metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Rerefinement of poly[di­aqua­bis­­(μ3-2-methyl­pro­pano­ato-κ4O:O,O′:O′)bis­­(μ3-2-methyl­propano­ato-κ3O:O:O)(μ2-2-methyl­propano­ato-κ3O:O,O′)(2-methyl­propano­ato-κ2O,O′)trilead(II)]

CROSSMARK_Color_square_no_text.svg

aInst. of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 September 2020; accepted 28 September 2020; online 6 October 2020)

The crystal structure of the title complex, [Pb3(C4H7O2)6(H2O)2]n, was redetermined on basis of modern CCD-based single-crystal X-ray data at 120 K. The current study basically confirms the previous report [Fallon et al. (1997[Fallon, G. D., Spiccia, L., West, B. O. & Zhang, Q. (1997). Polyhedron, 16, 19-23.]). Polyhedron, 16, 19–23] at 190 K, but with higher accuracy and precision. In particular, positional disorder of one of the 2-methyl­propano­ate anions over two sets of sites was resolved, showing a refined ratio of the disorder components of 0.535 (9):0.465 (9). The three independent cations in the structure have coordination numbers of [7 + 1], [6 + 1], and [5 + 3], with O atoms belonging either to carboxyl­ate groups or water mol­ecules. This arrangement leads to the formation of sheets parallel to ([\overline{1}]01), whereby the hydro­phobic 2-methyl­propanyl groups of the anions are oriented above and below the hydro­philic sheets to form a layered structure. Within a sheet, hydrogen bonds of the type Owater—H⋯O are formed, whereas the hydro­phobic groups between adjacent layers inter­act through van der Waals forces.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The structural features of metal carboxyl­ates, except formates and acetates, are strongly affected by voluminous hydro­phobic chains [cf. Duruz & Ubbelohde (1972[Duruz, J. J. & Ubbelohde, A. R. (1972). Proc. R. Soc. Lond. A, 330, 1-13.]) and Dumbleton & Lomer (1965[Dumbleton, J. H. & Lomer, T. R. (1965). Acta Cryst. 19, 301-307.])] which tend to be separated from the hydro­philic parts of these structures. The latter parts are composed of the cations, which are coordinated by the carboxyl­ate or water oxygen atoms. The hydro­philic parts can take the form of clustered aggregates, columns or planes, which then are surrounded by the hydro­phobic parts [see Samolová & Fábry (2020[Samolová, E. & Fábry, J. (2020). Acta Cryst. E76, 1684-1688.])]. In some cases there is a positional disorder of hydro­phobic chains realised, e.g. in barium dicalcium hexa­kis­(propano­ate) (Stadnicka & Glazer, 1980[Stadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977-2985.]), or in the crystal structure of the title compound, [Pb3(C4H7O2)6(H2O)2]n.

The title structure has been determined previously by Fallon et al. (1997[Fallon, G. D., Spiccia, L., West, B. O. & Zhang, Q. (1997). Polyhedron, 16, 19-23.]) without details regarding atomic coordin­ates and displacement parameters in the original publication. The current redetermination was undertaken because the deposited data in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; version 5.41 from November 2019 with updates until August 2020), refcode REXBAX, is also incomplete. Here only atomic coordinates are given, and occupation factors of the disordered hydro­carbon chains are missing as well. In general, the quality of the study by Fallon et al. (1997[Fallon, G. D., Spiccia, L., West, B. O. & Zhang, Q. (1997). Polyhedron, 16, 19-23.]) with a reliability factor R = 0.071, wR = 0.092 is below current standards. For example, the differences between the positions of the corresponding atoms in the original and the preset study is as large as 0.3 Å. However, it should be taken into account that the re-refined structure is based on data measured at 120 K with all non-H atoms refined with anisotropic displacement parameters compared to the previous determination at 193 K.

There are three independent cations Pb12+, Pb22+ and Pb32+ in the crystal structure. They are coordinated by the carboxyl­ate or water oxygen atoms, resulting in coordination numbers of [7 + 1], [6 + 1] and [5 + 3] for Pb12+, Pb22+ and Pb32+, respectively. The coordination of each cation is irregular, suggesting stereoactivitity of the electron inert pair 6s2. The coordination spheres of Pb12+ and Pb22+ include two and one coordinating carboxyl­ate groups in a bidentate bridging mode while Pb32+ is coordinated in a simple bidentate mode. Each of the cations Pb12+ and Pb22+ is coordinated by one water mol­ecule. The corresponding Pb—O bond lengths are listed in Table 1[link]. The bond-valence sums (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of the cations are 1.977 (4), 2.115 (6) and 2.032 (5) valence units for Pb12+, Pb22+ and Pb32+, respectively. The core of the structure is an eight-membered centrosymmetric ring composed of the atoms Pb1\O2i\Pb3\O4\Pb1\O2\Pb3i\O4i (Fig. 1[link]) [symmetry code (i): −x + 1, −y + 1, −z + 1]. Symmetry-equivalent Pb22+ cations including their coordin­ating mol­ecules are attached to this core.

Table 1
Selected bond lengths (Å)

Pb1—O1 2.5508 (19) Pb2—O9 2.690 (3)
Pb1—O2 2.475 (2) Pb2—O10 2.389 (3)
Pb1—O3 2.555 (3) Pb2—O11 2.721 (3)
Pb1—O4 2.650 (2) Pb3—O2ii 2.843 (2)
Pb1—O5 2.692 (3) Pb3—O4 2.566 (2)
Pb1—O7 2.766 (2) Pb3—O8i 2.834 (2)
Pb1—O9i 2.949 (2) Pb3—O12 2.519 (2)
Pb1—O14ii 2.586 (2) Pb3—O13 2.485 (2)
Pb2—O1 2.534 (2) Pb3—O14 2.712 (2)
Pb2—O4iii 2.941 (2) Pb3—O14ii 2.947 (2)
Pb2—O7 2.407 (2) Pb3—O15 2.401 (3)
Pb2—O8 2.487 (2)    
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the core motif in the title structure showing the environments of the cations. Displacement ellipsoids of the Pb (dark green), O (red) and C (grey) atoms are shown at the 30% probability level while H atoms are shown as spheres of arbitrary radius. The positional disorder is shown. This involves the groups attached to C17 and C17i. Three terminal methyl groups are present.

The cations, carboxyl­ate oxygen atoms and water mol­ecules form the hydro­philic part of the structure that is characterized by sheets parallel to ([\overline{1}]01) (Fig. 2[link]). Each of the water mol­ecules is involved in an Owater—H⋯O hydrogen bond of moderate strength (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.]) within a sheet (Table 2[link]). These sheets are surrounded by hydro­phobic layers composed of 2-methyl­propanoic chains. Two methyl groups centered on the atoms C3 and C12 are protruding into the cation–oxygen sheet. The methyl group C19 is disordered over two sets of sites (split into C19a and C19b). The distances Cmeth­yl⋯Cmeth­yl or Cmethane­tri­yl⋯Cmeth­yl indicate the presence of van der Waals inter­actions. The shortest distance of this kind regards the contact C3⋯C10(−x + [{1\over 2}], y − [{1\over 2}], −z + [{1\over 2}]) and equals 3.713 (5) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1o5⋯O10 0.84 (3) 1.95 (3) 2.788 (3) 171 (4)
O5—H2o5⋯O13ii 0.83 (3) 2.08 (4) 2.788 (4) 144 (4)
O11—H1o11⋯O3 0.84 (3) 2.06 (3) 2.859 (3) 157 (3)
O11—H2o11⋯O12iii 0.837 (16) 1.944 (17) 2.739 (3) 158 (4)
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
View of the ([\overline{1}]01) sheets in a view along the b axis. Displacement ellipsoids of the Pb, O and C atoms are shown at the 50% probability level while H atoms are shown as spheres of arbitrary radius. O—H⋯O hydrogen bonds are shown as dashed yellow lines; colour codes are as in Fig. 1[link].

Synthesis and crystallization

The title structure was prepared by by disolution of 1.18 g of PbCO3 in a water solution (100 ml) of 0.78 g of 2-methyl­propanoic acid (molar ratio 1:2). The pH of the solution was adjusted to ∼6 by adding 2-methyl­propanoic acid. The solution was then filtered and concentrated at 313 K. After a crust had started to appear on the surface of the solution, heating was stopped and elongated colourless crystals appeared.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. One of the 2-methyl­propano­ate anions involving atoms C18 and C19 and their attached hydrogen atoms is disordered in a 0.535 (9):0.465 (9) ratio. This disorder leads to a (virtual) distance C19b⋯C19b(–x + 1, –y + 1, –z + 2) of 2.358 (14) Å. A B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]) extinction correction was applied.

Table 3
Experimental details

Crystal data
Chemical formula [Pb3(C4H7O2)6(H2O)2]
Mr 1180.2
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 12.7476 (4), 20.3424 (7), 14.3958 (4)
β (°) 110.329 (1)
V3) 3500.55 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 14.45
Crystal size (mm) 0.25 × 0.19 × 0.16
 
Data collection
Diffractometer Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.123, 0.203
No. of measured, independent and observed [I > 3σ(I)] reflections 38736, 8019, 7372
Rint 0.028
(sin θ/λ)max−1) 0.650
 
Refinement
R[F > 3σ(F)], wR(F), S 0.016, 0.045, 1.25
No. of reflections 8019
No. of parameters 393
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.89, −0.45
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), JANA2006 (Petříček et al., 2014[Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345-352.]) and DIAMOND (Brandenburg, 2015[Brandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015); program(s) used to refine structure: JANA2006 (Petříček et al., 2014); molecular graphics: DIAMOND (Brandenburg, 2015); software used to prepare material for publication: JANA2006 (Petříček et al., 2014).

\ Poly[diaquabis(µ3-2-methylpropanoato-κ4O:O,O':\ O')bis(µ3-2-methylpropanoato-κ3O:O:O)\ (µ2-2-methylpropanoato-κ3O:O,O')(2-methylpropanoato-\ κ2O,O')trilead(II)] top
Crystal data top
[Pb3(C4H7O2)6(H2O)2]F(000) = 2192
Mr = 1180.2Dx = 2.239 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9196 reflections
a = 12.7476 (4) Åθ = 2.3–27.5°
b = 20.3424 (7) ŵ = 14.45 mm1
c = 14.3958 (4) ÅT = 120 K
β = 110.329 (1)°Prism, colourless
V = 3500.55 (19) Å30.25 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker D8 VENTURE Kappa Duo PHOTON 100 CMOS
diffractometer
8019 independent reflections
Radiation source: X-ray tube7372 reflections with I > 3σ(I)
Quazar Mo multilayer optic monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2017)
h = 1616
Tmin = 0.123, Tmax = 0.203k = 2526
38736 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
R[F > 3σ(F)] = 0.016H atoms treated by a mixture of independent and constrained refinement
wR(F) = 0.045Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.25(Δ/σ)max = 0.031
8019 reflectionsΔρmax = 0.89 e Å3
393 parametersΔρmin = 0.45 e Å3
4 restraintsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
197 constraintsExtinction coefficient: 1570 (140)
Special details top

Refinement. The non-hydrogen atoms were determined by SHELXT (Sheldrick, 2015). The methanetriyl hydrogen was placed into the calculated positions and refined under the following constraints: Cmethanetriyl—Hmethanetriyl = 1.00?Å, Uiso(Hmethanetriyl) = 1.2Ueq(Cmethanetriyl). After the anisotropic refinement of the non-hydrogen atoms with the methanetriyl hydrogen had been carried out the difference electron density map revealed other hydrogens. These hydrogens were refined under the following constraints: Cmethyl—Hmethyl = 0.98?Å, Uiso(Hmethyl) = 1.5Ueq(Cmethyl). The water hydrogen were refined using the distance restraints Owater—Hwater = 0.840?(1)?Å and the constraints Uiso(Hwater) = 1.5Ueq(Owater). The occupancies regarding the atoms C19a and C19b were treated in such a way that their sum equalled to 1 while the occupational parameter of C19a was refined. The attached hydrogens tothe atoms C19a and C19b were assigned the pertinent occupancies. The same holds for the methanetriyl hydrogens H1C18 and H1C18d which were assigned the occupancies of the atoms C19a and C19b, respectively. For the treatment of the disorder a dummy atom C18d was introduced with the same positional and displacement parameters as the atom C18.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pb10.457931 (9)0.666292 (5)0.371803 (7)0.02067 (4)
O10.25580 (17)0.64686 (10)0.25990 (15)0.0251 (7)
O20.33105 (18)0.57622 (10)0.38028 (15)0.0260 (7)
C10.2472 (3)0.59615 (14)0.3084 (2)0.0233 (9)
C20.1372 (3)0.56115 (15)0.2846 (2)0.0277 (10)
H1c20.1514820.5135230.3014640.0332*
C30.0685 (3)0.56400 (18)0.1738 (3)0.0424 (13)
H1c30.0055250.5447680.1620310.0636*
H2c30.0600160.6098760.1516710.0636*
H3c30.1069190.5391670.1368090.0636*
C40.0735 (3)0.5909 (2)0.3467 (3)0.0446 (14)
H1c40.00190.5681180.3322050.0669*
H2c40.1179470.5861150.417160.0669*
H3c40.0598780.6376750.330560.0669*
O30.33925 (19)0.71358 (11)0.46690 (15)0.0309 (8)
O40.48717 (18)0.66048 (10)0.56310 (15)0.0258 (7)
C50.3944 (3)0.69003 (15)0.5495 (2)0.0253 (10)
C60.3521 (3)0.69758 (19)0.6353 (2)0.0355 (12)
H1c60.4024340.672560.6935410.0425*
C70.2359 (4)0.6692 (2)0.6102 (3)0.0514 (17)
H1c70.2365120.6228280.5917460.0771*
H2c70.2122920.6726760.6679130.0771*
H3c70.1836360.6935760.5546010.0771*
C80.3536 (5)0.7691 (2)0.6619 (4)0.068 (2)
H1c80.4298310.7862720.6789830.1018*
H2c80.3032680.7935690.6052990.1018*
H3c80.3287730.7740650.7187390.1018*
O50.4582 (2)0.62074 (12)0.19635 (17)0.0333 (8)
H1o50.409 (3)0.6436 (18)0.154 (2)0.0499*
H2o50.425 (3)0.5866 (13)0.171 (3)0.0499*
Pb20.166963 (9)0.743253 (5)0.148948 (8)0.02364 (4)
O70.3473 (2)0.77396 (11)0.26476 (17)0.0345 (8)
O80.25242 (19)0.85471 (11)0.17366 (16)0.0326 (8)
C90.3371 (3)0.83431 (15)0.2433 (2)0.0263 (10)
C100.4267 (3)0.88229 (16)0.3004 (2)0.0335 (11)
H1c100.3907630.9255820.3032620.0402*
C110.5087 (3)0.8909 (2)0.2468 (3)0.0546 (17)
H1c110.5662090.9227560.2824940.082*
H2c110.5441040.848540.243710.082*
H3c110.4691250.9068360.1794610.082*
C120.4841 (4)0.8619 (2)0.4079 (3)0.0500 (15)
H1c120.5372110.8960550.4430590.075*
H2c120.4278750.8559160.4393990.075*
H3c120.5242650.8204240.410430.075*
O90.1781 (2)0.77211 (13)0.02971 (18)0.0376 (9)
O100.2935 (2)0.70285 (14)0.07275 (18)0.0423 (10)
C130.2617 (3)0.73523 (17)0.0076 (2)0.0312 (11)
C140.3287 (3)0.7291 (2)0.0759 (3)0.0444 (15)
H1c140.2881580.7520460.1396980.0533*
C150.3419 (4)0.6578 (2)0.1001 (3)0.0592 (19)
H1c150.3800990.6554640.1484790.0888*
H2c150.3861950.6345830.0395440.0888*
H3c150.2679550.6373640.1279090.0888*
C160.4430 (5)0.7606 (3)0.0257 (5)0.075 (3)
H1c160.4837070.7619030.0722240.1132*
H2c160.4332090.8053920.0051550.1132*
H3c160.4855640.7346280.0326080.1132*
O110.1370 (2)0.76307 (12)0.32500 (18)0.0323 (8)
H1o110.188 (3)0.7521 (19)0.3781 (19)0.0485*
H2o110.135 (4)0.8038 (7)0.333 (3)0.0485*
Pb30.579586 (10)0.550258 (5)0.631759 (8)0.02294 (4)
O120.6090 (2)0.60407 (11)0.79647 (16)0.0343 (8)
O130.6471 (2)0.49866 (12)0.79861 (17)0.0397 (9)
C170.6397 (3)0.55072 (16)0.8429 (2)0.0320 (11)
C180.6643 (4)0.5484 (2)0.9539 (3)0.0458 (15)
H1c180.5945130.5287710.9588460.055*0.535 (9)
H1c18d0.68430.5934140.9825170.055*0.465 (9)
C19a0.6750 (9)0.6088 (4)1.0031 (5)0.061 (4)0.535 (9)
H1c19a0.6776930.6013741.0711250.0912*0.535 (9)
H2c19a0.7439970.6305571.0041930.0912*0.535 (9)
H3c19a0.6106760.6367530.9682770.0912*0.535 (9)
C19b0.5653 (7)0.5273 (5)0.9724 (6)0.046 (3)0.465 (9)
H1c19b0.5783290.5302321.0434630.0692*0.465 (9)
H2c19b0.5022850.5556310.935910.0692*0.465 (9)
H3c19b0.548150.4817220.9503280.0692*0.465 (9)
C200.7655 (4)0.5051 (3)1.0056 (3)0.071 (2)
H1c200.832050.5240980.9966810.1058*
H2c200.7769760.5026051.0764050.1058*
H3c200.7524650.4609210.9768080.1058*
O140.44049 (18)0.44519 (10)0.57833 (16)0.0260 (7)
O150.4044 (2)0.53142 (12)0.65501 (18)0.0369 (9)
C210.3826 (3)0.47358 (16)0.6224 (2)0.0277 (10)
C220.2840 (3)0.43782 (18)0.6344 (3)0.0374 (13)
H1c220.3028030.3900860.6459420.0449*
C230.1847 (4)0.4454 (3)0.5401 (3)0.067 (2)
H1c230.1188550.4250610.5484660.0998*
H2c230.1701890.4922060.5250340.0998*
H3c230.2005370.4238210.4855330.0998*
C240.2598 (4)0.4594 (3)0.7239 (3)0.074 (2)
H1c240.2085770.4279870.7374640.1117*
H2c240.3296770.4612490.7808430.1117*
H3c240.225130.5030210.7121050.1117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.01967 (6)0.02025 (6)0.02043 (6)0.00001 (4)0.00487 (4)0.00093 (4)
O10.0232 (11)0.0218 (10)0.0290 (10)0.0017 (8)0.0074 (9)0.0032 (8)
O20.0233 (11)0.0253 (11)0.0264 (10)0.0001 (9)0.0050 (9)0.0029 (9)
C10.0245 (15)0.0218 (14)0.0234 (13)0.0009 (11)0.0080 (12)0.0036 (11)
C20.0233 (15)0.0224 (15)0.0326 (16)0.0044 (12)0.0036 (13)0.0026 (12)
C30.036 (2)0.037 (2)0.040 (2)0.0076 (16)0.0036 (16)0.0017 (15)
C40.0301 (19)0.049 (2)0.058 (2)0.0080 (16)0.0205 (18)0.0003 (19)
O30.0316 (12)0.0364 (12)0.0236 (10)0.0102 (10)0.0084 (10)0.0025 (9)
O40.0221 (11)0.0274 (11)0.0264 (10)0.0021 (8)0.0064 (9)0.0032 (8)
C50.0252 (15)0.0236 (14)0.0258 (14)0.0020 (12)0.0073 (12)0.0022 (12)
C60.0254 (16)0.055 (2)0.0256 (15)0.0030 (15)0.0086 (13)0.0017 (15)
C70.040 (2)0.067 (3)0.055 (2)0.0048 (19)0.026 (2)0.001 (2)
C80.078 (4)0.074 (3)0.071 (3)0.021 (3)0.051 (3)0.040 (3)
O50.0315 (13)0.0375 (13)0.0267 (11)0.0068 (10)0.0049 (10)0.0009 (10)
Pb20.02020 (6)0.02509 (6)0.02363 (6)0.00152 (4)0.00507 (5)0.00357 (4)
O70.0282 (12)0.0241 (11)0.0420 (13)0.0025 (9)0.0005 (11)0.0073 (10)
O80.0269 (12)0.0310 (12)0.0349 (12)0.0035 (10)0.0043 (10)0.0062 (10)
C90.0256 (16)0.0271 (16)0.0275 (15)0.0011 (12)0.0109 (13)0.0011 (12)
C100.0334 (18)0.0244 (16)0.0372 (17)0.0017 (13)0.0053 (15)0.0021 (13)
C110.040 (2)0.068 (3)0.057 (2)0.022 (2)0.018 (2)0.007 (2)
C120.054 (3)0.045 (2)0.0380 (19)0.0101 (19)0.0005 (18)0.0022 (17)
O90.0356 (13)0.0421 (14)0.0374 (13)0.0107 (11)0.0157 (11)0.0136 (11)
O100.0374 (14)0.0579 (17)0.0367 (13)0.0189 (12)0.0195 (12)0.0186 (12)
C130.0309 (17)0.0362 (18)0.0271 (15)0.0020 (14)0.0109 (14)0.0057 (13)
C140.044 (2)0.058 (2)0.041 (2)0.0143 (18)0.0269 (18)0.0174 (18)
C150.065 (3)0.074 (3)0.044 (2)0.000 (2)0.026 (2)0.014 (2)
C160.070 (3)0.066 (3)0.115 (5)0.019 (3)0.064 (4)0.011 (3)
O110.0322 (13)0.0293 (12)0.0319 (12)0.0059 (10)0.0067 (10)0.0014 (10)
Pb30.02559 (6)0.02066 (6)0.01982 (6)0.00002 (4)0.00442 (5)0.00007 (4)
O120.0439 (14)0.0293 (12)0.0254 (11)0.0016 (10)0.0067 (10)0.0043 (9)
O130.0575 (17)0.0326 (13)0.0265 (11)0.0107 (12)0.0115 (12)0.0047 (10)
C170.0340 (18)0.0351 (18)0.0239 (15)0.0019 (14)0.0062 (14)0.0005 (13)
C180.047 (2)0.064 (3)0.0238 (17)0.0024 (19)0.0093 (16)0.0017 (16)
C19a0.108 (8)0.042 (4)0.028 (3)0.001 (5)0.018 (4)0.010 (3)
C19b0.036 (4)0.071 (6)0.036 (4)0.004 (4)0.018 (4)0.005 (4)
C200.052 (3)0.127 (5)0.0273 (19)0.021 (3)0.0073 (19)0.015 (2)
O140.0241 (11)0.0273 (11)0.0258 (11)0.0025 (8)0.0077 (9)0.0024 (8)
O150.0378 (14)0.0328 (13)0.0425 (13)0.0034 (11)0.0168 (12)0.0082 (11)
C210.0269 (16)0.0302 (16)0.0250 (14)0.0009 (13)0.0077 (13)0.0033 (12)
C220.0310 (18)0.040 (2)0.046 (2)0.0015 (15)0.0188 (17)0.0040 (16)
C230.040 (2)0.112 (5)0.042 (2)0.031 (3)0.007 (2)0.004 (2)
C240.043 (3)0.146 (5)0.042 (2)0.025 (3)0.025 (2)0.011 (3)
Geometric parameters (Å, º) top
Pb1—O12.5508 (19)C11—H2c110.98
Pb1—O22.475 (2)C11—H3c110.98
Pb1—O32.555 (3)C12—H1c120.98
Pb1—O42.650 (2)C12—H2c120.98
Pb1—O52.692 (3)C12—H3c120.98
Pb1—O72.766 (2)O9—C131.250 (4)
Pb1—O9i2.949 (2)O10—C131.268 (4)
Pb1—O14ii2.586 (2)C13—C141.516 (6)
Pb2—O12.534 (2)C14—H1c141
Pb2—O4iii2.941 (2)C14—C151.513 (6)
Pb2—O72.407 (2)C14—C161.524 (7)
Pb2—O82.487 (2)C15—H1c150.98
Pb2—O92.690 (3)C15—H2c150.98
Pb2—O102.389 (3)C15—H3c150.98
Pb2—O112.721 (3)C16—H1c160.98
Pb3—O2ii2.843 (2)C16—H2c160.98
Pb3—O42.566 (2)C16—H3c160.98
Pb3—O8i2.834 (2)O11—H1o110.84 (3)
Pb3—O122.519 (2)O11—H2o110.837 (16)
Pb3—O132.485 (2)H1o11—H2o111.29 (4)
Pb3—O142.712 (2)O12—C171.263 (4)
Pb3—O14ii2.947 (2)O13—C171.257 (4)
Pb3—O152.401 (3)C17—C181.518 (5)
O1—C11.271 (4)C18—H1c181
O2—C11.269 (3)C18—H1c18d1
C1—C21.503 (4)C18—C19a1.401 (9)
C2—H1c21C18—C19b1.442 (11)
C2—C31.531 (5)C18—C201.525 (6)
C2—C41.526 (6)H1c18—H1c18d1.6983
C3—H1c30.98H1c18—H1c19b1.3046
C3—H2c30.98H1c18—H2c19b1.2329
C3—H3c30.98H1c18—H3c19b1.1091
C4—H1c40.98H1c18d—H1c19a1.3172
C4—H2c40.98H1c18d—H2c19a1.0404
C4—H3c40.98H1c18d—H3c19a1.2516
O3—C51.247 (3)C19a—H1c19a0.98
O4—C51.280 (4)C19a—H2c19a0.98
C5—C61.518 (5)C19a—H3c19a0.98
C6—H1c61C19b—H1c19b0.98
C6—C71.512 (6)C19b—H2c19b0.98
C6—C81.503 (6)C19b—H3c19b0.98
C7—H1c70.98C20—H1c200.98
C7—H2c70.98C20—H2c200.98
C7—H3c70.98C20—H3c200.98
C8—H1c80.98O14—C211.267 (5)
C8—H2c80.98O15—C211.262 (4)
C8—H3c80.98C21—C221.513 (5)
O5—H1o50.84 (3)C22—H1c221
O5—H2o50.83 (3)C22—C231.508 (5)
H1o5—H2o51.19 (5)C22—C241.491 (7)
O7—C91.262 (4)C23—H1c230.98
O8—C91.261 (3)C23—H2c230.98
C9—C101.509 (4)C23—H3c230.98
C10—H1c101C24—H1c240.98
C10—C111.510 (7)C24—H2c240.98
C10—C121.522 (5)C24—H3c240.98
C11—H1c110.98
O1—Pb1—O251.86 (6)C5—C6—C7111.2 (3)
O1—Pb1—O374.96 (7)C5—C6—C8109.2 (4)
O1—Pb1—O4113.32 (7)H1c6—C6—C7107.22
O1—Pb1—O571.61 (8)H1c6—C6—C8109.35
O1—Pb1—O764.11 (7)C7—C6—C8110.9 (4)
O1—Pb1—O9i162.47 (7)C6—C7—H1c7109.47
O1—Pb1—O14ii109.75 (6)C6—C7—H2c7109.47
O2—Pb1—O374.55 (8)C6—C7—H3c7109.47
O2—Pb1—O476.95 (7)H1c7—C7—H2c7109.47
O2—Pb1—O590.31 (8)H1c7—C7—H3c7109.47
O2—Pb1—O7113.48 (7)H2c7—C7—H3c7109.47
O2—Pb1—O9i145.10 (6)C6—C8—H1c8109.47
O2—Pb1—O14ii67.04 (7)C6—C8—H2c8109.47
O3—Pb1—O449.89 (6)C6—C8—H3c8109.47
O3—Pb1—O5145.75 (7)H1c8—C8—H2c8109.47
O3—Pb1—O773.63 (8)H1c8—C8—H3c8109.47
O3—Pb1—O9i102.97 (7)H2c8—C8—H3c8109.47
O3—Pb1—O14ii120.93 (8)O7—C9—O8120.1 (3)
O4—Pb1—O5156.09 (7)O7—C9—C10120.1 (2)
O4—Pb1—O7118.34 (7)O8—C9—C10119.8 (3)
O4—Pb1—O9i75.67 (7)C9—C10—H1c10108.76
O4—Pb1—O14ii78.25 (7)C9—C10—C11108.9 (3)
O5—Pb1—O785.21 (7)C9—C10—C12112.5 (3)
O5—Pb1—O9i106.62 (8)H1c10—C10—C11109.15
O5—Pb1—O14ii78.16 (7)H1c10—C10—C12105.28
O7—Pb1—O9i98.46 (7)C11—C10—C12112.1 (3)
O7—Pb1—O14ii163.37 (8)C10—C11—H1c11109.47
O9i—Pb1—O14ii86.44 (7)C10—C11—H2c11109.47
Pb1—O2—Pb3ii112.60 (9)C10—C11—H3c11109.47
Pb1—O4—Pb2i102.40 (8)H1c11—C11—H2c11109.47
Pb1—O4—Pb3108.62 (8)H1c11—C11—H3c11109.47
O1—Pb2—O4iii153.20 (7)H2c11—C11—H3c11109.47
O1—Pb2—O769.76 (7)C10—C12—H1c12109.47
O1—Pb2—O8122.53 (6)C10—C12—H2c12109.47
O1—Pb2—O9127.67 (8)C10—C12—H3c12109.47
O1—Pb2—O1078.35 (8)H1c12—C12—H2c12109.47
O1—Pb2—O1172.79 (7)H1c12—C12—H3c12109.47
O4iii—Pb2—O7122.40 (7)H2c12—C12—H3c12109.47
O4iii—Pb2—O872.04 (6)O9—C13—O10121.2 (4)
O4iii—Pb2—O975.24 (7)O9—C13—C14120.4 (3)
O4iii—Pb2—O10126.01 (8)O10—C13—C14118.4 (3)
O4iii—Pb2—O1187.23 (7)C13—C14—H1c14109.21
O7—Pb2—O853.04 (7)C13—C14—C15111.2 (4)
O7—Pb2—O9104.51 (8)C13—C14—C16108.6 (4)
O7—Pb2—O1076.85 (9)H1c14—C14—C15107.43
O7—Pb2—O1174.08 (9)H1c14—C14—C16110.07
O8—Pb2—O976.80 (8)C15—C14—C16110.3 (4)
O8—Pb2—O1092.71 (9)C14—C15—H1c15109.47
O8—Pb2—O1185.87 (8)C14—C15—H2c15109.47
O9—Pb2—O1050.78 (8)C14—C15—H3c15109.47
O9—Pb2—O11158.36 (7)H1c15—C15—H2c15109.47
O10—Pb2—O11144.50 (7)H1c15—C15—H3c15109.47
Pb2—O8—Pb3iii108.78 (8)H2c15—C15—H3c15109.47
Pb1iii—O9—Pb2101.23 (9)C14—C16—H1c16109.47
O2ii—Pb3—O4155.14 (7)C14—C16—H2c16109.47
O2ii—Pb3—O8i109.38 (7)C14—C16—H3c16109.47
O2ii—Pb3—O12121.26 (6)H1c16—C16—H2c16109.47
O2ii—Pb3—O1370.44 (8)H1c16—C16—H3c16109.47
O2ii—Pb3—O1460.39 (6)H2c16—C16—H3c16109.47
O2ii—Pb3—O14ii81.93 (6)H1o11—O11—H2o11101 (4)
O2ii—Pb3—O15106.01 (8)O12—C17—O13121.3 (3)
O4—Pb3—O8i72.83 (6)O12—C17—C18119.8 (3)
O4—Pb3—O1283.17 (7)O13—C17—C18118.9 (3)
O4—Pb3—O13134.42 (8)C17—C18—H1c18102.94
O4—Pb3—O14114.33 (6)C17—C18—H1c18d109.58
O4—Pb3—O14ii73.30 (7)C17—C18—C19a116.9 (4)
O4—Pb3—O1582.44 (8)C17—C18—C19b109.2 (4)
O8i—Pb3—O1269.68 (8)C17—C18—C20111.2 (4)
O8i—Pb3—O1395.73 (7)C18—C19a—H1c19a109.47
O8i—Pb3—O14168.87 (8)C18—C19a—H2c19a109.47
O8i—Pb3—O14ii88.91 (6)C18—C19a—H3c19a109.47
O8i—Pb3—O15140.45 (8)H1c18d—C19a—H1c19a126.38
O12—Pb3—O1352.07 (8)H1c18d—C19a—H2c19a83.68
O12—Pb3—O14118.57 (8)H1c18d—C19a—H3c19a114.3
O12—Pb3—O14ii152.14 (7)H1c19a—C19a—H2c19a109.47
O12—Pb3—O1577.26 (9)H1c19a—C19a—H3c19a109.47
O13—Pb3—O1485.07 (7)H2c19a—C19a—H3c19a109.47
O13—Pb3—O14ii151.98 (8)C18—C19b—H1c19b109.47
O13—Pb3—O1579.89 (9)C18—C19b—H2c19b109.47
O14—Pb3—O14ii85.33 (7)C18—C19b—H3c19b109.47
O14—Pb3—O1550.63 (8)H1c19b—C19b—H2c19b109.47
O14ii—Pb3—O15113.25 (7)H1c19b—C19b—H3c19b109.47
Pb1ii—O14—Pb3113.41 (7)H2c19b—C19b—H3c19b109.47
Pb1ii—O14—Pb3ii99.73 (8)C18—C20—H1c20109.47
Pb3—O14—Pb3ii94.67 (7)C18—C20—H2c20109.47
O1—C1—O2119.9 (3)C18—C20—H3c20109.47
O1—C1—C2120.7 (2)H1c20—C20—H2c20109.47
O2—C1—C2119.3 (3)H1c20—C20—H3c20109.47
C1—C2—H1c2109.09H2c20—C20—H3c20109.47
C1—C2—C3111.8 (3)O14—C21—O15121.3 (3)
C1—C2—C4108.8 (3)O14—C21—C22119.3 (3)
H1c2—C2—C3106.26O15—C21—C22119.4 (3)
H1c2—C2—C4109.33C21—C22—H1c22109.01
C3—C2—C4111.5 (3)C21—C22—C23108.6 (3)
C2—C3—H1c3109.47C21—C22—C24112.8 (3)
C2—C3—H2c3109.47H1c22—C22—C23109.05
C2—C3—H3c3109.47H1c22—C22—C24104.55
H1c3—C3—H2c3109.47C23—C22—C24112.7 (4)
H1c3—C3—H3c3109.47C22—C23—H1c23109.47
H2c3—C3—H3c3109.47C22—C23—H2c23109.47
C2—C4—H1c4109.47C22—C23—H3c23109.47
C2—C4—H2c4109.47H1c23—C23—H2c23109.47
C2—C4—H3c4109.47H1c23—C23—H3c23109.47
H1c4—C4—H2c4109.47H2c23—C23—H3c23109.47
H1c4—C4—H3c4109.47C22—C24—H1c24109.47
H2c4—C4—H3c4109.47C22—C24—H2c24109.47
O3—C5—O4120.7 (3)C22—C24—H3c24109.47
O3—C5—C6119.7 (3)H1c24—C24—H2c24109.47
O4—C5—C6119.6 (3)H1c24—C24—H3c24109.47
C5—C6—H1c6108.97H2c24—C24—H3c24109.47
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1o5···O100.84 (3)1.95 (3)2.788 (3)171 (4)
O5—H2o5···O13ii0.83 (3)2.08 (4)2.788 (4)144 (4)
O11—H1o11···O30.84 (3)2.06 (3)2.859 (3)157 (3)
O11—H2o11···O12iii0.837 (16)1.944 (17)2.739 (3)158 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
 

Acknowledgements

Dr Ivana Císařová from the Faculty of Science is thanked for the measurement of the sample.

Funding information

Funding for this research was provided by: Ministry of Education of the Czech Republic (grant No. NPU I–LO1603 to Institute of Physics of the Czech Academy of Sciences, v.v.i.).

References

First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBrandenburg, K. (2015). DIAMOND. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2017). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDumbleton, J. H. & Lomer, T. R. (1965). Acta Cryst. 19, 301–307.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDuruz, J. J. & Ubbelohde, A. R. (1972). Proc. R. Soc. Lond. A, 330, 1–13.  CAS Google Scholar
First citationFallon, G. D., Spiccia, L., West, B. O. & Zhang, Q. (1997). Polyhedron, 16, 19–23.  CSD CrossRef CAS Web of Science Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press Inc.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.  Google Scholar
First citationSamolová, E. & Fábry, J. (2020). Acta Cryst. E76, 1684–1688.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadnicka, K. & Glazer, A. M. (1980). Acta Cryst. B36, 2977–2985.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds