metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[[bis­­(aceto­nitrile-κN)(4,4′-dimeth­­oxy-2,2′-bi­pyridine-κ2N,N′)copper(II)]-μ-tri­fluoro­methane­sulfonato-κ2O:O′] tri­fluoro­methane­sulfonate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 September 2020; accepted 21 October 2020; online 30 October 2020)

The central copper(II) atom of the title salt, {[Cu(CF3SO3)(CH3CN)2(C12H12N2O2)](CF3SO3)}n or [[Cu(CH3CN)2(diOMe-bpy)(CF3SO3)](CF3SO3)]n where diOMe-bpy is 4,4′-dimeth­oxy-2,2′-bi­pyridine, C12H12N2O2, is sixfold coordin­ated by the N atoms of the chelating bi­pyridine ligand, the N atoms of two aceto­nitrile mol­ecules, and two tri­fluoro­methane­sulfonate O atoms in a tetra­gonally distorted octa­hedral shape. The formation of polymeric chains [Cu(CH3CN)2(diOMe-bpy)(CF3SO3)]+n leaves voids for the non-coordinating tri­fluoro­methane­sulfonate anions that inter­act with the complex through weak hydrogen bonds. The presence of weakly coordinating ligands like aceto­nitrile and tri­fluoro­methane­sulfonate makes the title compound a convenient starting material for the synthesis of novel metal–organic frameworks.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

4,4′-Dimeth­oxy-2,2′-bi­pyridines are continuously being investigated for their photoluminescence features (Ravaro et al., 2018[Ravaro, L. P., Mafud, A. C., Li, Z., Reinheimer, E., Simone, C. A., Mascarenhas, Y. P., Ford, P. C. & de Camargo, A. S. (2018). Dyes Pigments, 159, 464-470.]), anti­microbial activity (Drzeżdżon et al., 2019[Drzeżdżon, J., Piotrowska-Kirschling, A., Malinowski, J., Kloska, A., Gawdzik, B., Chmurzyński, L. & Jacewicz, D. (2019). J. Mol. Liq. 282, 441-447.]), good affinity in DNA binding (Anjomshoa et al., 2016[Anjomshoa, M., Torkzadeh-Mahani, M., Janczak, J., Rizzoli, C., Sahihi, M., Ataei, F. & Dehkhodaei, M. (2016). Polyhedron, 119, 23-38.]), and anti­tumor activity against human cancer cells (Qin et al., 2019[Qin, Q. P., Wang, Z. F., Tan, M. X., Huang, X. L., Zou, H. H., Zou, B. Q., Shi, B. B. & Zhang, S. H. (2019). Metallomics, 11, 1005-1015.]). As part of our research related to the coordination chemistry of metal ions with bi­pyridine and terpyridine ligands, in the present report we describe the synthesis and crystal structure of the title copper(II) complex salt, [[Cu(CF3SO3)(C2H3N)2(C12H12N2O2)](CF3SO3)]n.

As depicted in Fig. 1[link], the asymmetric unit of the title compound comprises a CuII atom, one N,N′-chelating 4,4′-dimeth­oxy-2,2′-bi­pyridine ligand, two aceto­nitrile ligands, and two tri­fluoro­methane­sulfonate anions. The central copper(II) atom exhibits a tetra­gonally distorted octa­hedral coordination environment defined by the N atoms of the chelating 4,4′-dimeth­oxy-2,2′-bi­pyridine ligand and two neutral aceto­nitrile mol­ecules in the equatorial plane and by two O atoms of symmetry-related tri­fluoro­methane­sulfonate anions in axial positions. Although the Cu—N bond lengths with the bi­pyridine ligand are shorter than the Cu—N bond lengths with the coordinating aceto­nitrile mol­ecules, their values are comparable with the reported values of other copper(II) complexes with the same chelating ligand (Fettouhi, 2017[Fettouhi, M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 985-986.]). The aceto­nitrile ligands are bordering on linearity. All relevant bond lengths and angles involving the CuII atom are presented in Table 1[link]. The cations in the title complex are aligned into polymeric chains extending parallel to the a-axis direction and pack into layers parallel to the bc plane, as illustrated in the crystal packing diagram given in Fig. 2[link]. This arrangement leaves voids in which the second type of tri­fluoro­methane­sulfonate anions are located. These anions are non-coordinating and inter­act through hydrogen bonds.

Table 1
Selected geometric parameters (Å, °)

Cu1—O5i 2.376 (2) Cu1—N1 1.989 (2)
Cu1—O3 2.333 (2) Cu1—N3 2.014 (2)
Cu1—N2 1.985 (2) Cu1—N4 2.012 (2)
       
N2—Cu1—O5i 90.71 (8) N1—Cu1—N3 94.85 (10)
N2—Cu1—O3 94.76 (9) N1—Cu1—N4 176.62 (9)
N2—Cu1—N1 81.56 (9) N3—Cu1—O5i 87.89 (9)
N2—Cu1—N3 175.99 (10) N3—Cu1—O3 87.27 (9)
N2—Cu1—N4 95.12 (9) N4—Cu1—O5i 83.46 (9)
N1—Cu1—O5i 95.88 (8) N4—Cu1—O3 86.38 (9)
N1—Cu1—O3 94.53 (9) N4—Cu1—N3 88.45 (10)
Symmetry code: (i) x+1, y, z.
[Figure 1]
Figure 1
Asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.
[Figure 2]
Figure 2
Perspective view of the packed structure of the title complex along the crystallographic b axis; H atoms are omitted for clarity.

Graph-set analysis is a method of analyzing hydrogen-bonding patterns in three-dimensional networks. Hydrogen-bonding patterns are classified into one of four pattern designators; rings (R), chains (C), intra­molecular hydrogen-bonding patterns described as self (S), finite hydrogen-bonding patterns described as discrete (D). These designators include a superscript with the number of acceptor atoms, subscript with the number of donor atoms, and a number in parentheses indicating the number of atoms in the hydrogen-bonding motif (Grell et al., 1999[Grell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030-1043.]).

There are three types of hydrogen-bonding motifs present in the crystal lattice, with numerical values collated in Table 2[link]. A centrosymmetric hydrogen-bonding ring, R21(7), occurs between the O4 atom on the coordinating tri­fluoro­methane­sulfonate anion with two hydrogen atoms on a 4,4′-di­meth­oxy­bipyridine mol­ecule on a neighboring asymmetric unit. The non-coordinating tri­fluoro­methane­sulfonate anion forms a hydrogen-bonding ring, R22(12), through two C—H⋯O inter­actions with the O6 and O7 atoms. The other oxygen atom, O8, on the non-coordinating tri­fluoro­methane­sulfonate anion, has a discrete hydrogen-bonding inter­action, D11(3), with a neighboring coordinating aceto­nitrile mol­ecule.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4ii 0.95 2.23 3.175 (4) 177
C4—H4⋯O4ii 0.95 2.37 3.315 (3) 175
C9—H9⋯O7 0.95 2.32 3.185 (4) 151
C16—H16A⋯O6 0.98 2.38 3.170 (4) 138
C14—H14A⋯O8iii 0.98 2.35 3.194 (4) 144
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [x, y-1, z].

Synthesis and crystallization

To synthesize the title compound, 4,4′-dimeth­oxy-2,2′-bi­pyridine (0.105 g, 0.486 mmol) was suspended in 40 ml of aceto­nitrile and stirred for 15 min. Solid CuCl2·2H2O (0.083 g, 0.49 mmol) was added to the suspension and heated with stirring at 323 K for 1 h. AgOTf (0.250 g, 0.972 mmol) was added to the mixture and stirred without heating for 2 h. After the removal of AgCl by filtration, using a 0.45 µm PTFE syringe filter, the resulting blue solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The highest remaining electron density is located 0.93 Å from atom O3.

Table 3
Experimental details

Crystal data
Chemical formula [Cu(CF3SO3)(C2H3N)2(C12H12N2O2)](CF3O3S)
Mr 660.02
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.1004 (2), 12.0708 (4), 14.8155 (4)
α, β, γ (°) 87.368 (2), 89.436 (2), 76.819 (3)
V3) 1235.04 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.15
Crystal size (mm) 0.40 × 0.10 × 0.07
 
Data collection
Diffractometer XtaLAB AFC12 (RCD3): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.884, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 37314, 5666, 5392
Rint 0.040
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.07
No. of reflections 5666
No. of parameters 356
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.01, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[[bis(acetonitrile-κN)(4,4'-dimethoxy-2,2'-bipyridine-κ2N,N')copper(II)]-µ-trifluoromethanesulfonato-κ2O:O'] trifluoromethanesulfonate] top
Crystal data top
[Cu(CF3SO3)(C2H3N)2(C12H12N2O2)](CF3O3S)Z = 2
Mr = 660.02F(000) = 666
Triclinic, P1Dx = 1.775 Mg m3
a = 7.1004 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.0708 (4) ÅCell parameters from 13491 reflections
c = 14.8155 (4) Åθ = 2.7–29.0°
α = 87.368 (2)°µ = 1.15 mm1
β = 89.436 (2)°T = 100 K
γ = 76.819 (3)°Plate, clear light blue
V = 1235.04 (6) Å30.40 × 0.10 × 0.07 mm
Data collection top
XtaLAB AFC12 (RCD3): Kappa single
diffractometer
5666 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source5392 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 99
Tmin = 0.884, Tmax = 1.000k = 1515
37314 measured reflectionsl = 1819
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.060P)2 + 2.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5666 reflectionsΔρmax = 2.01 e Å3
356 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.75757 (5)0.42109 (3)0.78071 (2)0.01474 (11)
S10.23675 (10)0.48568 (6)0.76732 (4)0.01596 (15)
S20.61504 (12)0.95110 (6)0.80753 (5)0.02364 (18)
F30.3180 (3)0.67475 (15)0.81898 (12)0.0238 (4)
F20.0138 (3)0.67978 (15)0.81561 (13)0.0247 (4)
F10.1895 (3)0.58506 (16)0.92313 (12)0.0299 (4)
O50.0885 (3)0.42653 (17)0.79453 (14)0.0197 (4)
O30.4282 (3)0.42680 (17)0.79606 (15)0.0215 (4)
O40.2216 (4)0.53393 (19)0.67652 (14)0.0315 (6)
O20.6860 (3)0.74737 (17)0.44968 (14)0.0244 (5)
O10.8576 (3)0.12536 (17)0.45169 (14)0.0238 (5)
F50.3647 (4)1.0672 (2)0.91972 (16)0.0500 (6)
N20.7231 (3)0.53835 (19)0.68011 (15)0.0143 (4)
F60.4294 (4)1.16541 (18)0.80405 (19)0.0536 (7)
N10.7950 (3)0.3178 (2)0.67802 (16)0.0151 (4)
O60.5595 (4)0.84920 (19)0.84105 (17)0.0369 (6)
O70.6329 (4)0.9614 (2)0.71066 (16)0.0336 (6)
N30.8040 (4)0.2945 (2)0.87692 (16)0.0198 (5)
F40.2473 (4)1.0479 (2)0.7904 (2)0.0594 (7)
N40.7207 (4)0.5332 (2)0.87937 (16)0.0176 (5)
C60.7481 (4)0.4965 (2)0.59648 (18)0.0146 (5)
C50.7856 (4)0.3705 (2)0.59509 (18)0.0147 (5)
O80.7668 (4)0.9828 (3)0.8563 (2)0.0505 (8)
C70.7353 (4)0.5661 (2)0.51903 (19)0.0177 (5)
H70.7526220.5344560.4611610.021*
C150.7130 (4)0.5956 (2)0.93529 (18)0.0175 (6)
C40.8068 (4)0.3119 (2)0.51601 (19)0.0165 (5)
H40.8014210.3513390.4587610.020*
C170.1866 (4)0.6126 (2)0.83457 (19)0.0181 (5)
C90.6697 (4)0.7277 (2)0.61315 (19)0.0172 (5)
H90.6419220.8075050.6208400.021*
C80.6961 (4)0.6845 (2)0.52759 (19)0.0176 (5)
C130.8214 (4)0.2295 (2)0.9359 (2)0.0202 (6)
C100.6850 (4)0.6514 (2)0.68725 (19)0.0161 (5)
H100.6675640.6809380.7458580.019*
C30.8363 (4)0.1932 (2)0.52261 (19)0.0181 (6)
C20.8441 (5)0.1391 (2)0.6079 (2)0.0208 (6)
H20.8632360.0586010.6140730.025*
C10.8236 (4)0.2034 (2)0.68297 (19)0.0184 (6)
H10.8299990.1656120.7409160.022*
C160.7075 (5)0.6759 (3)1.0062 (2)0.0272 (7)
H16A0.6813530.7535960.9794110.041*
H16B0.8323820.6591861.0375400.041*
H16C0.6050320.6688171.0494190.041*
C140.8362 (5)0.1454 (3)1.0107 (2)0.0274 (7)
H14A0.8227340.0727370.9877820.041*
H14B0.7334750.1717861.0545730.041*
H14C0.9625310.1351241.0400260.041*
C110.8548 (5)0.1775 (3)0.3622 (2)0.0233 (6)
H11A0.8699850.1186840.3175640.035*
H11B0.9612020.2166620.3560080.035*
H11C0.7313620.2325930.3522450.035*
C180.4039 (5)1.0638 (3)0.8315 (2)0.0309 (7)
C120.6424 (5)0.8692 (2)0.4558 (2)0.0261 (7)
H12A0.6332640.9052780.3948650.039*
H12B0.7453170.8912330.4893770.039*
H12C0.5189650.8940660.4872370.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02004 (19)0.01336 (18)0.01075 (17)0.00366 (13)0.00062 (12)0.00033 (12)
S10.0205 (3)0.0159 (3)0.0118 (3)0.0046 (3)0.0001 (2)0.0019 (2)
S20.0348 (4)0.0170 (3)0.0196 (4)0.0064 (3)0.0015 (3)0.0030 (3)
F30.0251 (9)0.0198 (9)0.0292 (10)0.0097 (7)0.0002 (7)0.0047 (7)
F20.0228 (9)0.0184 (8)0.0310 (10)0.0005 (7)0.0001 (7)0.0025 (7)
F10.0532 (13)0.0235 (9)0.0120 (8)0.0063 (9)0.0011 (8)0.0025 (7)
O50.0225 (10)0.0133 (9)0.0237 (10)0.0048 (8)0.0003 (8)0.0009 (8)
O30.0226 (11)0.0142 (10)0.0278 (11)0.0039 (8)0.0009 (9)0.0017 (8)
O40.0613 (17)0.0207 (11)0.0113 (10)0.0068 (11)0.0002 (10)0.0001 (8)
O20.0413 (13)0.0137 (10)0.0174 (10)0.0048 (9)0.0019 (9)0.0026 (8)
O10.0406 (13)0.0139 (10)0.0159 (10)0.0035 (9)0.0011 (9)0.0025 (8)
F50.0767 (18)0.0344 (12)0.0375 (13)0.0086 (12)0.0220 (12)0.0112 (10)
N20.0167 (11)0.0141 (11)0.0123 (10)0.0037 (9)0.0011 (8)0.0015 (8)
F60.0781 (18)0.0147 (10)0.0640 (17)0.0041 (11)0.0229 (14)0.0023 (10)
N10.0169 (11)0.0144 (11)0.0141 (11)0.0037 (9)0.0006 (9)0.0008 (8)
O60.0630 (18)0.0161 (11)0.0296 (13)0.0063 (11)0.0090 (12)0.0034 (9)
O70.0578 (17)0.0232 (12)0.0214 (12)0.0130 (11)0.0093 (11)0.0020 (9)
N30.0271 (13)0.0184 (12)0.0141 (11)0.0054 (10)0.0006 (10)0.0004 (9)
F40.0390 (14)0.0580 (17)0.077 (2)0.0013 (12)0.0125 (13)0.0180 (14)
N40.0198 (12)0.0176 (11)0.0149 (11)0.0032 (9)0.0004 (9)0.0007 (9)
C60.0155 (12)0.0150 (13)0.0133 (12)0.0034 (10)0.0004 (10)0.0015 (10)
C50.0144 (12)0.0153 (13)0.0146 (12)0.0039 (10)0.0011 (10)0.0000 (10)
O80.0450 (17)0.0538 (18)0.0533 (18)0.0083 (14)0.0141 (14)0.0214 (15)
C70.0246 (14)0.0161 (13)0.0126 (12)0.0042 (11)0.0014 (10)0.0021 (10)
C150.0216 (14)0.0168 (13)0.0124 (12)0.0017 (11)0.0003 (10)0.0035 (10)
C40.0197 (13)0.0137 (12)0.0152 (13)0.0023 (10)0.0007 (10)0.0004 (10)
C170.0218 (14)0.0185 (13)0.0145 (13)0.0050 (11)0.0014 (10)0.0022 (10)
C90.0197 (13)0.0122 (12)0.0195 (14)0.0033 (10)0.0015 (11)0.0009 (10)
C80.0197 (13)0.0167 (13)0.0167 (13)0.0048 (11)0.0012 (10)0.0010 (10)
C130.0248 (15)0.0170 (13)0.0189 (14)0.0042 (11)0.0025 (11)0.0036 (11)
C100.0173 (13)0.0158 (13)0.0152 (13)0.0035 (10)0.0007 (10)0.0028 (10)
C30.0209 (14)0.0157 (13)0.0171 (13)0.0028 (11)0.0007 (11)0.0031 (10)
C20.0287 (15)0.0118 (12)0.0211 (14)0.0033 (11)0.0001 (12)0.0003 (10)
C10.0241 (14)0.0146 (13)0.0156 (13)0.0033 (11)0.0006 (11)0.0031 (10)
C160.0411 (19)0.0219 (15)0.0171 (14)0.0038 (13)0.0012 (13)0.0038 (12)
C140.045 (2)0.0185 (14)0.0191 (15)0.0086 (13)0.0028 (13)0.0019 (11)
C110.0338 (17)0.0190 (14)0.0151 (14)0.0016 (12)0.0001 (12)0.0023 (11)
C180.0414 (19)0.0191 (15)0.0317 (18)0.0058 (14)0.0046 (15)0.0012 (13)
C120.0390 (18)0.0121 (13)0.0260 (16)0.0042 (12)0.0032 (13)0.0031 (11)
Geometric parameters (Å, º) top
Cu1—O5i2.376 (2)C6—C51.484 (4)
Cu1—O32.333 (2)C6—C71.382 (4)
Cu1—N21.985 (2)C5—C41.386 (4)
Cu1—N11.989 (2)C7—H70.9500
Cu1—N32.014 (2)C7—C81.403 (4)
Cu1—N42.012 (2)C15—C161.456 (4)
S1—O51.445 (2)C4—H40.9500
S1—O31.442 (2)C4—C31.399 (4)
S1—O41.436 (2)C9—H90.9500
S1—C171.831 (3)C9—C81.388 (4)
S2—O61.441 (2)C9—C101.389 (4)
S2—O71.442 (2)C13—C141.456 (4)
S2—O81.435 (3)C10—H100.9500
S2—C181.824 (4)C3—C21.391 (4)
F3—C171.336 (3)C2—H20.9500
F2—C171.332 (3)C2—C11.374 (4)
F1—C171.338 (3)C1—H10.9500
O2—C81.345 (3)C16—H16A0.9800
O2—C121.439 (3)C16—H16B0.9800
O1—C31.348 (3)C16—H16C0.9800
O1—C111.439 (3)C14—H14A0.9800
F5—C181.335 (4)C14—H14B0.9800
N2—C61.354 (3)C14—H14C0.9800
N2—C101.339 (4)C11—H11A0.9800
F6—C181.325 (4)C11—H11B0.9800
N1—C51.353 (3)C11—H11C0.9800
N1—C11.348 (4)C12—H12A0.9800
N3—C131.136 (4)C12—H12B0.9800
F4—C181.328 (5)C12—H12C0.9800
N4—C151.138 (4)
O3—Cu1—O5i168.85 (8)F2—C17—S1112.0 (2)
N2—Cu1—O5i90.71 (8)F2—C17—F3107.2 (2)
N2—Cu1—O394.76 (9)F2—C17—F1107.3 (2)
N2—Cu1—N181.56 (9)F1—C17—S1111.5 (2)
N2—Cu1—N3175.99 (10)C8—C9—H9120.8
N2—Cu1—N495.12 (9)C8—C9—C10118.3 (3)
N1—Cu1—O5i95.88 (8)C10—C9—H9120.8
N1—Cu1—O394.53 (9)O2—C8—C7115.7 (3)
N1—Cu1—N394.85 (10)O2—C8—C9125.2 (3)
N1—Cu1—N4176.62 (9)C9—C8—C7119.1 (3)
N3—Cu1—O5i87.89 (9)N3—C13—C14177.8 (3)
N3—Cu1—O387.27 (9)N2—C10—C9123.2 (3)
N4—Cu1—O5i83.46 (9)N2—C10—H10118.4
N4—Cu1—O386.38 (9)C9—C10—H10118.4
N4—Cu1—N388.45 (10)O1—C3—C4124.8 (3)
O5—S1—C17104.08 (13)O1—C3—C2116.3 (3)
O3—S1—O5113.46 (12)C2—C3—C4118.8 (3)
O3—S1—C17103.30 (13)C3—C2—H2120.4
O4—S1—O5115.66 (15)C1—C2—C3119.2 (3)
O4—S1—O3115.70 (15)C1—C2—H2120.4
O4—S1—C17102.27 (13)N1—C1—C2122.8 (3)
O6—S2—O7114.84 (15)N1—C1—H1118.6
O6—S2—C18103.34 (16)C2—C1—H1118.6
O7—S2—C18103.15 (16)C15—C16—H16A109.5
O8—S2—O6115.89 (19)C15—C16—H16B109.5
O8—S2—O7114.17 (19)C15—C16—H16C109.5
O8—S2—C18103.02 (18)H16A—C16—H16B109.5
S1—O5—Cu1ii145.62 (13)H16A—C16—H16C109.5
S1—O3—Cu1144.69 (13)H16B—C16—H16C109.5
C8—O2—C12117.2 (2)C13—C14—H14A109.5
C3—O1—C11118.2 (2)C13—C14—H14B109.5
C6—N2—Cu1114.82 (18)C13—C14—H14C109.5
C10—N2—Cu1126.88 (19)H14A—C14—H14B109.5
C10—N2—C6118.3 (2)H14A—C14—H14C109.5
C5—N1—Cu1115.06 (18)H14B—C14—H14C109.5
C1—N1—Cu1126.97 (19)O1—C11—H11A109.5
C1—N1—C5117.9 (2)O1—C11—H11B109.5
C13—N3—Cu1174.2 (2)O1—C11—H11C109.5
C15—N4—Cu1175.4 (2)H11A—C11—H11B109.5
N2—C6—C5114.5 (2)H11A—C11—H11C109.5
N2—C6—C7122.4 (2)H11B—C11—H11C109.5
C7—C6—C5123.1 (2)F5—C18—S2111.6 (2)
N1—C5—C6114.0 (2)F6—C18—S2111.7 (3)
N1—C5—C4122.8 (2)F6—C18—F5107.5 (3)
C4—C5—C6123.2 (2)F6—C18—F4107.8 (3)
C6—C7—H7120.7F4—C18—S2111.2 (2)
C6—C7—C8118.6 (3)F4—C18—F5106.9 (3)
C8—C7—H7120.7O2—C12—H12A109.5
N4—C15—C16178.7 (3)O2—C12—H12B109.5
C5—C4—H4120.8O2—C12—H12C109.5
C5—C4—C3118.3 (3)H12A—C12—H12B109.5
C3—C4—H4120.8H12A—C12—H12C109.5
F3—C17—S1111.09 (19)H12B—C12—H12C109.5
F3—C17—F1107.6 (2)
Cu1—N2—C6—C53.3 (3)O7—S2—C18—F460.7 (3)
Cu1—N2—C6—C7178.0 (2)C6—N2—C10—C90.0 (4)
Cu1—N2—C10—C9177.6 (2)C6—C5—C4—C3178.2 (3)
Cu1—N1—C5—C60.2 (3)C6—C7—C8—O2179.9 (3)
Cu1—N1—C5—C4179.5 (2)C6—C7—C8—C90.6 (4)
Cu1—N1—C1—C2178.6 (2)C5—N1—C1—C20.2 (4)
O5—S1—O3—Cu1169.10 (19)C5—C6—C7—C8179.0 (3)
O5—S1—C17—F3177.75 (19)C5—C4—C3—O1179.4 (3)
O5—S1—C17—F262.4 (2)C5—C4—C3—C20.3 (4)
O5—S1—C17—F157.8 (2)O8—S2—C18—F561.0 (3)
O3—S1—O5—Cu1ii171.80 (19)O8—S2—C18—F659.4 (3)
O3—S1—C17—F359.0 (2)O8—S2—C18—F4179.7 (3)
O3—S1—C17—F2178.83 (19)C7—C6—C5—N1179.3 (3)
O3—S1—C17—F161.0 (2)C7—C6—C5—C41.5 (4)
O4—S1—O5—Cu1ii34.7 (3)C4—C3—C2—C10.4 (4)
O4—S1—O3—Cu132.0 (3)C17—S1—O5—Cu1ii76.6 (2)
O4—S1—C17—F361.5 (2)C17—S1—O3—Cu178.9 (2)
O4—S1—C17—F258.3 (2)C8—C9—C10—N20.3 (4)
O4—S1—C17—F1178.5 (2)C10—N2—C6—C5178.8 (2)
O1—C3—C2—C1179.9 (3)C10—N2—C6—C70.1 (4)
N2—C6—C5—N12.0 (3)C10—C9—C8—O2180.0 (3)
N2—C6—C5—C4177.2 (3)C10—C9—C8—C70.6 (4)
N2—C6—C7—C80.4 (4)C3—C2—C1—N10.4 (5)
N1—C5—C4—C31.0 (4)C1—N1—C5—C6178.3 (2)
O6—S2—C18—F560.1 (3)C1—N1—C5—C40.9 (4)
O6—S2—C18—F6179.6 (3)C11—O1—C3—C41.6 (4)
O6—S2—C18—F459.2 (3)C11—O1—C3—C2178.7 (3)
O7—S2—C18—F5180.0 (3)C12—O2—C8—C7178.8 (3)
O7—S2—C18—F659.7 (3)C12—O2—C8—C90.6 (4)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4iii0.952.233.175 (4)177
C4—H4···O4iii0.952.373.315 (3)175
C9—H9···O70.952.323.185 (4)151
C16—H16A···O60.982.383.170 (4)138
C14—H14A···O8iv0.982.353.194 (4)144
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y1, z.
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: The Welch Foundation (award No. BN0032).

References

First citationAnjomshoa, M., Torkzadeh-Mahani, M., Janczak, J., Rizzoli, C., Sahihi, M., Ataei, F. & Dehkhodaei, M. (2016). Polyhedron, 119, 23–38.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDrzeżdżon, J., Piotrowska-Kirschling, A., Malinowski, J., Kloska, A., Gawdzik, B., Chmurzyński, L. & Jacewicz, D. (2019). J. Mol. Liq. 282, 441–447.  Google Scholar
First citationFettouhi, M. (2017). Z. Kristallogr. New Cryst. Struct. 232, 985–986.  CrossRef CAS Google Scholar
First citationGrell, J., Bernstein, J. & Tinhofer, G. (1999). Acta Cryst. B55, 1030–1043.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationQin, Q. P., Wang, Z. F., Tan, M. X., Huang, X. L., Zou, H. H., Zou, B. Q., Shi, B. B. & Zhang, S. H. (2019). Metallomics, 11, 1005–1015.  CrossRef CAS PubMed Google Scholar
First citationRavaro, L. P., Mafud, A. C., Li, Z., Reinheimer, E., Simone, C. A., Mascarenhas, Y. P., Ford, P. C. & de Camargo, A. S. (2018). Dyes Pigments, 159, 464–470.  CrossRef CAS Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds