C2—S1—C10—C111.6 (5)C22—S2—C30—C314 (6)
C4—N3—C11—C10178.1 (4)C24—N23—C31—C30176 (5)
C2—N3—C11—C100.4 (7)C22—N23—C31—C301 (7)
C4—N3—C11—C120.6 (9)C24—N23—C31—C327 (7)
C2—N3—C11—C12179.2 (7)C22—N23—C31—C32170 (5)
C9—C10—C11—N3178.6 (5)C29—C30—C31—N23177 (7)
S1—C10—C11—N31.5 (6)S2—C30—C31—N234 (8)
C9—C10—C11—C120.1 (11)C29—C30—C31—C328 (11)
S1—C10—C11—C12179.8 (7)S2—C30—C31—C32173 (4)
N3—C11—C12—C60.0 (12)N23—C31—C32—C2611 (7)
C10—C11—C12—C6178.6 (6)C30—C31—C32—C26179 (5)
N3—C11—C12—C7179.5 (8)N23—C31—C32—C27174 (4)
C10—C11—C12—C70.8 (14)C30—C31—C32—C276 (9)
C5—C6—C12—C110.5 (12)C25—C26—C32—C3114 (6)
C5—C6—C12—C7178.8 (10)C25—C26—C32—C27171 (5)
C8—C7—C12—C110.0 (16)C28—C27—C32—C315 (8)
C8—C7—C12—C6179.4 (10)C28—C27—C32—C26169 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···Cl10.842.34 (1)3.174 (2)174 (2)
O1—H12···Cl1i0.842.40 (1)3.240 (2)178 (2)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Funding information

Financial support by NAWI Graz is gratefully acknowledged.

References

First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKim, D. G., Sokolova, S. V., Lukina, V. V. & Volkova, S. A. (1993). Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tek. 36, 107–10.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds