metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(4′-Chloro-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)bis­(nitrato-κO)zinc(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 23 September 2020; accepted 7 October 2020; online 13 October 2020)

In the title complex, [Zn(C15H10ClN3)(NO3)2], the central zinc(II) atom is penta­coordinated by two O-bonded nitrate ions and three N atoms of the 4′-chloro-2,2′:6′,2′′-terpyridine ligand in a slightly distorted trigonal–bipyramidal shape. The main feature of the title complex packing is the presence of offset ππ inter­actions between the terpyridine rings in different layers. This structure constitutes the first known example of a zinc(II) 4-chloro­terpyridine complex with coordinating nitrate ions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Metal–organic complexes of 4′-chloro-2,2′:6′,2′′-terpyridine have been investigated because of their ability to generate supra­molecular frameworks (Huang & Qian, 2008[Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.]), and for their photosensitivity properties (Dutta et al., 2019[Dutta, B., Das, D., Datta, J., Chandra, A., Jana, S., Sinha, C., Ray, P. P. & Mir, M. H. (2019). Inorg. Chem. Front. 6, 1245-1252.]). As part of our research related to the coordination chemistry of metal ions with bi­pyridine and terpyridine ligands, hereto we report the synthesis and structure of the title zinc(II) complex.

The asymmetric unit of the title compound, [Zn(C15H10ClN3)(NO3)2], contains two nearly identical complexes with an r.m.s. deviation for overlay of 0.1679 Å (calculated using Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), with a five-coordinate distorted trigonal–bipyramidal environment around the zinc(II) atom. The central zinc(II) atom is chelated by the nitro­gen atoms of the 4′-chloro-2,2′:6′,2′′-terpyridine ligand and additionally coordinated by two O-bonded nitrate ions (Fig. 1[link]). The coordinated oxygen atoms of the nitrate ions and the central nitro­gen atom of the terpyridine ligand lie in the equatorial plane, while the other two nitro­gen atoms of the terpyridine ligand are in the axial positions with longer Zn—N bond lengths. All relevant bonds and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—O2 2.064 (2) Zn2—O8 2.043 (2)
Zn1—O4 2.048 (2) Zn2—O11 2.049 (2)
Zn1—N1 2.136 (2) Zn2—N4 2.138 (2)
Zn1—N2 2.083 (2) Zn2—N5 2.068 (2)
Zn1—N3 2.139 (3) Zn2—N6 2.133 (2)
       
O4—Zn1—O2 86.69 (9) O8—Zn2—O11 86.69 (9)
O4—Zn1—N2 132.17 (9) O8—Zn2—N5 137.93 (9)
O2—Zn1—N2 140.99 (9) O11—Zn2—N5 135.36 (9)
O4—Zn1—N1 100.03 (9) O8—Zn2—N6 98.03 (9)
O2—Zn1—N1 96.13 (10) O11—Zn2—N6 100.19 (9)
N2—Zn1—N1 76.20 (9) N5—Zn2—N6 76.56 (10)
O4—Zn1—N3 97.01 (9) O8—Zn2—N4 103.33 (9)
O2—Zn1—N3 106.86 (10) O11—Zn2—N4 98.17 (9)
N2—Zn1—N3 75.94 (9) N5—Zn2—N4 75.97 (9)
N1—Zn1—N3 152.05 (10) N6—Zn2—N4 152.49 (10)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

The title complex packs into layers in the ac plane that are aligned along the b-axis direction (Fig. 2[link]). Contiguous pyridine rings show ππ stacking inter­actions, with centroid-to-centroid (CgCg) distances ranging from 3.571 (1) to 3.786 (1) Å as shown in Fig. 3[link], and offset distances ranging from 1.073 to 1.637 Å. The Cg⋯Cg distance is influenced by the relative positioning of the chlorine atom of the terpyridine unit.

[Figure 2]
Figure 2
Perspective view of the packing structure of the title complex along the crystallographic b axis; H atoms are omitted for clarity.
[Figure 3]
Figure 3
Capped sticks representation of the title mol­ecule showing the CgCg distances between pyridine rings; H atoms are omitted for clarity

Synthesis and crystallization

Solid 4′-chloro-2,2′:6′,2′′-terpyridine (0.100 g, 0.374 mmol) was added to ZnCl2 (0.051 g, 0.37 mmol) in 50.0 ml of methanol and the resulting solution was stirred without heating for 2 h. AgNO3 (0.127 g, 0.748 mmol) was added to the clear solution and stirred without heating for 45 minutes. After the removal of AgCl by filtration using a 0.45 µm PTFE syringe filter, the resulting clear solution was rotovaped to dryness. The dried product was then redissolved in 10.0 ml of aceto­nitrile and the clear solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C15H10ClN3)(NO3)2]
Mr 457.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 98
a, b, c (Å) 12.1001 (19), 13.3139 (18), 13.4869 (12)
α, β, γ (°) 62.471 (9), 63.694 (7), 87.388 (11)
V3) 1692.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.66
Crystal size (mm) 0.35 × 0.20 × 0.05
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.780, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12078, 6600, 5823
Rint 0.080
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.01
No. of reflections 6600
No. of parameters 505
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.75, −0.91
Computer programs: CrystalClear-SM Expert (Rigaku, 2010[Rigaku (2010). CrystalClear-SM Expert. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), DIAMOND (Brandenburg, 2020[Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2010); cell refinement: CrystalClear-SM Expert (Rigaku, 2010); data reduction: CrystalClear-SM Expert (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP2 (Johnson, 1976), Mercury (Macrae et al., 2020), DIAMOND (Brandenburg, 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(4'-Chloro-2,2':6',2''-terpyridine-κ3N,N',N'')bis(nitrato-κO)zinc(II) top
Crystal data top
[Zn(NO3)2(C15H10ClN3)]Z = 4
Mr = 457.10F(000) = 920
Triclinic, P1Dx = 1.794 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.1001 (19) ÅCell parameters from 6364 reflections
b = 13.3139 (18) Åθ = 2.9–40.1°
c = 13.4869 (12) ŵ = 1.66 mm1
α = 62.471 (9)°T = 98 K
β = 63.694 (7)°Platelet, colourless
γ = 87.388 (11)°0.35 × 0.20 × 0.05 mm
V = 1692.2 (4) Å3
Data collection top
Rigaku Saturn724
diffractometer
6600 independent reflections
Radiation source: sealed tube5823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
Detector resolution: 28.5714 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1414
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1616
Tmin = 0.780, Tmax = 1.000l = 1615
12078 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.050P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
6600 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All C-bound H-atoms were placed on calculated positions and were refined with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn20.34214 (3)0.94668 (3)0.37421 (3)0.01727 (10)
Zn10.83871 (3)0.31255 (3)0.84356 (3)0.01784 (10)
Cl20.22788 (7)0.71144 (7)0.57358 (7)0.02664 (18)
Cl10.77312 (8)0.52743 (7)1.16640 (7)0.02960 (19)
C200.2606 (3)0.8239 (2)0.2729 (3)0.0182 (6)
N20.8173 (2)0.3886 (2)0.9403 (2)0.0169 (5)
N50.1619 (2)0.8686 (2)0.4390 (2)0.0163 (5)
N11.0252 (2)0.2792 (2)0.9920 (2)0.0190 (5)
N60.2305 (2)0.9699 (2)0.5337 (2)0.0188 (5)
C100.7033 (3)0.4357 (2)0.9060 (3)0.0181 (6)
C250.0667 (3)0.8670 (2)0.5419 (3)0.0172 (6)
C240.0557 (3)0.8156 (2)0.5885 (3)0.0199 (6)
H24A0.12200.81390.65980.024*
O110.4890 (2)0.89317 (19)0.4088 (2)0.0253 (5)
C210.1425 (3)0.8170 (2)0.3820 (3)0.0184 (6)
C51.0385 (3)0.3216 (2)1.0698 (3)0.0180 (6)
N30.6406 (2)0.3777 (2)0.7475 (2)0.0199 (5)
C260.1059 (3)0.9247 (2)0.5963 (3)0.0184 (6)
C110.6007 (3)0.4316 (2)0.7931 (3)0.0187 (6)
O80.4539 (2)1.10805 (18)0.2536 (2)0.0257 (5)
N40.3661 (2)0.8809 (2)0.2498 (2)0.0194 (5)
C90.6837 (3)0.4814 (3)0.9727 (3)0.0214 (6)
H9A0.60400.51610.94750.026*
C270.0229 (3)0.9340 (3)0.7018 (3)0.0204 (6)
H27A0.06270.90380.74320.024*
N100.4460 (2)0.7897 (2)0.5056 (2)0.0230 (6)
C41.1562 (3)0.3093 (3)1.1677 (3)0.0212 (6)
H4A1.16410.33911.22030.025*
C220.0232 (3)0.7647 (2)0.4214 (3)0.0194 (6)
H22A0.00980.72980.38070.023*
O100.3348 (2)0.74424 (19)0.5505 (2)0.0271 (5)
C300.2751 (3)1.0227 (3)0.5761 (3)0.0214 (6)
H30A0.36091.05250.53350.026*
C60.9194 (3)0.3797 (2)1.0434 (3)0.0173 (6)
C11.1267 (3)0.2224 (3)1.0112 (3)0.0219 (6)
H1A1.11690.19220.95850.026*
C230.0756 (3)0.7669 (3)0.5251 (3)0.0206 (6)
N90.3979 (2)1.1808 (2)0.1981 (2)0.0239 (6)
C160.4772 (3)0.8890 (3)0.1554 (3)0.0211 (6)
H16A0.54970.92850.13970.025*
C70.9085 (3)0.4211 (2)1.1173 (3)0.0192 (6)
H7A0.97820.41441.18940.023*
O10.8653 (2)0.5083 (2)0.7003 (2)0.0298 (5)
C31.2611 (3)0.2515 (3)1.1844 (3)0.0245 (7)
H3A1.34090.24321.24780.029*
O40.8284 (2)0.15038 (19)0.8647 (2)0.0273 (5)
C290.1981 (3)1.0345 (3)0.6812 (3)0.0239 (7)
H29A0.23131.07180.70870.029*
O60.7917 (2)0.1417 (2)1.0121 (2)0.0300 (5)
N80.8006 (2)0.0932 (2)0.9554 (3)0.0270 (6)
N70.8941 (2)0.4541 (2)0.6577 (2)0.0260 (6)
C190.2642 (3)0.7731 (3)0.2021 (3)0.0226 (6)
H19A0.19060.73360.21970.027*
C80.7891 (3)0.4726 (2)1.0785 (3)0.0207 (6)
O20.8891 (2)0.3455 (2)0.7054 (2)0.0307 (5)
C150.5539 (3)0.3659 (3)0.6498 (3)0.0241 (7)
H15A0.58080.32890.61810.029*
O70.2949 (2)1.1410 (2)0.2176 (2)0.0315 (5)
O120.5158 (2)0.7405 (2)0.5489 (2)0.0339 (6)
C21.2463 (3)0.2063 (3)1.1062 (3)0.0258 (7)
H2A1.31540.16601.11740.031*
C120.4751 (3)0.4759 (3)0.7412 (3)0.0239 (6)
H12A0.45000.51430.77270.029*
C170.4879 (3)0.8407 (3)0.0806 (3)0.0217 (6)
H17A0.56600.84750.01600.026*
C180.3794 (3)0.7822 (3)0.1045 (3)0.0243 (7)
H18A0.38370.74920.05570.029*
O90.4494 (2)1.2831 (2)0.1288 (2)0.0354 (6)
C280.0709 (3)0.9895 (3)0.7440 (3)0.0242 (7)
H28A0.01720.99630.81460.029*
C140.4266 (3)0.4064 (3)0.5947 (3)0.0254 (7)
H14A0.36910.39630.52780.030*
O50.7842 (3)0.0062 (2)0.9827 (3)0.0453 (7)
O30.9241 (3)0.4983 (3)0.5740 (2)0.0442 (7)
C130.3865 (3)0.4620 (3)0.6407 (3)0.0275 (7)
H13A0.30120.49010.60520.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn20.01517 (18)0.02157 (19)0.01686 (18)0.00285 (14)0.00808 (14)0.01030 (15)
Zn10.01927 (19)0.02017 (18)0.01752 (18)0.00398 (14)0.00944 (14)0.01119 (15)
Cl20.0179 (4)0.0258 (4)0.0308 (4)0.0001 (3)0.0117 (3)0.0096 (3)
Cl10.0434 (5)0.0315 (4)0.0277 (4)0.0076 (4)0.0234 (4)0.0186 (3)
C200.0222 (15)0.0180 (14)0.0198 (14)0.0070 (11)0.0142 (12)0.0096 (12)
N20.0196 (12)0.0144 (11)0.0179 (12)0.0063 (9)0.0100 (10)0.0081 (10)
N50.0159 (12)0.0170 (11)0.0166 (11)0.0047 (9)0.0098 (10)0.0070 (10)
N10.0219 (13)0.0194 (12)0.0178 (12)0.0046 (10)0.0120 (10)0.0084 (10)
N60.0226 (13)0.0190 (12)0.0158 (11)0.0064 (10)0.0110 (10)0.0077 (10)
C100.0205 (14)0.0139 (13)0.0200 (14)0.0052 (11)0.0115 (12)0.0068 (11)
C250.0175 (14)0.0154 (13)0.0143 (13)0.0036 (11)0.0080 (11)0.0036 (11)
C240.0186 (14)0.0184 (14)0.0167 (14)0.0055 (11)0.0084 (12)0.0044 (12)
O110.0231 (11)0.0289 (12)0.0243 (11)0.0055 (9)0.0136 (9)0.0112 (10)
C210.0231 (15)0.0178 (14)0.0179 (14)0.0069 (12)0.0126 (12)0.0089 (12)
C50.0221 (15)0.0146 (13)0.0152 (13)0.0065 (11)0.0119 (12)0.0031 (11)
N30.0212 (13)0.0189 (12)0.0194 (12)0.0048 (10)0.0101 (11)0.0090 (10)
C260.0238 (15)0.0154 (13)0.0163 (13)0.0064 (11)0.0117 (12)0.0062 (11)
C110.0218 (15)0.0142 (13)0.0191 (14)0.0047 (11)0.0107 (12)0.0066 (11)
O80.0222 (11)0.0234 (11)0.0257 (11)0.0031 (9)0.0114 (9)0.0079 (10)
N40.0207 (13)0.0190 (12)0.0192 (12)0.0052 (10)0.0102 (10)0.0095 (10)
C90.0241 (16)0.0191 (14)0.0226 (15)0.0047 (12)0.0154 (13)0.0074 (12)
C270.0215 (15)0.0191 (14)0.0139 (13)0.0063 (12)0.0084 (12)0.0035 (12)
N100.0274 (14)0.0260 (13)0.0266 (13)0.0091 (11)0.0159 (12)0.0185 (12)
C40.0237 (15)0.0197 (14)0.0169 (14)0.0073 (12)0.0096 (12)0.0068 (12)
C220.0209 (15)0.0185 (14)0.0229 (15)0.0053 (12)0.0141 (12)0.0100 (12)
O100.0249 (12)0.0285 (12)0.0315 (12)0.0039 (9)0.0136 (10)0.0172 (10)
C300.0236 (15)0.0209 (14)0.0215 (14)0.0037 (12)0.0128 (13)0.0098 (12)
C60.0236 (15)0.0122 (13)0.0157 (13)0.0066 (11)0.0107 (12)0.0057 (11)
C10.0239 (15)0.0224 (15)0.0186 (14)0.0009 (12)0.0124 (13)0.0071 (12)
C230.0185 (14)0.0179 (14)0.0223 (14)0.0024 (11)0.0128 (12)0.0047 (12)
N90.0217 (13)0.0293 (14)0.0175 (12)0.0061 (11)0.0047 (11)0.0136 (11)
C160.0194 (15)0.0214 (14)0.0181 (14)0.0046 (12)0.0075 (12)0.0081 (12)
C70.0269 (16)0.0153 (13)0.0145 (13)0.0068 (12)0.0120 (12)0.0050 (11)
O10.0297 (12)0.0323 (12)0.0317 (12)0.0055 (10)0.0147 (10)0.0189 (11)
C30.0217 (15)0.0244 (15)0.0184 (14)0.0074 (13)0.0084 (12)0.0054 (13)
O40.0328 (12)0.0232 (11)0.0311 (12)0.0076 (9)0.0161 (10)0.0165 (10)
C290.0349 (18)0.0206 (15)0.0195 (14)0.0061 (13)0.0155 (14)0.0100 (12)
O60.0328 (13)0.0292 (12)0.0293 (12)0.0056 (10)0.0173 (11)0.0130 (10)
N80.0219 (14)0.0189 (13)0.0336 (15)0.0045 (11)0.0105 (12)0.0106 (12)
N70.0230 (14)0.0336 (15)0.0203 (13)0.0090 (12)0.0101 (11)0.0129 (12)
C190.0273 (16)0.0255 (15)0.0248 (15)0.0090 (13)0.0174 (13)0.0151 (13)
C80.0340 (17)0.0153 (13)0.0226 (15)0.0084 (12)0.0191 (13)0.0114 (12)
O20.0444 (14)0.0314 (12)0.0274 (12)0.0133 (11)0.0234 (11)0.0172 (10)
C150.0277 (16)0.0234 (15)0.0216 (15)0.0065 (13)0.0111 (13)0.0122 (13)
O70.0220 (12)0.0457 (14)0.0354 (13)0.0094 (11)0.0143 (10)0.0261 (12)
O120.0384 (14)0.0349 (13)0.0426 (14)0.0193 (11)0.0310 (12)0.0195 (12)
C20.0209 (15)0.0262 (16)0.0239 (15)0.0021 (13)0.0141 (13)0.0042 (13)
C120.0229 (16)0.0217 (15)0.0277 (16)0.0037 (12)0.0132 (13)0.0114 (13)
C170.0254 (16)0.0238 (15)0.0163 (13)0.0091 (12)0.0104 (12)0.0102 (12)
C180.0338 (17)0.0254 (15)0.0207 (15)0.0095 (13)0.0158 (14)0.0142 (13)
O90.0394 (14)0.0234 (12)0.0286 (12)0.0058 (11)0.0106 (11)0.0074 (10)
C280.0329 (17)0.0229 (15)0.0146 (14)0.0084 (13)0.0101 (13)0.0091 (12)
C140.0278 (17)0.0212 (15)0.0209 (15)0.0065 (13)0.0086 (13)0.0089 (13)
O50.0421 (15)0.0185 (12)0.0657 (18)0.0089 (11)0.0240 (14)0.0155 (12)
O30.0540 (17)0.0570 (17)0.0340 (14)0.0267 (14)0.0333 (13)0.0213 (13)
C130.0224 (16)0.0219 (15)0.0296 (17)0.0052 (13)0.0094 (14)0.0093 (14)
Geometric parameters (Å, º) top
Zn1—O22.064 (2)C27—H27A0.9300
Zn1—O42.048 (2)N10—O121.230 (3)
Zn1—N12.136 (2)N10—O101.248 (3)
Zn1—N22.083 (2)C4—C31.390 (5)
Zn1—N32.139 (3)C4—H4A0.9300
Zn2—O82.043 (2)C22—C231.393 (4)
Zn2—O112.049 (2)C22—H22A0.9300
Zn2—N42.138 (2)C30—C291.387 (4)
Zn2—N52.068 (2)C30—H30A0.9300
Zn2—N62.133 (2)C6—C71.394 (4)
Cl2—C231.725 (3)C1—C21.383 (4)
Cl1—C81.730 (3)C1—H1A0.9300
C20—N41.349 (4)N9—O91.226 (3)
C20—C191.389 (4)N9—O71.242 (4)
C20—C211.497 (4)C16—C171.386 (4)
N2—C101.325 (4)C16—H16A0.9300
N2—C61.347 (4)C7—C81.385 (4)
N5—C211.335 (4)C7—H7A0.9300
N5—C251.347 (4)O1—N71.248 (4)
N1—C11.330 (4)C3—C21.384 (5)
N1—C51.355 (4)C3—H3A0.9300
N6—C301.338 (4)O4—N81.291 (4)
N6—C261.355 (4)C29—C281.380 (5)
C10—C91.395 (4)C29—H29A0.9300
C10—C111.502 (4)O6—N81.245 (4)
C25—C241.388 (4)N8—O51.232 (3)
C25—C261.487 (4)N7—O31.217 (4)
C24—C231.385 (4)N7—O21.294 (4)
C24—H24A0.9300C19—C181.390 (4)
O11—N101.294 (3)C19—H19A0.9300
C21—C221.386 (4)C15—C141.380 (5)
C5—C41.398 (4)C15—H15A0.9300
C5—C61.482 (4)C2—H2A0.9300
N3—C151.346 (4)C12—C131.395 (4)
N3—C111.354 (4)C12—H12A0.9300
C26—C271.391 (4)C17—C181.386 (5)
C11—C121.380 (4)C17—H17A0.9300
O8—N91.295 (3)C18—H18A0.9300
N4—C161.345 (4)C28—H28A0.9300
C9—C81.385 (4)C14—C131.376 (5)
C9—H9A0.9300C14—H14A0.9300
C27—C281.387 (5)C13—H13A0.9300
O4—Zn1—O286.69 (9)O10—N10—O11117.9 (3)
O4—Zn1—N2132.17 (9)C3—C4—C5118.2 (3)
O2—Zn1—N2140.99 (9)C3—C4—H4A120.9
O4—Zn1—N1100.03 (9)C5—C4—H4A120.9
O2—Zn1—N196.13 (10)C21—C22—C23116.6 (3)
N2—Zn1—N176.20 (9)C21—C22—H22A121.7
O4—Zn1—N397.01 (9)C23—C22—H22A121.7
O2—Zn1—N3106.86 (10)N6—C30—C29122.5 (3)
N2—Zn1—N375.94 (9)N6—C30—H30A118.8
N1—Zn1—N3152.05 (10)C29—C30—H30A118.8
O8—Zn2—O1186.69 (9)N2—C6—C7120.8 (3)
O8—Zn2—N5137.93 (9)N2—C6—C5114.2 (2)
O11—Zn2—N5135.36 (9)C7—C6—C5125.0 (3)
O8—Zn2—N698.03 (9)N1—C1—C2122.8 (3)
O11—Zn2—N6100.19 (9)N1—C1—H1A118.6
N5—Zn2—N676.56 (10)C2—C1—H1A118.6
O8—Zn2—N4103.33 (9)C24—C23—C22121.9 (3)
O11—Zn2—N498.17 (9)C24—C23—Cl2118.8 (2)
N5—Zn2—N475.97 (9)C22—C23—Cl2119.3 (2)
N6—Zn2—N4152.49 (10)O9—N9—O7124.1 (3)
N4—C20—C19121.6 (3)O9—N9—O8118.8 (3)
N4—C20—C21114.8 (2)O7—N9—O8117.1 (3)
C19—C20—C21123.5 (3)N4—C16—C17122.6 (3)
C10—N2—C6121.5 (3)N4—C16—H16A118.7
C10—N2—Zn1119.70 (19)C17—C16—H16A118.7
C6—N2—Zn1118.6 (2)C8—C7—C6117.0 (3)
C21—N5—C25121.2 (3)C8—C7—H7A121.5
C21—N5—Zn2119.96 (19)C6—C7—H7A121.5
C25—N5—Zn2118.8 (2)C2—C3—C4119.6 (3)
C1—N1—C5118.9 (3)C2—C3—H3A120.2
C1—N1—Zn1125.0 (2)C4—C3—H3A120.2
C5—N1—Zn1116.10 (19)N8—O4—Zn1107.28 (18)
C30—N6—C26119.1 (2)C28—C29—C30118.3 (3)
C30—N6—Zn2125.0 (2)C28—C29—H29A120.9
C26—N6—Zn2115.86 (19)C30—C29—H29A120.9
N2—C10—C9121.7 (3)O5—N8—O6122.5 (3)
N2—C10—C11113.7 (3)O5—N8—O4119.5 (3)
C9—C10—C11124.6 (3)O6—N8—O4118.0 (2)
N5—C25—C24120.6 (3)O3—N7—O1123.5 (3)
N5—C25—C26114.1 (3)O3—N7—O2119.7 (3)
C24—C25—C26125.3 (3)O1—N7—O2116.7 (3)
C23—C24—C25117.6 (3)C20—C19—C18119.0 (3)
C23—C24—H24A121.2C20—C19—H19A120.5
C25—C24—H24A121.2C18—C19—H19A120.5
N10—O11—Zn2106.77 (18)C9—C8—C7122.4 (3)
N5—C21—C22121.9 (3)C9—C8—Cl1119.6 (2)
N5—C21—C20113.2 (3)C7—C8—Cl1118.0 (2)
C22—C21—C20124.9 (3)N7—O2—Zn1104.76 (18)
N1—C5—C4121.8 (3)N3—C15—C14122.7 (3)
N1—C5—C6114.8 (2)N3—C15—H15A118.6
C4—C5—C6123.4 (3)C14—C15—H15A118.6
C15—N3—C11118.3 (3)C1—C2—C3118.7 (3)
C15—N3—Zn1125.6 (2)C1—C2—H2A120.7
C11—N3—Zn1116.06 (19)C3—C2—H2A120.7
N6—C26—C27121.5 (3)C11—C12—C13118.9 (3)
N6—C26—C25114.7 (2)C11—C12—H12A120.5
C27—C26—C25123.8 (3)C13—C12—H12A120.5
N3—C11—C12121.9 (3)C18—C17—C16118.3 (3)
N3—C11—C10114.6 (3)C18—C17—H17A120.8
C12—C11—C10123.5 (3)C16—C17—H17A120.8
N9—O8—Zn2110.87 (18)C17—C18—C19119.5 (3)
C16—N4—C20119.0 (3)C17—C18—H18A120.2
C16—N4—Zn2125.0 (2)C19—C18—H18A120.2
C20—N4—Zn2116.02 (19)C29—C28—C27120.1 (3)
C8—C9—C10116.6 (3)C29—C28—H28A119.9
C8—C9—H9A121.7C27—C28—H28A119.9
C10—C9—H9A121.7C13—C14—C15118.8 (3)
C28—C27—C26118.5 (3)C13—C14—H14A120.6
C28—C27—H27A120.8C15—C14—H14A120.6
C26—C27—H27A120.8C14—C13—C12119.3 (3)
O12—N10—O10123.0 (3)C14—C13—H13A120.4
O12—N10—O11119.1 (3)C12—C13—H13A120.4
 

Acknowledgements

We are thankful for the support of the Department of Chemistry and Biochemistry at the University of the Incarnate Word and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

References

First citationBrandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDutta, B., Das, D., Datta, J., Chandra, A., Jana, S., Sinha, C., Ray, P. P. & Mir, M. H. (2019). Inorg. Chem. Front. 6, 1245–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (2010). CrystalClear-SM Expert. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds