organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-Thia-1,5(1,3)-dibenzena­cyclo­undeca­phan-8-ene-6,11-dione 3,3-dioxide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
*Correspondence e-mail: srk@chem.iitb.ac.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 2 November 2020; accepted 5 November 2020; online 24 November 2020)

The molecular structure of the title cyclophane, C20H18O4S, has two benzyl groups, a sulfone group, and two carbonyl groups adjacent to a double bond. The phenyl rings do not show intra­molecular stacking.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Cyclo­phanes (Cram & Helgeson, 1966[Cram, D. J. & Helgeson, R. C. (1966). J. Am. Chem. Soc. 88, 3515-3521.]; Kotha et al., 2015[Kotha, S., Shirbhate, M. E. & Waghule, G. T. (2015). Beilstein J. Org. Chem. 11, 1274-1331.]) have become useful targets because of their unique structural features (Knobler et al., 1986[Knobler, C. B., Maverick, E. F., Parker, K. M., Trueblood, K. N., Weiss, R. L., Cram, D. J. & Helgeson, R. C. (1986). Acta Cryst. C42, 1862-1868.]). Their shapes are the main cause for their applications in supra­molecular chemistry (Xu et al., 2008[Xu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723-730.]), material science (Yu et al., 2006[Yu, C.-Y. & Turner, M. L. (2006). Angew. Chem. Int. Ed. 45, 7797-7800.]) and medicinal chemistry (Lee et al., 2002[Lee, K. S., Li, G., Kim, S. H., Lee, C. S., Woo, M. H., Lee, S. H., Jhang, Y. D. & Son, J. K. (2002). J. Nat. Prod. 65, 1707-1708.]). To this end, the synthesis of sulfur-containing cyclo­phanes (thia­cyclo­phanes) has become of great inter­est for chemists (Nicolaou et al., 2010[Nicolaou, K. C., Sun, Y.-P., Korman, H. & Sarlah, D. (2010). Angew. Chem. Int. Ed. 49, 5875-5878.]).

We have prepared novel thia­cyclo­phanes using a simple strategy involving the Grignard reaction and ring-closing metathesis as key steps (Kotha et al., 2020[Kotha, S., Gupta, N. K. & Ansari, S. (2020). Eur J. Org. Chem. https://doi.org/10.1002/ejoc.202000697.]). In this work, we present the single-crystal XRD study of the thia­meta­cyclo­phane 1, which has two benzyl rings attached to an SO2 moiety and a bridge at the meta positions of the phenyl rings containing two carbonyl functions connected by a double bond (Fig. 1a[link]). The angles between the S atom, the ansa-bridging methyl­ene C atom and pivot atom of the phenyl ring i.e. S1—C1—C2 [114.1 (3)°] and S1—C20—C18 [114.8 (3)°] are slightly widened compared with an sp3-hybridized carbon atom. The structure has completely out-of-plane phenyl groups with no intra­molecular inter­action between them, as is evident from the top view of the compound (Mitchell & Lai, 1984[Mitchell, R. H. & Lai, Y. H. (1984). J. Org. Chem. 49, 2541-2546.]) (Fig. 1[link]b).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound 1, (a) showing the atom-numbering scheme and (b) top view (H-atoms are omitted for clarity). Displacement ellipsoids are drawn at the 50% probability level.

With respect to inter­molecular inter­actions, no ππ stacking between adjacent phenyl rings is observed, as is evident from the packing diagram shown in Fig. 2[link]. The phenyl rings do not share any overlap. Inter­molecular hydrogen bonding is also absent.

[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the b axis. H atoms are omitted for clarity.

Synthesis and crystallization

For the synthesis of the compound 1, we started with the preparation of the di­aldehyde 2 (Kotha et al., 2020[Kotha, S., Gupta, N. K. & Ansari, S. (2020). Eur J. Org. Chem. https://doi.org/10.1002/ejoc.202000697.]). Later on, a Grignard reaction with 2 gave 3, which on further oxidation provided the sulfone 4. In an oven-dried, two-neck round-bottom flask, compound 4 (1eq., 50 mg) was dissolved in dry di­chloro­methane (20 ml). 1 Drop (0.1 eq.) of Ti(OiPr)4 was added under an inert atmosphere and the reaction mixture was degassed by nitro­gen gas. After degasification, Grubbs' second generation catalyst (5–10 mmol-%) was added, and the reaction mixture was refluxed. After completion of the reaction (TLC monitoring), the crude product was then subjected to oxidation by using pyridinium chloro­chromate (2.5 eq.) at room temperature. After completion of the reaction (TLC monitoring), the product was concentrated and purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent to afford the desired compound 1 (Fig. 3[link]). The single crystals were obtained by recrystallization in ethyl acetate and petroleum ether (1:2).

[Figure 3]
Figure 3
Synthesis of thia­meta­cyclo­phane 1.

Yield 27 mg, 58%, m.p. 186–188°C, appearance: colourless solid, Rf = 0.5 (50% EtOAc–petroleum ether), 1H NMR 400 MHz, CDCl3) δ 8.04 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.56–7.51 (m, 4H), 5.83 (t, J = 3.2 Hz, 2H), 4.08 (s, 4H), 3.59 (m, 4H) p.p.m., 13C NMR (100 MHz, CDCl3) δ 197.1, 136.9, 135.4, 131.2, 130.1, 129.4, 128.7, 127.8, 57.1, 43.7 p.p.m., HRMS (ESI) m/z calculated C20H18O4SK[M + K]+ 393.0557, found 393.0551.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C20H18O4S
Mr 354.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 8.4257 (11), 9.0522 (9), 22.237 (2)
β (°) 98.303 (12)
V3) 1678.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.15 × 0.09 × 0.03
 
Data collection
Diffractometer Rigaku Saturn724+
Absorption correction Multi-scan (CrysAlis PRO; Rigaku, 2018[Rigaku (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.921, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6670, 2942, 1671
Rint 0.083
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.165, 1.04
No. of reflections 2942
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.42
Computer programs: CrysAlis PRO (Rigaku, 2018[Rigaku (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku, 2018); cell refinement: CrysAlis PRO (Rigaku, 2018); data reduction: CrysAlis PRO (Rigaku, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(E)-3-Thia-1,5(1,3)-dibenzenacycloundecaphan-8-ene-6,11-dione 3,3-dioxide top
Crystal data top
C20H18O4SF(000) = 744
Mr = 354.40Dx = 1.403 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4257 (11) ÅCell parameters from 1833 reflections
b = 9.0522 (9) Åθ = 2.4–26.4°
c = 22.237 (2) ŵ = 0.22 mm1
β = 98.303 (12)°T = 150 K
V = 1678.3 (3) Å3Block, colourless
Z = 40.14 × 0.09 × 0.03 mm
Data collection top
Rigaku Saturn724+
diffractometer
2942 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 28.5714 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlisPro; Rigaku, 2018)
k = 710
Tmin = 0.921, Tmax = 1.000l = 1826
6670 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.7221P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2942 reflectionsΔρmax = 0.42 e Å3
226 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were refined using a riding model with U(H)=1.2UeqC and with Caromatic—H = 0.95?Å or Cmethylene—H = 0.99?Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.78574 (15)0.72123 (11)0.70216 (5)0.0316 (4)
O20.7211 (4)0.8626 (3)0.68124 (14)0.0421 (9)
O10.8964 (4)0.7170 (3)0.75787 (13)0.0392 (9)
O30.1830 (4)0.3005 (3)0.50373 (14)0.0475 (10)
O41.0566 (4)0.0096 (3)0.62633 (17)0.0515 (10)
C61.0134 (5)0.2434 (4)0.64281 (18)0.0267 (10)
C140.3355 (6)0.4516 (4)0.57729 (19)0.0305 (11)
C10.8785 (5)0.6454 (4)0.64184 (18)0.0267 (11)
H1A0.79480.62650.60670.032*
H1B0.95360.71940.62910.032*
C80.9719 (6)0.0980 (4)0.6111 (2)0.0325 (11)
C70.9243 (5)0.3719 (4)0.62869 (18)0.0249 (10)
H70.83200.36920.59860.030*
C150.2412 (5)0.5744 (5)0.5605 (2)0.0323 (11)
H150.15550.56820.52780.039*
C20.9693 (5)0.5035 (4)0.65816 (18)0.0250 (10)
C190.4621 (5)0.4625 (4)0.62534 (18)0.0267 (10)
H190.52630.37820.63720.032*
C41.1943 (5)0.3788 (5)0.7164 (2)0.0347 (12)
H41.28630.38210.74660.042*
C130.2932 (6)0.3062 (5)0.5460 (2)0.0352 (12)
C31.1054 (5)0.5051 (5)0.7015 (2)0.0315 (11)
H31.13820.59520.72150.038*
C90.8348 (5)0.0863 (5)0.5607 (2)0.0357 (12)
H9A0.83620.01270.54190.043*
H9B0.84860.16050.52910.043*
C110.5455 (5)0.1580 (4)0.5472 (2)0.0329 (11)
H110.55450.18820.50690.040*
C51.1485 (5)0.2470 (4)0.68701 (18)0.0302 (11)
H51.20910.15960.69700.036*
C170.3971 (6)0.7161 (4)0.63881 (19)0.0319 (11)
H170.41660.80700.66000.038*
C160.2725 (5)0.7065 (5)0.59171 (19)0.0337 (12)
H160.20760.79060.58040.040*
C120.3844 (6)0.1679 (4)0.5677 (2)0.0349 (12)
H12A0.39850.16520.61270.042*
H12B0.32000.08050.55250.042*
C180.4949 (5)0.5959 (4)0.65603 (19)0.0271 (10)
C100.6757 (6)0.1099 (4)0.5816 (2)0.0339 (12)
H100.66800.08850.62290.041*
C200.6247 (5)0.6022 (4)0.71042 (19)0.0293 (11)
H20A0.66750.50130.71880.035*
H20B0.57600.63430.74620.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0419 (8)0.0204 (6)0.0310 (6)0.0001 (5)0.0005 (6)0.0055 (5)
O20.054 (2)0.0163 (14)0.053 (2)0.0032 (15)0.0005 (18)0.0051 (14)
O10.045 (2)0.0354 (17)0.0338 (18)0.0011 (15)0.0077 (16)0.0115 (14)
O30.046 (2)0.053 (2)0.038 (2)0.0074 (17)0.0131 (18)0.0068 (16)
O40.038 (2)0.0275 (17)0.085 (3)0.0069 (16)0.002 (2)0.0016 (17)
C60.030 (3)0.026 (2)0.025 (2)0.000 (2)0.006 (2)0.0027 (18)
C140.033 (3)0.030 (2)0.028 (3)0.002 (2)0.003 (2)0.0018 (19)
C10.037 (3)0.019 (2)0.023 (2)0.003 (2)0.002 (2)0.0017 (18)
C80.037 (3)0.026 (2)0.035 (3)0.001 (2)0.008 (2)0.003 (2)
C70.024 (3)0.027 (2)0.023 (2)0.001 (2)0.000 (2)0.0004 (18)
C150.030 (3)0.041 (3)0.027 (3)0.007 (2)0.005 (2)0.009 (2)
C20.032 (3)0.023 (2)0.021 (2)0.003 (2)0.005 (2)0.0038 (18)
C190.027 (3)0.024 (2)0.030 (2)0.007 (2)0.009 (2)0.0038 (18)
C40.026 (3)0.046 (3)0.030 (3)0.005 (2)0.001 (2)0.001 (2)
C130.036 (3)0.044 (3)0.026 (2)0.006 (2)0.003 (2)0.001 (2)
C30.032 (3)0.028 (2)0.034 (3)0.000 (2)0.004 (2)0.0016 (19)
C90.037 (3)0.029 (2)0.040 (3)0.006 (2)0.001 (2)0.007 (2)
C110.037 (3)0.025 (2)0.036 (3)0.000 (2)0.001 (2)0.008 (2)
C50.030 (3)0.031 (2)0.030 (2)0.002 (2)0.004 (2)0.005 (2)
C170.038 (3)0.027 (2)0.032 (3)0.009 (2)0.010 (2)0.003 (2)
C160.036 (3)0.031 (2)0.034 (3)0.012 (2)0.004 (2)0.014 (2)
C120.043 (3)0.029 (2)0.032 (3)0.005 (2)0.001 (2)0.003 (2)
C180.028 (3)0.027 (2)0.028 (2)0.001 (2)0.009 (2)0.0023 (19)
C100.039 (3)0.027 (2)0.031 (3)0.002 (2)0.006 (2)0.0037 (19)
C200.038 (3)0.025 (2)0.026 (2)0.001 (2)0.007 (2)0.0033 (18)
Geometric parameters (Å, º) top
S1—O21.441 (3)C4—H40.9500
S1—O11.439 (3)C4—C31.380 (6)
S1—C11.785 (4)C4—C51.388 (5)
S1—C201.763 (4)C13—C121.511 (6)
O3—C131.223 (5)C3—H30.9500
O4—C81.226 (5)C9—H9A0.9900
C6—C81.510 (5)C9—H9B0.9900
C6—C71.395 (5)C9—C101.497 (6)
C6—C51.393 (5)C11—H110.9500
C14—C151.386 (6)C11—C121.496 (6)
C14—C191.400 (5)C11—C101.318 (5)
C14—C131.507 (6)C5—H50.9500
C1—H1A0.9900C17—H170.9500
C1—H1B0.9900C17—C161.375 (6)
C1—C21.512 (5)C17—C181.385 (5)
C8—C91.492 (6)C16—H160.9500
C7—H70.9500C12—H12A0.9900
C7—C21.385 (5)C12—H12B0.9900
C15—H150.9500C18—C201.510 (6)
C15—C161.389 (6)C10—H100.9500
C2—C31.388 (6)C20—H20A0.9900
C19—H190.9500C20—H20B0.9900
C19—C181.395 (5)
O2—S1—C1106.56 (19)C2—C3—H3119.2
O2—S1—C20108.4 (2)C4—C3—C2121.5 (4)
O1—S1—O2117.98 (18)C4—C3—H3119.2
O1—S1—C1109.7 (2)C8—C9—H9A109.0
O1—S1—C20107.84 (19)C8—C9—H9B109.0
C20—S1—C1105.7 (2)C8—C9—C10112.8 (4)
C7—C6—C8122.7 (4)H9A—C9—H9B107.8
C5—C6—C8117.4 (4)C10—C9—H9A109.0
C5—C6—C7119.8 (4)C10—C9—H9B109.0
C15—C14—C19119.5 (4)C12—C11—H11118.0
C15—C14—C13119.2 (4)C10—C11—H11118.0
C19—C14—C13121.2 (4)C10—C11—C12123.9 (4)
S1—C1—H1A108.7C6—C5—H5120.2
S1—C1—H1B108.7C4—C5—C6119.7 (4)
H1A—C1—H1B107.6C4—C5—H5120.2
C2—C1—S1114.1 (3)C16—C17—H17119.4
C2—C1—H1A108.7C16—C17—C18121.3 (4)
C2—C1—H1B108.7C18—C17—H17119.4
O4—C8—C6118.5 (4)C15—C16—H16119.9
O4—C8—C9120.5 (4)C17—C16—C15120.3 (4)
C9—C8—C6121.0 (4)C17—C16—H16119.9
C6—C7—H7119.7C13—C12—H12A108.9
C2—C7—C6120.6 (4)C13—C12—H12B108.9
C2—C7—H7119.7C11—C12—C13113.2 (4)
C14—C15—H15120.1C11—C12—H12A108.9
C14—C15—C16119.8 (4)C11—C12—H12B108.9
C16—C15—H15120.1H12A—C12—H12B107.8
C7—C2—C1121.5 (4)C19—C18—C20119.6 (4)
C7—C2—C3118.7 (4)C17—C18—C19118.5 (4)
C3—C2—C1119.8 (3)C17—C18—C20121.7 (4)
C14—C19—H19119.7C9—C10—H10117.5
C18—C19—C14120.6 (4)C11—C10—C9125.0 (4)
C18—C19—H19119.7C11—C10—H10117.5
C3—C4—H4120.2S1—C20—H20A108.6
C3—C4—C5119.7 (4)S1—C20—H20B108.6
C5—C4—H4120.2C18—C20—S1114.8 (3)
O3—C13—C14119.6 (4)C18—C20—H20A108.6
O3—C13—C12120.3 (4)C18—C20—H20B108.6
C14—C13—C12120.0 (4)H20A—C20—H20B107.6
S1—C1—C2—C7117.0 (4)C7—C2—C3—C41.1 (7)
S1—C1—C2—C366.1 (5)C15—C14—C19—C180.6 (7)
O2—S1—C1—C2173.6 (3)C15—C14—C13—O34.7 (7)
O2—S1—C20—C1850.0 (3)C15—C14—C13—C12174.0 (4)
O1—S1—C1—C244.9 (4)C19—C14—C15—C160.4 (7)
O1—S1—C20—C18178.8 (3)C19—C14—C13—O3179.2 (4)
O3—C13—C12—C11103.5 (5)C19—C14—C13—C122.1 (7)
O4—C8—C9—C10115.5 (5)C19—C18—C20—S1118.1 (4)
C6—C8—C9—C1066.8 (5)C13—C14—C15—C16175.8 (4)
C6—C7—C2—C1177.5 (4)C13—C14—C19—C18176.7 (4)
C6—C7—C2—C30.6 (6)C3—C4—C5—C60.0 (7)
C14—C15—C16—C170.4 (7)C5—C6—C8—O41.3 (6)
C14—C19—C18—C171.5 (6)C5—C6—C8—C9176.4 (4)
C14—C19—C18—C20175.8 (4)C5—C6—C7—C20.2 (6)
C14—C13—C12—C1177.8 (5)C5—C4—C3—C20.8 (7)
C1—S1—C20—C1863.9 (3)C17—C18—C20—S167.7 (5)
C1—C2—C3—C4178.1 (4)C16—C17—C18—C191.5 (7)
C8—C6—C7—C2178.5 (4)C16—C17—C18—C20175.7 (4)
C8—C6—C5—C4178.3 (4)C12—C11—C10—C9174.3 (4)
C8—C9—C10—C11154.2 (4)C18—C17—C16—C150.5 (7)
C7—C6—C8—O4180.0 (4)C10—C11—C12—C13139.7 (4)
C7—C6—C8—C92.3 (7)C20—S1—C1—C271.2 (3)
C7—C6—C5—C40.5 (6)
 

Footnotes

NKG and SA contributed equally.

Acknowledgements

We thank Mr Darshan S Mhatre for his help in collecting the X-ray data and with the structure refinement.

Funding information

Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, India (award No. SR/S2/JCB-33/2010 to Sambasivarao Kotha); Council of Scientific and Industrial Research, India (scholarship to Naveen Kumar Gupta); University Grants Commission (scholarship to Saima Ansari).

References

First citationCram, D. J. & Helgeson, R. C. (1966). J. Am. Chem. Soc. 88, 3515–3521.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKnobler, C. B., Maverick, E. F., Parker, K. M., Trueblood, K. N., Weiss, R. L., Cram, D. J. & Helgeson, R. C. (1986). Acta Cryst. C42, 1862–1868.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationKotha, S., Gupta, N. K. & Ansari, S. (2020). Eur J. Org. Chem. https://doi.org/10.1002/ejoc.202000697.  Google Scholar
First citationKotha, S., Shirbhate, M. E. & Waghule, G. T. (2015). Beilstein J. Org. Chem. 11, 1274–1331.  CrossRef CAS PubMed Google Scholar
First citationLee, K. S., Li, G., Kim, S. H., Lee, C. S., Woo, M. H., Lee, S. H., Jhang, Y. D. & Son, J. K. (2002). J. Nat. Prod. 65, 1707–1708.  CrossRef PubMed CAS Google Scholar
First citationMitchell, R. H. & Lai, Y. H. (1984). J. Org. Chem. 49, 2541–2546.  CrossRef CAS Google Scholar
First citationNicolaou, K. C., Sun, Y.-P., Korman, H. & Sarlah, D. (2010). Angew. Chem. Int. Ed. 49, 5875–5878.  CrossRef CAS Google Scholar
First citationRigaku (2018). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationXu, J. W., Wang, W. L., Lin, T. T., Sun, Z. & Lai, Y. H. (2008). Supramol. Chem. 20, 723–730.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, C.-Y. & Turner, M. L. (2006). Angew. Chem. Int. Ed. 45, 7797–7800.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds