metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

catena-Poly[[chlorido­tris­­(1,3-thia­zolidine-2-thione-κS)cadmium(II)]-μ-chlorido]

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartement de Chimie, Université de Namur, Rue de Bruxelles 61-5000, Namur, Belgium
*Correspondence e-mail: aboubacar.diop@ucad.edu.sn

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 8 October 2020; accepted 26 October 2020; online 30 October 2020)

The synthesis and characterization of poly[di­chlorido­tri(1,3-thia­zolidine-2-thione)cadmium(II)], [CdCl2(C3H5NS2)3]n, prepared from CdCl2·H2O and C3H5NS2 (tzdSH) in a 1:3 ratio, are described. The CdII cation is coordinated by three 1,3-thia­zolidine-2-thione mol­ecules and three Cl anions in a distorted octa­hedral environment. The Cd metal centres are connected via Cl ligands, creating polymeric chains running along the a-axis direction. The conformation of the chains is stabilized by N—H⋯Cl hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,3-Thia­zolidine-2-thione (tzdSH: C3H5NS2), is a well-known heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Saithong et al., 2007[Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857-m858.]). We are inter­ested in the coordination behaviour and structure of tzdSH complexes with CdII chloride. The synthesis is accompanied by a transformation of the tzdSH (tzdSH: C3H5NS2, thiol form) into a tzdt ligand (tzdt: C3H5NS2, thion form). A similar transformation was described previously by Saithong et al. (2014[Saithong, S., Klongkleaw, P., Pakawatchai, C. & Mokakul, J. (2014). Acta Cryst. E70, 90-93.]). Metal complexes of thio­nes and thio­nates were reviewed by Raper (1997[Raper, E. S. (1997). Coord. Chem. Rev. 165, 475-567.]).

Cadmium (II) is known to form a wide variety of 1:1 to 1:4 complexes with thio­nes, where the structural arrangements are generally tetra­hedral and octa­hedral coordination environments (Mahmood et al., 2018[Mahmood, R., Ahmad, S., Fettouhi, M., Roisnel, T., Gilani, M. A., Mehmood, K., Murtaza, G. & Isab, A. A. (2018). J. Mol. Struct. 1156, 235-242.]). The 1:1 complexes, for example [Cd(Melmt)(SeCN)] (Melmt = N-methyl­imidazolidine-2-thione; Fettouhi et al., 2008[Fettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252-255.]) usually exist in the polymeric form. The 1:2 complexes such as [Cd(Dmtu)2X2] (Dmtu = N,N′-di­methyl­thio­urea-κS; X = Cl, Br, I; Ahmad et al., 2011[Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, M. R., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099-1104.]) are the most common and often consist of discrete monomeric mol­ecules with a terahedrally (Moloto et al., 2003[Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595-603.]) or octa­hedrally (Mahmood et al., 2012[Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352-m1353.]) coordinated CdII ion. The 1:3 compounds are rare: the structure of [Cd(Tu)3(SO4)] shows that the complex is a dimer, and the coordination around the metal atom is inter­mediate between square pyramidal and trigonal bipyramidal (Corao & Baggio, 1969[Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617-622.]). The 1:4 complexes may be ionic or non-ionic (Mahmood et al., 2018[Mahmood, R., Ahmad, S., Fettouhi, M., Roisnel, T., Gilani, M. A., Mehmood, K., Murtaza, G. & Isab, A. A. (2018). J. Mol. Struct. 1156, 235-242.]).

The above structural studies show that thio­nes coordinate to cadmium (II) via the sulfur atom. To further investigate the structural aspects of such complexes, we report in this work a complex with a CdII:thione ratio of 1:23. The asymmetric unit consists of a cadmium (II) ion bonded to three 1,3-thia­zolidine-2-thione moieties via the exocyclic sulfur atom and two Cl atoms (Fig. 1[link]). The Cd—S and Cd—Cl bond lengths are in the range 2.7004 (11)–2.7347 (13) and 2.5430 (12)–2.7258 (16) Å, respectively. The bond lengths are slightly different from those reported in the literature [Cd—S = 2.604 Å and Cd—Cl = 2.7105 Å; Bell et al., 2004[Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091-2099.]]. This may be due to the intra­molecular hydrogen bonds observed in the crystal structure.

[Figure 1]
Figure 1
The asymmetric unit of title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, one of Cl anions connects two neighbouring CdII centers leading to polymeric chains. No hydrogen bonds are observed between the chains. The structure of the compound can be described as parallel chains running along the a-axis direction. The conformation of the chains is stabilized by N—H⋯Cl hydrogen bonds (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1i 0.86 2.43 3.260 (4) 163
N2—H2⋯Cl1i 0.86 2.47 3.314 (4) 168
N3—H3⋯Cl2 0.86 2.41 3.165 (4) 147
C8—H8B⋯Cl1ii 0.97 2.82 3.781 (6) 171
Symmetry codes: (i) [-x-1, -y-1, z+{\script{1\over 2}}]; (ii) [x-1, y, z].
[Figure 2]
Figure 2
Packing diagram of the title compound. N—H⋯Cl hydrogen bonds are show as light blue dashed lines.

Synthesis and crystallization

In a round-bottom flask, to the ligand (tzdSH: C3H5NS2) (15 mmol, 1.79 g) in 5 mL of 1,4-dioxan, a solution of CdCl2·H2O (5 mmol, 1.01 g) in 5 mL of distilled water was added. The mixture was refluxed for 4 h. Light-yellow crystals appeared after the light yellow filtrate had been kept at room temperature for two days (yield 75%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [CdCl2(C3H5NS2)3]
Mr 540.90
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 295
a, b, c (Å) 9.2014 (3), 19.3472 (6), 10.5827 (3)
V3) 1883.94 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.10
Crystal size (mm) 0.76 × 0.50 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.242, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 12033, 5594, 4781
Rint 0.026
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.069, 1.01
No. of reflections 5594
No. of parameters 190
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.79
Absolute structure Flack x determined using 1872 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (19)
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b).

catena-Poly[[chloridotris(1,3-thiazolidine-2-thione-κS)cadmium(II)]-µ-chlorido] top
Crystal data top
[CdCl2(C3H5NS2)3]Dx = 1.907 Mg m3
Mr = 540.90Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4396 reflections
a = 9.2014 (3) Åθ = 3.1–32.5°
b = 19.3472 (6) ŵ = 2.10 mm1
c = 10.5827 (3) ÅT = 295 K
V = 1883.94 (9) Å3Block, colourless
Z = 40.76 × 0.50 × 0.14 mm
F(000) = 1072
Data collection top
Oxford Diffraction Xcalibur, Ruby, Gemini Ultra
diffractometer
5594 independent reflections
Graphite monochromator4781 reflections with I > 2σ(I)
Detector resolution: 10.3712 pixels mm-1Rint = 0.026
ω scansθmax = 30.5°, θmin = 2.1°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
h = 1213
Tmin = 0.242, Tmax = 1.000k = 2727
12033 measured reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0275P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5594 reflectionsΔρmax = 0.40 e Å3
190 parametersΔρmin = 0.78 e Å3
1 restraintAbsolute structure: Flack x determined using 1872 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.010 (19)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were refined using a riding model with N—H = 0.86 Å or C—H = 0.97 Å and U(H)=1.2Ueq(C,N).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.51629 (3)0.49641 (2)0.38259 (5)0.03293 (9)
Cl10.46306 (13)0.51075 (6)0.63461 (14)0.0402 (3)
Cl20.66097 (13)0.38657 (6)0.42258 (12)0.0459 (3)
S40.17107 (15)0.28169 (7)0.32587 (13)0.0514 (3)
S50.26212 (12)0.42407 (7)0.39534 (14)0.0470 (3)
S60.4464 (3)0.76006 (9)0.31381 (18)0.0922 (7)
S70.36450 (15)0.61793 (7)0.38167 (16)0.0594 (4)
S81.01474 (16)0.59987 (9)0.54807 (18)0.0592 (4)
S90.75414 (11)0.57811 (6)0.38890 (14)0.0401 (2)
N10.3576 (4)0.3483 (2)0.1994 (3)0.0415 (9)
H10.4201490.3794110.1792910.050*
N20.5236 (5)0.6583 (2)0.1835 (4)0.0483 (11)
H20.5322510.6161450.1588780.058*
N30.8589 (5)0.4936 (2)0.5693 (4)0.0515 (12)
H30.7869340.4657320.5596550.062*
C10.3397 (6)0.2853 (3)0.1234 (5)0.0504 (13)
H1A0.2825230.2951770.0485540.061*
H1B0.4338150.2679600.0970010.061*
C20.2647 (6)0.2334 (3)0.2030 (5)0.0574 (14)
H2A0.1957480.2070540.1530080.069*
H2B0.3343550.2016290.2399640.069*
C30.2750 (5)0.3550 (2)0.2982 (4)0.0352 (10)
C40.5903 (8)0.7138 (3)0.1123 (6)0.0678 (18)
H4A0.6951610.7085230.1124750.081*
H4B0.5568570.7127100.0253820.081*
C50.5487 (8)0.7815 (3)0.1731 (6)0.075 (2)
H5A0.6349320.8077370.1949800.090*
H5B0.4899160.8088600.1158120.090*
C60.4508 (5)0.6730 (3)0.2845 (4)0.0403 (11)
C70.9747 (5)0.4783 (3)0.6584 (6)0.0509 (14)
H7A0.9341270.4629110.7382070.061*
H7B1.0366340.4419400.6254520.061*
C81.0607 (6)0.5430 (3)0.6772 (6)0.0596 (16)
H8A1.0359780.5643450.7573950.072*
H8B1.1639280.5329370.6768160.072*
C90.8670 (5)0.5509 (3)0.5041 (4)0.0356 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04166 (16)0.03310 (15)0.02402 (13)0.00411 (12)0.0009 (2)0.00111 (16)
Cl10.0570 (9)0.0418 (7)0.0218 (4)0.0097 (5)0.0013 (7)0.0008 (6)
Cl20.0537 (6)0.0311 (6)0.0529 (7)0.0001 (5)0.0046 (5)0.0039 (5)
S40.0563 (7)0.0483 (8)0.0496 (6)0.0205 (7)0.0097 (6)0.0042 (7)
S50.0468 (6)0.0463 (7)0.0478 (7)0.0101 (5)0.0080 (6)0.0116 (7)
S60.175 (2)0.0366 (8)0.0653 (9)0.0215 (12)0.0102 (13)0.0082 (8)
S70.0625 (7)0.0549 (8)0.0609 (8)0.0190 (7)0.0232 (9)0.0123 (9)
S80.0489 (8)0.0566 (10)0.0720 (9)0.0200 (7)0.0169 (7)0.0102 (8)
S90.0440 (5)0.0367 (5)0.0396 (5)0.0068 (4)0.0045 (6)0.0030 (7)
N10.049 (2)0.037 (2)0.038 (2)0.012 (2)0.0054 (18)0.0005 (18)
N20.070 (3)0.034 (2)0.041 (2)0.005 (2)0.006 (2)0.0051 (19)
N30.048 (3)0.045 (3)0.062 (3)0.014 (2)0.018 (2)0.011 (2)
C10.068 (3)0.039 (3)0.044 (3)0.002 (3)0.003 (3)0.003 (3)
C20.075 (4)0.042 (3)0.056 (3)0.011 (3)0.007 (3)0.010 (3)
C30.037 (2)0.036 (2)0.033 (2)0.005 (2)0.0081 (18)0.0030 (19)
C40.085 (5)0.058 (4)0.060 (4)0.021 (4)0.005 (3)0.006 (3)
C50.092 (5)0.047 (4)0.087 (5)0.011 (4)0.014 (4)0.010 (4)
C60.044 (2)0.036 (3)0.041 (3)0.007 (2)0.008 (2)0.001 (2)
C70.047 (3)0.049 (3)0.057 (4)0.009 (3)0.013 (3)0.005 (3)
C80.044 (3)0.064 (4)0.071 (4)0.003 (3)0.021 (3)0.002 (3)
C90.034 (2)0.037 (3)0.036 (2)0.001 (2)0.0045 (17)0.0071 (19)
Geometric parameters (Å, º) top
Cd1—Cl22.5430 (12)N2—H20.8600
Cd1—Cl1i2.6348 (16)N3—C91.307 (6)
Cd1—S92.7004 (11)N3—C71.454 (7)
Cd1—Cl12.7258 (16)N3—H30.8600
Cd1—S52.7289 (12)C1—C21.482 (7)
Cd1—S72.7347 (13)C1—H1A0.9700
S4—C31.736 (5)C1—H1B0.9700
S4—C21.818 (5)C2—H2A0.9700
S5—C31.690 (5)C2—H2B0.9700
S6—C61.714 (5)C4—C51.509 (9)
S6—C51.810 (7)C4—H4A0.9700
S7—C61.679 (5)C4—H4B0.9700
S8—C91.721 (5)C5—H5A0.9700
S8—C81.804 (6)C5—H5B0.9700
S9—C91.686 (5)C7—C81.495 (9)
N1—C31.299 (5)C7—H7A0.9700
N1—C11.469 (6)C7—H7B0.9700
N1—H10.8600C8—H8A0.9700
N2—C61.293 (6)C8—H8B0.9700
N2—C41.448 (7)
Cl2—Cd1—Cl1i94.82 (4)C1—C2—H2A110.5
Cl2—Cd1—S993.48 (4)S4—C2—H2A110.5
Cl1i—Cd1—S989.83 (4)C1—C2—H2B110.5
Cl2—Cd1—Cl190.94 (4)S4—C2—H2B110.5
Cl1i—Cd1—Cl1173.143 (17)H2A—C2—H2B108.7
S9—Cd1—Cl193.55 (4)N1—C3—S5127.6 (4)
Cl2—Cd1—S590.68 (4)N1—C3—S4112.1 (4)
Cl1i—Cd1—S594.82 (4)S5—C3—S4120.3 (3)
S9—Cd1—S5173.48 (5)N2—C4—C5108.3 (5)
Cl1—Cd1—S581.36 (4)N2—C4—H4A110.0
Cl2—Cd1—S7170.53 (6)C5—C4—H4A110.0
Cl1i—Cd1—S794.51 (5)N2—C4—H4B110.0
S9—Cd1—S784.88 (4)C5—C4—H4B110.0
Cl1—Cd1—S779.87 (5)H4A—C4—H4B108.4
S5—Cd1—S790.19 (4)C4—C5—S6106.5 (4)
Cd1ii—Cl1—Cd1162.98 (5)C4—C5—H5A110.4
C3—S4—C292.2 (2)S6—C5—H5A110.4
C3—S5—Cd1108.37 (16)C4—C5—H5B110.4
C6—S6—C593.7 (3)S6—C5—H5B110.4
C6—S7—Cd1107.80 (17)H5A—C5—H5B108.6
C9—S8—C893.1 (3)N2—C6—S7127.7 (4)
C9—S9—Cd1109.53 (18)N2—C6—S6112.2 (4)
C3—N1—C1117.3 (4)S7—C6—S6120.1 (3)
C3—N1—H1121.4N3—C7—C8107.7 (5)
C1—N1—H1121.4N3—C7—H7A110.2
C6—N2—C4119.2 (5)C8—C7—H7A110.2
C6—N2—H2120.4N3—C7—H7B110.2
C4—N2—H2120.4C8—C7—H7B110.2
C9—N3—C7118.2 (5)H7A—C7—H7B108.5
C9—N3—H3120.9C7—C8—S8106.6 (4)
C7—N3—H3120.9C7—C8—H8A110.4
N1—C1—C2107.7 (4)S8—C8—H8A110.4
N1—C1—H1A110.2C7—C8—H8B110.4
C2—C1—H1A110.2S8—C8—H8B110.4
N1—C1—H1B110.2H8A—C8—H8B108.6
C2—C1—H1B110.2N3—C9—S9127.7 (4)
H1A—C1—H1B108.5N3—C9—S8111.7 (4)
C1—C2—S4106.1 (4)S9—C9—S8120.7 (3)
C3—N1—C1—C218.9 (6)Cd1—S7—C6—N232.2 (5)
N1—C1—C2—S421.9 (5)Cd1—S7—C6—S6148.6 (2)
C3—S4—C2—C117.1 (4)C5—S6—C6—N21.8 (4)
C1—N1—C3—S5174.6 (4)C5—S6—C6—S7177.5 (3)
C1—N1—C3—S45.7 (5)C9—N3—C7—C814.1 (7)
Cd1—S5—C3—N125.0 (4)N3—C7—C8—S816.8 (6)
Cd1—S5—C3—S4154.7 (2)C9—S8—C8—C713.4 (4)
C2—S4—C3—N17.2 (4)C7—N3—C9—S9175.6 (4)
C2—S4—C3—S5172.5 (3)C7—N3—C9—S83.8 (6)
C6—N2—C4—C53.6 (7)Cd1—S9—C9—N310.5 (5)
N2—C4—C5—S64.4 (7)Cd1—S9—C9—S8170.1 (2)
C6—S6—C5—C43.6 (5)C8—S8—C9—N36.1 (4)
C4—N2—C6—S7180.0 (4)C8—S8—C9—S9174.4 (3)
C4—N2—C6—S60.8 (6)
Symmetry codes: (i) x1, y1, z+1/2; (ii) x1, y1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl1i0.862.433.260 (4)163
N2—H2···Cl1i0.862.473.314 (4)168
N3—H3···Cl20.862.413.165 (4)147
C8—H8B···Cl1iii0.972.823.781 (6)171
Symmetry codes: (i) x1, y1, z+1/2; (iii) x1, y, z.
 

Acknowledgements

The authors thank the crystallographic service of Chemistry Department of Namur University (Belgium) for the data collection.

Funding information

The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.

References

First citationAhmad, S., Altaf, M., Stoeckli-Evans, H., Isab, M. R., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099–1104.  CrossRef CAS Google Scholar
First citationBell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091–2099.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617–622.  CSD CrossRef CAS Google Scholar
First citationFettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252–255.  CrossRef CAS Google Scholar
First citationMahmood, R., Ahmad, S., Fettouhi, M., Roisnel, T., Gilani, M. A., Mehmood, K., Murtaza, G. & Isab, A. A. (2018). J. Mol. Struct. 1156, 235–242.  CrossRef CAS Google Scholar
First citationMahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352–m1353.  CSD CrossRef IUCr Journals Google Scholar
First citationMoloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRaper, E. S. (1997). Coord. Chem. Rev. 165, 475–567.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSaithong, S., Klongkleaw, P., Pakawatchai, C. & Mokakul, J. (2014). Acta Cryst. E70, 90–93.  CrossRef Google Scholar
First citationSaithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds