organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 3,4-bis­­(acet­yl­oxy)-2-(4-meth­­oxy­phen­yl)pyrrol­idine-1-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aLaboratório de Cristalografia, Esterodinâmica e Modelagem Molecular, Departamento de Química, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, bDepartmento de Física, Universidade Federal de São Carlos, 13565-905 São Carlos, SP, Brazil, cInstituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil, dInstituto de Química, Universidade Estadual de Campinas, UNICAMP, CP 6154, CEP 13084-917 Campinas, Brazil, and eResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: ignez@df.ufscar.br

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 1 September 2020; accepted 5 September 2020; online 30 October 2020)

The title pyrrolidine compound, C18H23NO7, is a tetra-substituted species in which the five-membered ring has a twisted conformation with the twist occurring in the C—C bond bearing the adjacent acet­yloxy substituents; the Cm—Ca—Ca—Cp torsion angle is −40.76 (18)° [m = methyl­ene, a = acet­yloxy and p = phen­yl]. The N atom, which is sp2-hybridized [sum of bond angles = 359.4°], bears an ethyl­carboxyl­ate substitutent and is connected to a methyl­ene-C atom on one side and a carbon atom bearing a 4-meth­oxy­phenyl group on the other side. Minor disorder is noted in the ethyl­carboxyl­ate substituent as well as in one of the acet­yloxy groups; the major components of the disorder have site occupancies of 0.729 (9) and 0.62 (3), respectively. The most notable feature of the mol­ecular packing is the formation of helical, supra­molecular chains aligned along the b-axis direction whereby the carbonyl-O atom not involved in a disordered residue accepts C—H⋯O inter­actions from methyl­ene-H and two-C atom separated methine-H atoms to form a six-membered {⋯HCCCH⋯O} synthon.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As reviewed recently, α-glucosidase inhibitors comprise a significant class of drugs as these are used for the treatment various disease including, among others, diabetes, cancer, cystic fibrosis and influenza (Kiappes et al., 2018[Kiappes, J. L., Hill, M. L., Alonzi, D. S., Miller, J. L., Iwaki, R., Sayce, A. C., Caputo, A. T., Kato, A. & Zitzmann, N. (2018). Chem. Biol. 13, 60-65.]; Dhameja & Gupta, 2019[Dhameja, M. & Gupta, P. (2019). Eur. J. Med. Chem. 176, 343-377.]). It was in this connection that the structure of the title tetra-substituted pyrrolidine derivative, (I), was determined in the context of supporting studies designed to provide conformational details of the mol­ecular structures of crucial synthetic inter­mediates in the generation of various α-glucosidase inhibitors (Zukerman-Schpector et al., 2017[Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218-1222.]; Dallasta Pedroso et al., 2020a[Dallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020a). Acta Cryst. E76, 1080-1086.]; Dallasta Pedroso et al., 2020b[Dallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020b). Acta Cryst. E76, 967-972.]).

The mol­ecular structure of (I), Fig. 1[link], features a five-membered pyrrolidine ring scaffold which is tetra-substituted. Thus, N1 carries a ethyl­carboxyl­ate group, each of the methine-C2 and C3 atoms carries an acet­yloxy substituent and finally, the methine-C4 atom carries a 4-meth­oxy­phenyl group. The substitution pattern indicates the presence of three chiral centres. For the illustrated mol­ecule in Fig. 1[link], the chirality of the C2–C4 atoms follows the sequence R, S and S. However, it should be noted the centrosymmetric unit cell of (I) contains equal numbers of the S, R, R enanti­omer. The conformation of the five-membered ring is best described as being twisted about the C2—C3 bond as seen in the value of the C1—C2—C3—C4 torsion angle of −40.76 (18)°, which is consistent with a (−)syn-clinal configuration. The relative orientations of the non-H substituents at the N1, C2—C4 atoms about the ring are equatorial, axial, equatorial and bis­ectional, respectively (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). The sum of the angles about the N1 atom comes to 359.4°, being indicative of an approximate sp2 centre. While globally, to a first approximation, the substituents at N1 and C3 lie in the plane of the ring, the substituents at the C1 and C4 atoms lie to either side of the five-membered ring.

[Figure 1]
Figure 1
The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level. The minor components of the disordered residues are omitted.

The substitution pattern in pyrrolidine (I) is comparatively rare with the most closely related structures being only recently reported. In one derivative, the difference arises as the N1-bound substituent is a 4-nitro­phenyl­methyl group while the other groups are the same (Dallasta Pedroso et al., 2020a[Dallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020a). Acta Cryst. E76, 1080-1086.]) while in the other, only the substituent at the C4 differs, with the literature structure having a methyl­carboxyl­ate group (Dallasta Pedroso et al., 2020b[Dallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020b). Acta Cryst. E76, 967-972.]).

Owing to the presence of disorder in the residues bound at the N1 and C3 atoms, a detailed analysis of the mol­ecular packing is problematic. However, supra­molecular chains propagating along the b-axis direction may be discerned, Fig. 2[link](a). These have a helical topology being generated by 21-screw symmetry and arise as the carbonyl-O1 accepts two C—H⋯O inter­actions, Table 1[link], from the C1-methyl­ene and C3-methine substituents with the result that six-membered {⋯HCCCH⋯O} synthons are apparent. A view of the unit-cell contents showing the packing of chains is shown in Fig. 2[link](b).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.97 2.54 3.289 (2) 134
C3—H3⋯O1i 0.98 2.55 3.344 (2) 139
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I): (a) helical, supra­molecular chain along the b-axis direction sustained by C—H⋯O(carbon­yl) contacts shown as blue dashed lines and (b) view of the unit-cell contents shown in projection down the b axis, with one chain highlighted in space-filling mode.

Synthesis and crystallization

To a solution of ethyl (2S,3S,4R)-3,4-dihy­droxy-2-(4-meth­oxy­phen­yl)pyrrolidine-1-carboxyl­ate (885 mg, 3.039 mmol) in CH2Cl2 (30 ml) were added pyridine (1.5 ml, 18.584 mmol), acetic anhydride (6.0 ml, 63.59 mmol) and N,N-dimethyl-4-amino­pyridine (3.7 mg, 0.030 mmol). The solution was stirred for 2 h at room temperature, concentrated in a rotary-evaporator and the residue dissolved in EtOAc (15 ml). The resulting solution was washed with a HCl 5% solution (3 × 8 ml) and with saturated solutions of NaHCO3 (2 × 8 ml) and of NaCl (8 ml). The phases were separated and the organic phase was dried over anhydrous Na2SO4, filtered and concentrated in vacuo.

The residue was purified by flash column chromatography in silica gel, using an EtOAc/n-hexane elution gradient (1:3 and 1:2). Yield: 1.108 g (100%). Crystals for the X-ray analysis were obtained by the slow evaporation of its n-hexane solution, m.p. 347–349 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Two residues in the mol­ecule were found to be disordered. Thus, the C7-methyl group of the N1-bound substituent was disordered over two positions, as was the carbonyl-O4 atom of the C3-acet­yloxy group. Each disorder component was refined independently and with anisotropic displacement parameters. The major components of the disorder refined to occupancies of 0.729 (9) and 0.62 (3), respectively.

Table 2
Experimental details

Crystal data
Chemical formula C18H23NO7
Mr 365.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.9429 (5), 9.3845 (5), 20.7845 (11)
β (°) 91.550 (2)
V3) 1938.67 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.39 × 0.25 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.470, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 32581, 3970, 2612
Rint 0.059
(sin θ/λ)max−1) 0.626
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.140, 1.05
No. of reflections 3970
No. of parameters 261
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), MarvinSketch (ChemAxon, 2010[ChemAxon (2010). Marvinsketch. https://www.chemaxon.com.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), MarvinSketch (ChemAxon, 2010) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl 3,4-bis(acetyloxy)-2-(4-methoxyphenyl)pyrrolidine-1-carboxylate top
Crystal data top
C18H23NO7F(000) = 776
Mr = 365.37Dx = 1.252 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9429 (5) ÅCell parameters from 6695 reflections
b = 9.3845 (5) Åθ = 2.4–22.2°
c = 20.7845 (11) ŵ = 0.10 mm1
β = 91.550 (2)°T = 296 K
V = 1938.67 (18) Å3Slab, colourless
Z = 40.39 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2612 reflections with I > 2σ(I)
φ and ω scansRint = 0.059
Absorption correction: multi-scan
(SADABS; Bruker 2009)
θmax = 26.4°, θmin = 2.0°
Tmin = 0.470, Tmax = 0.745h = 1112
32581 measured reflectionsk = 1111
3970 independent reflectionsl = 2519
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.6202P]
where P = (Fo2 + 2Fc2)/3
3970 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The carbon-bound H-atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Uequiv(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.60299 (14)0.86994 (16)0.30456 (8)0.0696 (4)
O30.1472 (2)1.0446 (2)0.46704 (9)0.1023 (6)
O60.3095 (2)0.9713 (3)0.00226 (10)0.1187 (8)
O70.42775 (15)0.89982 (16)0.08920 (7)0.0655 (4)
N10.52014 (15)0.99253 (17)0.21819 (8)0.0528 (4)
C10.5423 (2)1.0677 (2)0.15739 (9)0.0567 (5)
H1A0.6202541.0302540.1360030.068*
H1B0.5544661.1690640.1645170.068*
C20.4151 (2)1.0384 (2)0.11882 (10)0.0558 (5)
H20.3948521.1134530.0872400.067*
C30.31052 (19)1.0297 (2)0.17042 (9)0.0517 (5)
H30.2872181.1257330.1849300.062*
C40.37998 (18)0.9470 (2)0.22556 (9)0.0491 (5)
H40.3729230.8446720.2168050.059*
C50.6186 (2)0.9499 (2)0.25960 (10)0.0554 (5)
O2A0.73692 (14)1.00916 (17)0.24442 (8)0.0705 (5)0.729 (9)
C6A0.8491 (2)0.9829 (3)0.28919 (14)0.0823 (8)0.729 (9)
H6A10.9333800.9954300.2674810.099*0.729 (9)
H6A20.8452380.8857150.3049500.099*0.729 (9)
C7A0.8420 (6)1.0823 (5)0.3430 (3)0.110 (3)0.729 (9)
H7A10.8429011.1782920.3270170.165*0.729 (9)
H7A20.9178811.0678730.3717780.165*0.729 (9)
H7A30.7604001.0662400.3656070.165*0.729 (9)
O2B0.73692 (14)1.00916 (17)0.24442 (8)0.0705 (5)0.271 (9)
C6B0.8491 (2)0.9829 (3)0.28919 (14)0.0823 (8)0.271 (9)
H6B10.8979750.8986520.2762470.099*0.271 (9)
H6B20.8161050.9671270.3321150.099*0.271 (9)
C7B0.9380 (13)1.1074 (12)0.2890 (8)0.110 (7)0.271 (9)
H7B10.9533311.1356520.2454650.165*0.271 (9)
H7B21.0222371.0837080.3100200.165*0.271 (9)
H7B30.8966191.1844820.3115690.165*0.271 (9)
C80.32267 (18)0.97799 (19)0.29014 (9)0.0482 (5)
C90.2336 (2)0.8822 (2)0.31699 (10)0.0572 (5)
H90.2121470.7985290.2950490.069*
C100.1765 (2)0.9086 (3)0.37533 (11)0.0688 (6)
H100.1161350.8436420.3921460.083*
C110.2086 (2)1.0308 (3)0.40881 (11)0.0660 (6)
C120.2958 (2)1.1288 (2)0.38331 (11)0.0672 (6)
H120.3169831.2121790.4055470.081*
C130.3513 (2)1.1015 (2)0.32416 (10)0.0606 (5)
H130.4095381.1679590.3068480.073*
C140.1867 (4)1.1555 (4)0.50790 (14)0.1162 (11)
H14A0.2795151.1433610.5206880.174*
H14B0.1322951.1547810.5453540.174*
H14C0.1755741.2447180.4858170.174*
O4A0.0923 (11)1.1555 (11)0.1225 (4)0.094 (3)0.62 (3)
O5A0.19114 (13)0.95503 (14)0.14977 (7)0.0627 (4)0.62 (3)
C15A0.0847 (2)1.0321 (3)0.12979 (13)0.0698 (6)0.62 (3)
C16A0.0280 (3)0.9405 (4)0.10542 (16)0.1058 (10)0.62 (3)
H16A0.0887950.9965940.0791950.159*0.62 (3)
H16B0.0751140.9018460.1411460.159*0.62 (3)
H16C0.0073240.8641490.0802040.159*0.62 (3)
O4B0.0711 (19)1.1544 (18)0.149 (2)0.143 (8)0.38 (3)
O5B0.19114 (13)0.95503 (14)0.14977 (7)0.0627 (4)0.38 (3)
C15B0.0847 (2)1.0321 (3)0.12979 (13)0.0698 (6)0.38 (3)
C16B0.0280 (3)0.9405 (4)0.10542 (16)0.1058 (10)0.38 (3)
H16D0.1122330.9847660.1148810.159*0.38 (3)
H16E0.0227200.8489870.1259490.159*0.38 (3)
H16F0.0216320.9288360.0597140.159*0.38 (3)
C170.3671 (3)0.8794 (3)0.03155 (12)0.0788 (7)
C180.3816 (3)0.7291 (3)0.01004 (14)0.1128 (11)
H18A0.3061520.6744320.0239370.169*
H18B0.4631310.6897700.0283670.169*
H18C0.3849590.7261800.0360580.169*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0625 (9)0.0584 (9)0.0870 (11)0.0014 (7)0.0158 (8)0.0222 (8)
O30.1082 (15)0.1215 (16)0.0783 (12)0.0018 (12)0.0220 (11)0.0096 (12)
O60.143 (2)0.1322 (19)0.0783 (13)0.0106 (15)0.0538 (13)0.0073 (12)
O70.0731 (10)0.0659 (9)0.0566 (8)0.0001 (7)0.0147 (7)0.0110 (7)
N10.0451 (9)0.0578 (10)0.0548 (10)0.0031 (7)0.0115 (7)0.0042 (8)
C10.0545 (12)0.0601 (12)0.0549 (12)0.0054 (9)0.0077 (9)0.0005 (10)
C20.0628 (12)0.0494 (11)0.0544 (11)0.0025 (9)0.0142 (9)0.0007 (9)
C30.0489 (11)0.0449 (10)0.0602 (12)0.0030 (8)0.0167 (9)0.0027 (9)
C40.0484 (10)0.0419 (10)0.0562 (11)0.0016 (8)0.0112 (9)0.0001 (8)
C50.0511 (11)0.0462 (11)0.0680 (13)0.0012 (9)0.0132 (10)0.0013 (10)
O2A0.0485 (8)0.0791 (10)0.0827 (11)0.0087 (7)0.0197 (7)0.0185 (8)
C6A0.0513 (13)0.0856 (17)0.108 (2)0.0014 (12)0.0293 (13)0.0188 (16)
C7A0.111 (4)0.087 (3)0.128 (4)0.018 (3)0.070 (4)0.013 (3)
O2B0.0485 (8)0.0791 (10)0.0827 (11)0.0087 (7)0.0197 (7)0.0185 (8)
C6B0.0513 (13)0.0856 (17)0.108 (2)0.0014 (12)0.0293 (13)0.0188 (16)
C7B0.070 (8)0.090 (8)0.165 (14)0.003 (6)0.069 (9)0.013 (8)
C80.0443 (10)0.0444 (10)0.0550 (11)0.0012 (8)0.0132 (8)0.0024 (8)
C90.0505 (11)0.0522 (12)0.0682 (13)0.0048 (9)0.0091 (10)0.0006 (10)
C100.0554 (13)0.0735 (15)0.0774 (15)0.0079 (11)0.0009 (11)0.0085 (12)
C110.0610 (13)0.0792 (16)0.0576 (13)0.0100 (12)0.0009 (11)0.0034 (12)
C120.0784 (15)0.0598 (13)0.0627 (14)0.0030 (11)0.0107 (12)0.0080 (11)
C130.0685 (13)0.0491 (11)0.0639 (13)0.0068 (10)0.0045 (10)0.0005 (10)
C140.163 (3)0.108 (2)0.0780 (19)0.025 (2)0.014 (2)0.0093 (18)
O4A0.077 (4)0.077 (4)0.125 (5)0.006 (3)0.035 (3)0.032 (4)
O5A0.0529 (8)0.0548 (8)0.0789 (10)0.0057 (6)0.0255 (7)0.0020 (7)
C15A0.0505 (13)0.0730 (16)0.0848 (17)0.0012 (11)0.0194 (11)0.0147 (14)
C16A0.0675 (16)0.120 (2)0.128 (2)0.0181 (16)0.0458 (17)0.011 (2)
O4B0.062 (5)0.065 (6)0.30 (2)0.019 (4)0.034 (11)0.042 (10)
O5B0.0529 (8)0.0548 (8)0.0789 (10)0.0057 (6)0.0255 (7)0.0020 (7)
C15B0.0505 (13)0.0730 (16)0.0848 (17)0.0012 (11)0.0194 (11)0.0147 (14)
C16B0.0675 (16)0.120 (2)0.128 (2)0.0181 (16)0.0458 (17)0.011 (2)
C170.0763 (16)0.098 (2)0.0609 (15)0.0115 (14)0.0149 (12)0.0149 (14)
C180.131 (3)0.113 (2)0.094 (2)0.020 (2)0.0115 (18)0.0440 (19)
Geometric parameters (Å, º) top
O1—C51.212 (2)C7B—H7B10.9600
O3—C111.376 (3)C7B—H7B20.9600
O3—C141.393 (4)C7B—H7B30.9600
O6—C171.193 (3)C8—C131.383 (3)
O7—C171.341 (3)C8—C91.389 (3)
O7—C21.446 (2)C9—C101.375 (3)
N1—C51.347 (2)C9—H90.9300
N1—C11.469 (3)C10—C111.375 (3)
N1—C41.469 (2)C10—H100.9300
C1—C21.504 (3)C11—C121.380 (3)
C1—H1A0.9700C12—C131.385 (3)
C1—H1B0.9700C12—H120.9300
C2—C31.516 (3)C13—H130.9300
C2—H20.9800C14—H14A0.9600
C3—O5B1.434 (2)C14—H14B0.9600
C3—O5A1.434 (2)C14—H14C0.9600
C3—C41.533 (3)O4A—C15A1.171 (10)
C3—H30.9800O5A—C15A1.338 (2)
C4—C81.501 (3)C15A—C16A1.490 (3)
C4—H40.9800C16A—H16A0.9600
C5—O2B1.346 (3)C16A—H16B0.9600
C5—O2A1.346 (3)C16A—H16C0.9600
O2A—C6A1.454 (2)O4B—C15B1.225 (19)
C6A—C7A1.460 (5)O5B—C15B1.338 (2)
C6A—H6A10.9700C15B—C16B1.490 (3)
C6A—H6A20.9700C16B—H16D0.9600
C7A—H7A10.9600C16B—H16E0.9600
C7A—H7A20.9600C16B—H16F0.9600
C7A—H7A30.9600C17—C181.488 (4)
O2B—C6B1.454 (2)C18—H18A0.9600
C6B—C7B1.466 (12)C18—H18B0.9600
C6B—H6B10.9700C18—H18C0.9600
C6B—H6B20.9700
C11—O3—C14118.8 (2)H7B1—C7B—H7B2109.5
C17—O7—C2117.81 (19)C6B—C7B—H7B3109.5
C5—N1—C1124.68 (17)H7B1—C7B—H7B3109.5
C5—N1—C4121.50 (16)H7B2—C7B—H7B3109.5
C1—N1—C4113.18 (14)C13—C8—C9117.48 (19)
N1—C1—C2103.15 (16)C13—C8—C4122.78 (18)
N1—C1—H1A111.1C9—C8—C4119.71 (17)
C2—C1—H1A111.1C10—C9—C8121.4 (2)
N1—C1—H1B111.1C10—C9—H9119.3
C2—C1—H1B111.1C8—C9—H9119.3
H1A—C1—H1B109.1C11—C10—C9120.1 (2)
O7—C2—C1108.04 (16)C11—C10—H10120.0
O7—C2—C3108.80 (16)C9—C10—H10120.0
C1—C2—C3102.45 (15)C10—C11—O3114.9 (2)
O7—C2—H2112.3C10—C11—C12120.1 (2)
C1—C2—H2112.3O3—C11—C12125.0 (2)
C3—C2—H2112.3C11—C12—C13119.2 (2)
O5B—C3—C2113.11 (15)C11—C12—H12120.4
O5A—C3—C2113.11 (15)C13—C12—H12120.4
O5B—C3—C4109.21 (15)C8—C13—C12121.8 (2)
O5A—C3—C4109.21 (15)C8—C13—H13119.1
C2—C3—C4104.62 (15)C12—C13—H13119.1
O5A—C3—H3109.9O3—C14—H14A109.5
C2—C3—H3109.9O3—C14—H14B109.5
C4—C3—H3109.9H14A—C14—H14B109.5
N1—C4—C8114.91 (15)O3—C14—H14C109.5
N1—C4—C3100.63 (15)H14A—C14—H14C109.5
C8—C4—C3113.36 (16)H14B—C14—H14C109.5
N1—C4—H4109.2C15A—O5A—C3118.03 (16)
C8—C4—H4109.2O4A—C15A—O5A121.4 (5)
C3—C4—H4109.2O4A—C15A—C16A125.3 (5)
O1—C5—O2B124.58 (18)O5A—C15A—C16A112.0 (2)
O1—C5—O2A124.58 (18)C15A—C16A—H16A109.5
O1—C5—N1124.77 (19)C15A—C16A—H16B109.5
O2B—C5—N1110.65 (18)H16A—C16A—H16B109.5
O2A—C5—N1110.65 (18)C15A—C16A—H16C109.5
C5—O2A—C6A116.09 (17)H16A—C16A—H16C109.5
O2A—C6A—C7A109.3 (2)H16B—C16A—H16C109.5
O2A—C6A—H6A1109.8C15B—O5B—C3118.03 (16)
C7A—C6A—H6A1109.8O4B—C15B—O5B119.9 (10)
O2A—C6A—H6A2109.8O4B—C15B—C16B124.3 (8)
C7A—C6A—H6A2109.8O5B—C15B—C16B112.0 (2)
H6A1—C6A—H6A2108.3C15B—C16B—H16D109.5
C6A—C7A—H7A1109.5C15B—C16B—H16E109.5
C6A—C7A—H7A2109.5H16D—C16B—H16E109.5
H7A1—C7A—H7A2109.5C15B—C16B—H16F109.5
C6A—C7A—H7A3109.5H16D—C16B—H16F109.5
H7A1—C7A—H7A3109.5H16E—C16B—H16F109.5
H7A2—C7A—H7A3109.5O6—C17—O7123.4 (2)
C5—O2B—C6B116.09 (17)O6—C17—C18125.5 (2)
O2B—C6B—C7B108.4 (4)O7—C17—C18111.0 (3)
O2B—C6B—H6B1110.0C17—C18—H18A109.5
C7B—C6B—H6B1110.0C17—C18—H18B109.5
O2B—C6B—H6B2110.0H18A—C18—H18B109.5
C7B—C6B—H6B2110.0C17—C18—H18C109.5
H6B1—C6B—H6B2108.4H18A—C18—H18C109.5
C6B—C7B—H7B1109.5H18B—C18—H18C109.5
C6B—C7B—H7B2109.5
C5—N1—C1—C2158.14 (18)C5—O2A—C6A—C7A81.8 (4)
C4—N1—C1—C212.8 (2)O1—C5—O2B—C6B5.5 (3)
C17—O7—C2—C1147.52 (19)N1—C5—O2B—C6B174.16 (18)
C17—O7—C2—C3102.0 (2)C5—O2B—C6B—C7B147.9 (8)
N1—C1—C2—O782.60 (19)N1—C4—C8—C1338.0 (2)
N1—C1—C2—C332.16 (19)C3—C4—C8—C1377.0 (2)
O7—C2—C3—O5B45.3 (2)N1—C4—C8—C9144.04 (17)
C1—C2—C3—O5B159.51 (15)C3—C4—C8—C9101.0 (2)
O7—C2—C3—O5A45.3 (2)C13—C8—C9—C100.3 (3)
C1—C2—C3—O5A159.51 (15)C4—C8—C9—C10178.40 (18)
O7—C2—C3—C473.45 (17)C8—C9—C10—C110.9 (3)
C1—C2—C3—C440.76 (18)C9—C10—C11—O3178.9 (2)
C5—N1—C4—C854.7 (2)C9—C10—C11—C121.4 (3)
C1—N1—C4—C8134.09 (17)C14—O3—C11—C10171.9 (2)
C5—N1—C4—C3176.83 (17)C14—O3—C11—C128.5 (4)
C1—N1—C4—C311.9 (2)C10—C11—C12—C130.7 (3)
O5B—C3—C4—N1153.37 (15)O3—C11—C12—C13179.6 (2)
O5A—C3—C4—N1153.37 (15)C9—C8—C13—C121.0 (3)
C2—C3—C4—N132.01 (18)C4—C8—C13—C12179.05 (18)
O5B—C3—C4—C883.41 (19)C11—C12—C13—C80.5 (3)
O5A—C3—C4—C883.41 (19)C2—C3—O5A—C15A98.4 (2)
C2—C3—C4—C8155.23 (15)C4—C3—O5A—C15A145.5 (2)
C1—N1—C5—O1168.3 (2)C3—O5A—C15A—O4A8.2 (7)
C4—N1—C5—O11.8 (3)C3—O5A—C15A—C16A175.8 (2)
C1—N1—C5—O2B12.0 (3)C2—C3—O5B—C15B98.4 (2)
C4—N1—C5—O2B177.78 (16)C4—C3—O5B—C15B145.5 (2)
C1—N1—C5—O2A12.0 (3)C3—O5B—C15B—O4B25 (2)
C4—N1—C5—O2A177.78 (16)C3—O5B—C15B—C16B175.8 (2)
O1—C5—O2A—C6A5.5 (3)C2—O7—C17—O63.9 (4)
N1—C5—O2A—C6A174.16 (18)C2—O7—C17—C18176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.972.543.289 (2)134
C3—H3···O1i0.982.553.344 (2)139
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: edwardt@sunway.edu.my.

Funding information

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES, Finance Code 001 and the National Council for Scientific and Technological Development (CNPq) are acknowledged for grants 312210/2019–1, 433957/2018–2 and 406273/2015–4 to IC, for a fellowship 303207/2017–5 to JZS and a scholarship to SDP. Sunway University Sdn Bhd is also thanked for funding (grant No. STR-RCTR-RCCM-001–2019).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChemAxon (2010). Marvinsketch. https://www.chemaxon.com.  Google Scholar
First citationDallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020a). Acta Cryst. E76, 1080–1086.  CrossRef IUCr Journals Google Scholar
First citationDallasta Pedroso, S., Caracelli, I., Zukerman-Schpector, J., Soto-Monsalve, M., De Almeida Santos, R. H., Correia, C. R. D., Llanes Garcia, A. L., Kwong, H. C. & Tiekink, E. R. T. (2020b). Acta Cryst. E76, 967–972.  CrossRef IUCr Journals Google Scholar
First citationDhameja, M. & Gupta, P. (2019). Eur. J. Med. Chem. 176, 343–377.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKiappes, J. L., Hill, M. L., Alonzi, D. S., Miller, J. L., Iwaki, R., Sayce, A. C., Caputo, A. T., Kato, A. & Zitzmann, N. (2018). Chem. Biol. 13, 60–65.  CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds