metal-organic compounds
catena-Poly[[chloridotris(1,3-thiazolidine-2-thione-κS)cadmium(II)]-μ-chlorido]
aLaboratoire de Chimie Minérale et Analytique (LA.CHI.MI.A), Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bDepartement de Chimie, Université de Namur, Rue de Bruxelles 61-5000, Namur, Belgium
*Correspondence e-mail: aboubacar.diop@ucad.edu.sn
The synthesis and characterization of poly[dichloridotri(1,3-thiazolidine-2-thione)cadmium(II)], [CdCl2(C3H5NS2)3]n, prepared from CdCl2·H2O and C3H5NS2 (tzdSH) in a 1:3 ratio, are described. The CdII cation is coordinated by three 1,3-thiazolidine-2-thione molecules and three Cl− anions in a distorted octahedral environment. The Cd metal centres are connected via Cl− ligands, creating polymeric chains running along the a-axis direction. The conformation of the chains is stabilized by N—H⋯Cl hydrogen bonds.
CCDC reference: 2040604
Structure description
1,3-Thiazolidine-2-thione (tzdSH: C3H5NS2), is a well-known heterocyclic thione/thiol ligand. Crystallographic studies and investigations of its modes of coordination have been reported (Saithong et al., 2007). We are interested in the coordination behaviour and structure of tzdSH complexes with CdII chloride. The synthesis is accompanied by a transformation of the tzdSH (tzdSH: C3H5NS2, thiol form) into a tzdt ligand (tzdt: C3H5NS2, thion form). A similar transformation was described previously by Saithong et al. (2014). Metal complexes of thiones and thionates were reviewed by Raper (1997).
Cadmium (II) is known to form a wide variety of 1:1 to 1:4 complexes with thiones, where the structural arrangements are generally tetrahedral and octahedral coordination environments (Mahmood et al., 2018). The 1:1 complexes, for example [Cd(Melmt)(SeCN)] (Melmt = N-methylimidazolidine-2-thione; Fettouhi et al., 2008) usually exist in the polymeric form. The 1:2 complexes such as [Cd(Dmtu)2X2] (Dmtu = N,N′-dimethylthiourea-κS; X = Cl, Br, I; Ahmad et al., 2011) are the most common and often consist of discrete monomeric molecules with a terahedrally (Moloto et al., 2003) or octahedrally (Mahmood et al., 2012) coordinated CdII ion. The 1:3 compounds are rare: the structure of [Cd(Tu)3(SO4)] shows that the complex is a dimer, and the coordination around the metal atom is intermediate between square pyramidal and trigonal bipyramidal (Corao & Baggio, 1969). The 1:4 complexes may be ionic or non-ionic (Mahmood et al., 2018).
The above structural studies show that thiones coordinate to cadmium (II) via the sulfur atom. To further investigate the structural aspects of such complexes, we report in this work a complex with a CdII:thione ratio of 1:23. The consists of a cadmium (II) ion bonded to three 1,3-thiazolidine-2-thione moieties via the exocyclic sulfur atom and two Cl atoms (Fig. 1). The Cd—S and Cd—Cl bond lengths are in the range 2.7004 (11)–2.7347 (13) and 2.5430 (12)–2.7258 (16) Å, respectively. The bond lengths are slightly different from those reported in the literature [Cd—S = 2.604 Å and Cd—Cl = 2.7105 Å; Bell et al., 2004]. This may be due to the intramolecular hydrogen bonds observed in the crystal structure.
In the crystal, one of Cl− anions connects two neighbouring CdII centers leading to polymeric chains. No hydrogen bonds are observed between the chains. The structure of the compound can be described as parallel chains running along the a-axis direction. The conformation of the chains is stabilized by N—H⋯Cl hydrogen bonds (Table 1, Fig. 2).
Synthesis and crystallization
In a round-bottom flask, to the ligand (tzdSH: C3H5NS2) (15 mmol, 1.79 g) in 5 mL of 1,4-dioxan, a solution of CdCl2·H2O (5 mmol, 1.01 g) in 5 mL of distilled water was added. The mixture was refluxed for 4 h. Light-yellow crystals appeared after the light yellow filtrate had been kept at room temperature for two days (yield 75%).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2Structural data
CCDC reference: 2040604
https://doi.org/10.1107/S2414314620014236/bt4100sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620014236/bt4100Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b).[CdCl2(C3H5NS2)3] | Dx = 1.907 Mg m−3 |
Mr = 540.90 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4396 reflections |
a = 9.2014 (3) Å | θ = 3.1–32.5° |
b = 19.3472 (6) Å | µ = 2.10 mm−1 |
c = 10.5827 (3) Å | T = 295 K |
V = 1883.94 (9) Å3 | Block, colourless |
Z = 4 | 0.76 × 0.50 × 0.14 mm |
F(000) = 1072 |
Oxford Diffraction Xcalibur, Ruby, Gemini Ultra diffractometer | 5594 independent reflections |
Graphite monochromator | 4781 reflections with I > 2σ(I) |
Detector resolution: 10.3712 pixels mm-1 | Rint = 0.026 |
ω scans | θmax = 30.5°, θmin = 2.1° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2018) | h = −12→13 |
Tmin = 0.242, Tmax = 1.000 | k = −27→27 |
12033 measured reflections | l = −14→15 |
Refinement on F2 | Secondary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.069 | w = 1/[σ2(Fo2) + (0.0275P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
5594 reflections | Δρmax = 0.40 e Å−3 |
190 parameters | Δρmin = −0.78 e Å−3 |
1 restraint | Absolute structure: Flack x determined using 1872 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.010 (19) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. H atoms were refined using a riding model with N—H = 0.86 Å or C—H = 0.97 Å and U(H)=1.2Ueq(C,N). |
x | y | z | Uiso*/Ueq | ||
Cd1 | −0.51629 (3) | −0.49641 (2) | −0.38259 (5) | 0.03293 (9) | |
Cl1 | −0.46306 (13) | −0.51075 (6) | −0.63461 (14) | 0.0402 (3) | |
Cl2 | −0.66097 (13) | −0.38657 (6) | −0.42258 (12) | 0.0459 (3) | |
S4 | −0.17107 (15) | −0.28169 (7) | −0.32587 (13) | 0.0514 (3) | |
S5 | −0.26212 (12) | −0.42407 (7) | −0.39534 (14) | 0.0470 (3) | |
S6 | −0.4464 (3) | −0.76006 (9) | −0.31381 (18) | 0.0922 (7) | |
S7 | −0.36450 (15) | −0.61793 (7) | −0.38167 (16) | 0.0594 (4) | |
S8 | −1.01474 (16) | −0.59987 (9) | −0.54807 (18) | 0.0592 (4) | |
S9 | −0.75414 (11) | −0.57811 (6) | −0.38890 (14) | 0.0401 (2) | |
N1 | −0.3576 (4) | −0.3483 (2) | −0.1994 (3) | 0.0415 (9) | |
H1 | −0.420149 | −0.379411 | −0.179291 | 0.050* | |
N2 | −0.5236 (5) | −0.6583 (2) | −0.1835 (4) | 0.0483 (11) | |
H2 | −0.532251 | −0.616145 | −0.158878 | 0.058* | |
N3 | −0.8589 (5) | −0.4936 (2) | −0.5693 (4) | 0.0515 (12) | |
H3 | −0.786934 | −0.465732 | −0.559655 | 0.062* | |
C1 | −0.3397 (6) | −0.2853 (3) | −0.1234 (5) | 0.0504 (13) | |
H1A | −0.282523 | −0.295177 | −0.048554 | 0.061* | |
H1B | −0.433815 | −0.267960 | −0.097001 | 0.061* | |
C2 | −0.2647 (6) | −0.2334 (3) | −0.2030 (5) | 0.0574 (14) | |
H2A | −0.195748 | −0.207054 | −0.153008 | 0.069* | |
H2B | −0.334355 | −0.201629 | −0.239964 | 0.069* | |
C3 | −0.2750 (5) | −0.3550 (2) | −0.2982 (4) | 0.0352 (10) | |
C4 | −0.5903 (8) | −0.7138 (3) | −0.1123 (6) | 0.0678 (18) | |
H4A | −0.695161 | −0.708523 | −0.112475 | 0.081* | |
H4B | −0.556857 | −0.712710 | −0.025382 | 0.081* | |
C5 | −0.5487 (8) | −0.7815 (3) | −0.1731 (6) | 0.075 (2) | |
H5A | −0.634932 | −0.807737 | −0.194980 | 0.090* | |
H5B | −0.489916 | −0.808860 | −0.115812 | 0.090* | |
C6 | −0.4508 (5) | −0.6730 (3) | −0.2845 (4) | 0.0403 (11) | |
C7 | −0.9747 (5) | −0.4783 (3) | −0.6584 (6) | 0.0509 (14) | |
H7A | −0.934127 | −0.462911 | −0.738207 | 0.061* | |
H7B | −1.036634 | −0.441940 | −0.625452 | 0.061* | |
C8 | −1.0607 (6) | −0.5430 (3) | −0.6772 (6) | 0.0596 (16) | |
H8A | −1.035978 | −0.564345 | −0.757395 | 0.072* | |
H8B | −1.163928 | −0.532937 | −0.676816 | 0.072* | |
C9 | −0.8670 (5) | −0.5509 (3) | −0.5041 (4) | 0.0356 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.04166 (16) | 0.03310 (15) | 0.02402 (13) | −0.00411 (12) | 0.0009 (2) | −0.00111 (16) |
Cl1 | 0.0570 (9) | 0.0418 (7) | 0.0218 (4) | −0.0097 (5) | 0.0013 (7) | −0.0008 (6) |
Cl2 | 0.0537 (6) | 0.0311 (6) | 0.0529 (7) | 0.0001 (5) | 0.0046 (5) | −0.0039 (5) |
S4 | 0.0563 (7) | 0.0483 (8) | 0.0496 (6) | −0.0205 (7) | 0.0097 (6) | −0.0042 (7) |
S5 | 0.0468 (6) | 0.0463 (7) | 0.0478 (7) | −0.0101 (5) | 0.0080 (6) | −0.0116 (7) |
S6 | 0.175 (2) | 0.0366 (8) | 0.0653 (9) | 0.0215 (12) | 0.0102 (13) | −0.0082 (8) |
S7 | 0.0625 (7) | 0.0549 (8) | 0.0609 (8) | 0.0190 (7) | 0.0232 (9) | 0.0123 (9) |
S8 | 0.0489 (8) | 0.0566 (10) | 0.0720 (9) | −0.0200 (7) | −0.0169 (7) | 0.0102 (8) |
S9 | 0.0440 (5) | 0.0367 (5) | 0.0396 (5) | −0.0068 (4) | −0.0045 (6) | 0.0030 (7) |
N1 | 0.049 (2) | 0.037 (2) | 0.038 (2) | −0.012 (2) | 0.0054 (18) | −0.0005 (18) |
N2 | 0.070 (3) | 0.034 (2) | 0.041 (2) | −0.005 (2) | 0.006 (2) | −0.0051 (19) |
N3 | 0.048 (3) | 0.045 (3) | 0.062 (3) | −0.014 (2) | −0.018 (2) | 0.011 (2) |
C1 | 0.068 (3) | 0.039 (3) | 0.044 (3) | −0.002 (3) | 0.003 (3) | −0.003 (3) |
C2 | 0.075 (4) | 0.042 (3) | 0.056 (3) | −0.011 (3) | 0.007 (3) | −0.010 (3) |
C3 | 0.037 (2) | 0.036 (2) | 0.033 (2) | −0.005 (2) | −0.0081 (18) | 0.0030 (19) |
C4 | 0.085 (5) | 0.058 (4) | 0.060 (4) | −0.021 (4) | 0.005 (3) | 0.006 (3) |
C5 | 0.092 (5) | 0.047 (4) | 0.087 (5) | −0.011 (4) | −0.014 (4) | 0.010 (4) |
C6 | 0.044 (2) | 0.036 (3) | 0.041 (3) | 0.007 (2) | −0.008 (2) | −0.001 (2) |
C7 | 0.047 (3) | 0.049 (3) | 0.057 (4) | 0.009 (3) | −0.013 (3) | 0.005 (3) |
C8 | 0.044 (3) | 0.064 (4) | 0.071 (4) | −0.003 (3) | −0.021 (3) | 0.002 (3) |
C9 | 0.034 (2) | 0.037 (3) | 0.036 (2) | 0.001 (2) | 0.0045 (17) | −0.0071 (19) |
Cd1—Cl2 | 2.5430 (12) | N2—H2 | 0.8600 |
Cd1—Cl1i | 2.6348 (16) | N3—C9 | 1.307 (6) |
Cd1—S9 | 2.7004 (11) | N3—C7 | 1.454 (7) |
Cd1—Cl1 | 2.7258 (16) | N3—H3 | 0.8600 |
Cd1—S5 | 2.7289 (12) | C1—C2 | 1.482 (7) |
Cd1—S7 | 2.7347 (13) | C1—H1A | 0.9700 |
S4—C3 | 1.736 (5) | C1—H1B | 0.9700 |
S4—C2 | 1.818 (5) | C2—H2A | 0.9700 |
S5—C3 | 1.690 (5) | C2—H2B | 0.9700 |
S6—C6 | 1.714 (5) | C4—C5 | 1.509 (9) |
S6—C5 | 1.810 (7) | C4—H4A | 0.9700 |
S7—C6 | 1.679 (5) | C4—H4B | 0.9700 |
S8—C9 | 1.721 (5) | C5—H5A | 0.9700 |
S8—C8 | 1.804 (6) | C5—H5B | 0.9700 |
S9—C9 | 1.686 (5) | C7—C8 | 1.495 (9) |
N1—C3 | 1.299 (5) | C7—H7A | 0.9700 |
N1—C1 | 1.469 (6) | C7—H7B | 0.9700 |
N1—H1 | 0.8600 | C8—H8A | 0.9700 |
N2—C6 | 1.293 (6) | C8—H8B | 0.9700 |
N2—C4 | 1.448 (7) | ||
Cl2—Cd1—Cl1i | 94.82 (4) | C1—C2—H2A | 110.5 |
Cl2—Cd1—S9 | 93.48 (4) | S4—C2—H2A | 110.5 |
Cl1i—Cd1—S9 | 89.83 (4) | C1—C2—H2B | 110.5 |
Cl2—Cd1—Cl1 | 90.94 (4) | S4—C2—H2B | 110.5 |
Cl1i—Cd1—Cl1 | 173.143 (17) | H2A—C2—H2B | 108.7 |
S9—Cd1—Cl1 | 93.55 (4) | N1—C3—S5 | 127.6 (4) |
Cl2—Cd1—S5 | 90.68 (4) | N1—C3—S4 | 112.1 (4) |
Cl1i—Cd1—S5 | 94.82 (4) | S5—C3—S4 | 120.3 (3) |
S9—Cd1—S5 | 173.48 (5) | N2—C4—C5 | 108.3 (5) |
Cl1—Cd1—S5 | 81.36 (4) | N2—C4—H4A | 110.0 |
Cl2—Cd1—S7 | 170.53 (6) | C5—C4—H4A | 110.0 |
Cl1i—Cd1—S7 | 94.51 (5) | N2—C4—H4B | 110.0 |
S9—Cd1—S7 | 84.88 (4) | C5—C4—H4B | 110.0 |
Cl1—Cd1—S7 | 79.87 (5) | H4A—C4—H4B | 108.4 |
S5—Cd1—S7 | 90.19 (4) | C4—C5—S6 | 106.5 (4) |
Cd1ii—Cl1—Cd1 | 162.98 (5) | C4—C5—H5A | 110.4 |
C3—S4—C2 | 92.2 (2) | S6—C5—H5A | 110.4 |
C3—S5—Cd1 | 108.37 (16) | C4—C5—H5B | 110.4 |
C6—S6—C5 | 93.7 (3) | S6—C5—H5B | 110.4 |
C6—S7—Cd1 | 107.80 (17) | H5A—C5—H5B | 108.6 |
C9—S8—C8 | 93.1 (3) | N2—C6—S7 | 127.7 (4) |
C9—S9—Cd1 | 109.53 (18) | N2—C6—S6 | 112.2 (4) |
C3—N1—C1 | 117.3 (4) | S7—C6—S6 | 120.1 (3) |
C3—N1—H1 | 121.4 | N3—C7—C8 | 107.7 (5) |
C1—N1—H1 | 121.4 | N3—C7—H7A | 110.2 |
C6—N2—C4 | 119.2 (5) | C8—C7—H7A | 110.2 |
C6—N2—H2 | 120.4 | N3—C7—H7B | 110.2 |
C4—N2—H2 | 120.4 | C8—C7—H7B | 110.2 |
C9—N3—C7 | 118.2 (5) | H7A—C7—H7B | 108.5 |
C9—N3—H3 | 120.9 | C7—C8—S8 | 106.6 (4) |
C7—N3—H3 | 120.9 | C7—C8—H8A | 110.4 |
N1—C1—C2 | 107.7 (4) | S8—C8—H8A | 110.4 |
N1—C1—H1A | 110.2 | C7—C8—H8B | 110.4 |
C2—C1—H1A | 110.2 | S8—C8—H8B | 110.4 |
N1—C1—H1B | 110.2 | H8A—C8—H8B | 108.6 |
C2—C1—H1B | 110.2 | N3—C9—S9 | 127.7 (4) |
H1A—C1—H1B | 108.5 | N3—C9—S8 | 111.7 (4) |
C1—C2—S4 | 106.1 (4) | S9—C9—S8 | 120.7 (3) |
C3—N1—C1—C2 | 18.9 (6) | Cd1—S7—C6—N2 | −32.2 (5) |
N1—C1—C2—S4 | −21.9 (5) | Cd1—S7—C6—S6 | 148.6 (2) |
C3—S4—C2—C1 | 17.1 (4) | C5—S6—C6—N2 | −1.8 (4) |
C1—N1—C3—S5 | 174.6 (4) | C5—S6—C6—S7 | 177.5 (3) |
C1—N1—C3—S4 | −5.7 (5) | C9—N3—C7—C8 | −14.1 (7) |
Cd1—S5—C3—N1 | 25.0 (4) | N3—C7—C8—S8 | 16.8 (6) |
Cd1—S5—C3—S4 | −154.7 (2) | C9—S8—C8—C7 | −13.4 (4) |
C2—S4—C3—N1 | −7.2 (4) | C7—N3—C9—S9 | −175.6 (4) |
C2—S4—C3—S5 | 172.5 (3) | C7—N3—C9—S8 | 3.8 (6) |
C6—N2—C4—C5 | 3.6 (7) | Cd1—S9—C9—N3 | −10.5 (5) |
N2—C4—C5—S6 | −4.4 (7) | Cd1—S9—C9—S8 | 170.1 (2) |
C6—S6—C5—C4 | 3.6 (5) | C8—S8—C9—N3 | 6.1 (4) |
C4—N2—C6—S7 | −180.0 (4) | C8—S8—C9—S9 | −174.4 (3) |
C4—N2—C6—S6 | −0.8 (6) |
Symmetry codes: (i) −x−1, −y−1, z+1/2; (ii) −x−1, −y−1, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1i | 0.86 | 2.43 | 3.260 (4) | 163 |
N2—H2···Cl1i | 0.86 | 2.47 | 3.314 (4) | 168 |
N3—H3···Cl2 | 0.86 | 2.41 | 3.165 (4) | 147 |
C8—H8B···Cl1iii | 0.97 | 2.82 | 3.781 (6) | 171 |
Symmetry codes: (i) −x−1, −y−1, z+1/2; (iii) x−1, y, z. |
Acknowledgements
The authors thank the crystallographic service of Chemistry Department of Namur University (Belgium) for the data collection.
Funding information
The authors acknowledge the Cheikh Anta Diop University of Dakar (Senegal) for financial support.
References
Ahmad, S., Altaf, M., Stoeckli-Evans, H., Isab, M. R., Malik, M. R., Ali, S. & Shuja, S. (2011). J. Chem. Crystallogr. 41, 1099–1104. CrossRef CAS Google Scholar
Bell, N. A., Clegg, W., Coles, S. J., Constable, C. P., Harrington, R. W., Hursthouse, M. B., Light, M. E., Raper, E. S., Sammon, C. & Walker, M. R. (2004). Inorg. Chim. Acta, 357, 2091–2099. Web of Science CSD CrossRef CAS Google Scholar
Corao, E. & Baggio, S. (1969). Inorg. Chim. Acta, 3, 617–622. CSD CrossRef CAS Google Scholar
Fettouhi, M., Wazeer, M. I. M. & Isab, A. A. (2008). Inorg. Chem. Commun. 11, 252–255. CrossRef CAS Google Scholar
Mahmood, R., Ahmad, S., Fettouhi, M., Roisnel, T., Gilani, M. A., Mehmood, K., Murtaza, G. & Isab, A. A. (2018). J. Mol. Struct. 1156, 235–242. CrossRef CAS Google Scholar
Mahmood, R., Ghulam Hussain, S., Fettouhi, M., Isab, A. A. & Ahmad, S. (2012). Acta Cryst. E68, m1352–m1353. CSD CrossRef IUCr Journals Google Scholar
Moloto, M. J., Malik, M. A., O'Brien, P., Motevalli, M. & Kolawole, G. A. (2003). Polyhedron, 22, 595–603. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Raper, E. S. (1997). Coord. Chem. Rev. 165, 475–567. CrossRef CAS Web of Science Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Saithong, S., Klongkleaw, P., Pakawatchai, C. & Mokakul, J. (2014). Acta Cryst. E70, 90–93. CrossRef Google Scholar
Saithong, S., Pakawatchai, C. & Charmant, J. P. H. (2007). Acta Cryst. E63, m857–m858. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.