organic compounds
7-Methoxypentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione
aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
*Correspondence e-mail: srk@chem.iitb.ac.in
The structure of 7-methoxypentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione, C12H12O3, at 150 K has monoclinic (P21/c) symmetry. The pentacycloundecane is composed of four five-membered rings, a planar four-membered ring and a six-membered ring in a boat conformation fused into a closed strained-cage framework. All of the five-membered rings adopt an envelope conformation.
Keywords: crystal structure; Diels–Alder reaction; intramolecular [2 + 2] photocycloaddition; pentacyclo [5.4.0.02,6.03,10.05,9]undecane.
CCDC reference: 1902538
Structure description
Polycyclic cage hydrocarbons act as valuable synthons in pharmaceutical and medicinal chemistry (Bisetty et al., 2006; Geldenhuys, et al., 2005). They are also useful candidates in energetic materials (Zhang et al., 2018). Most of the cage systems display functions in supramolecular chemistry and asymmetric catalysis (Gharpure et al., 2013). Oxygenated cage compounds show significant biological activity (Oliver et al., 1991; van Dijk et al., 2008). In addition, various rearrangement approaches in pentacycloundecane-containing cage frameworks provide an alternative route for the synthesis of biologically relevant frameworks such as D3-trishomocubane derivatives that are not available by conventional multi-step synthetic routes (Liu et al., 2001; Sklyarova et al., 2013).
The bond angle C1—O1—C2 is 113.86°(16). Notably, the distance between the methoxy-substituted carbon atom, C2, and C3 is 1.521 (3) Å while the C8—C9 distance is 1.516 (3) Å. The methoxy substitution (presence of electron-donating group) has led to an elongation of the C2—C3 bond. Additionally, all bonds of the cyclobutane ring are not equal, the observed range being 1.552 (3)–1.579 (3) Å. Thus, a slight distortion is observed after substitution with a methoxy group (Fig. 1) compared to Cookson's dione skeleton (Linden et al., 2005).
Synthesis and crystallization
The title compound 1 was prepared (Fig. 2) from quinone 3, which was derived from the commercially available starting materials 4-hydroxy-3-methoxybenzaldehyde 2 (vanillin) and cyclopentadiene 4 using the reported method (Pratt et al., 1987) via a Diels–Alder reaction and [2 + 2] photocycloaddition as key steps (Mehta et al., 1984). The Diels–Alder adduct 5 (100 mg, 0.40 mmol, synthesized from quinone 3 via Diels–Alder reaction with freshly cracked cyclopentadiene 4) was dissolved in anhydrous ethyl acetate (300 ml) and irradiated in a Pyrex immersion well using a 125 W medium-pressure UV mercury-vapour lamp for 30 min under nitrogen at room temperature. After conclusion of the reaction as monitored by TLC, the solvent was evaporated under reduced pressure and the crude reaction mixture was purified by silica gel using 40% ethyl acetate/petroleum ether as an which furnished 1 as a colourless solid. The resulting isolated compound was crystallized from petroleum ether and CHCl3 (4:1) in a refrigerator by slow evaporation (83 mg, 83%). Colourless crystalline solid, m.p. 89–91°C; (lit. reported m.p. 85°C); 1H NMR (500 MHz, CDCl3): δ = 3.40 (s, 3H), 3.24–3.20 (m, 1H), 3.08–3.05 (m, 1H), 2.93 (s, 1H), 2.89 (s, 1H), 2.83 (d, J = 6.4 Hz, 1H), 2.68–2.58 (m, 2H), 2.00 (d, J = 11.4 Hz, 1H), 1.9 (d, J = 11.4 Hz, 1H) p.p.m. 13C NMR (125 MHz, CDCl3): δ = 210.8, 209.9, 82.1, 54.7, 53.5, 50.8, 48.5, 43.9, 43.2, 41.9, 36.4 p.p.m. HRMS (ESI): m/z calculated for C12H12NaO3 [M + K]+: 243.418; found: 243.415.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1902538
https://doi.org/10.1107/S2414314620013802/bt4099sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620013802/bt4099Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620013802/bt4099Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C12H12O3 | F(000) = 432 |
Mr = 204.22 | Dx = 1.471 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.3136 (2) Å | Cell parameters from 1649 reflections |
b = 11.6138 (5) Å | θ = 3.3–32.8° |
c = 12.6330 (5) Å | µ = 0.11 mm−1 |
β = 95.292 (3)° | T = 150 K |
V = 922.37 (6) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.28 × 0.23 mm |
Oxford Diffraction Xcalibur-S diffractometer | 1432 reflections with I > 2σ(I) |
Detector resolution: 15.9948 pixels mm-1 | Rint = 0.020 |
ω/q–scan | θmax = 25.0°, θmin = 3.7° |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | h = −7→4 |
Tmin = 0.965, Tmax = 0.976 | k = −13→13 |
4686 measured reflections | l = −13→15 |
1620 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.111 | w = 1/[σ2(Fo2) + (0.0339P)2 + 1.1811P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1620 reflections | Δρmax = 0.31 e Å−3 |
137 parameters | Δρmin = −0.19 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The H atoms were found in a difference map but refined using a riding model with C—H ranging from 0.98 Å to 1.00 Å and U(H) set to 1.2 Ueq(C) or 1.5 Ueq(Cmethyl). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.5101 (2) | 0.05611 (13) | 0.88757 (12) | 0.0213 (4) | |
O2 | 0.7295 (2) | 0.00528 (14) | 0.69852 (12) | 0.0252 (4) | |
O3 | 0.1795 (2) | −0.10734 (14) | 0.62216 (13) | 0.0281 (4) | |
C1 | 0.7014 (4) | 0.1112 (2) | 0.93007 (18) | 0.0231 (5) | |
H1A | 0.8199 | 0.0856 | 0.8910 | 0.035* | |
H1B | 0.7304 | 0.0910 | 1.0053 | 0.035* | |
H1C | 0.6852 | 0.1949 | 0.9231 | 0.035* | |
C2 | 0.4378 (3) | 0.09282 (18) | 0.78544 (17) | 0.0183 (5) | |
C3 | 0.5748 (3) | 0.06703 (18) | 0.69536 (17) | 0.0186 (5) | |
C4 | 0.4765 (3) | 0.13774 (19) | 0.60217 (17) | 0.0205 (5) | |
H4 | 0.5664 | 0.1421 | 0.5411 | 0.025* | |
C5 | 0.4380 (3) | 0.25570 (19) | 0.65426 (17) | 0.0219 (5) | |
H5 | 0.5615 | 0.3100 | 0.6586 | 0.026* | |
C6 | 0.3617 (3) | 0.21926 (19) | 0.76243 (17) | 0.0204 (5) | |
H6 | 0.3814 | 0.2757 | 0.8223 | 0.024* | |
C7 | 0.1322 (3) | 0.17496 (19) | 0.73067 (17) | 0.0201 (5) | |
H7 | 0.0168 | 0.2055 | 0.7720 | 0.024* | |
C8 | 0.2040 (3) | 0.04885 (19) | 0.75312 (17) | 0.0202 (5) | |
H8 | 0.1322 | 0.0060 | 0.8084 | 0.024* | |
C9 | 0.2003 (3) | −0.00636 (19) | 0.64421 (18) | 0.0211 (5) | |
C10 | 0.2401 (3) | 0.0924 (2) | 0.57020 (18) | 0.0225 (5) | |
H10 | 0.2100 | 0.0735 | 0.4931 | 0.027* | |
C11 | 0.1045 (4) | 0.1921 (2) | 0.60828 (18) | 0.0232 (5) | |
H11 | −0.0461 | 0.1944 | 0.5759 | 0.028* | |
C12 | 0.2344 (4) | 0.30022 (19) | 0.59218 (18) | 0.0239 (5) | |
H12A | 0.1760 | 0.3693 | 0.6250 | 0.029* | |
H12B | 0.2528 | 0.3151 | 0.5164 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0240 (8) | 0.0213 (8) | 0.0187 (8) | −0.0036 (7) | 0.0019 (6) | 0.0028 (6) |
O2 | 0.0209 (8) | 0.0287 (9) | 0.0265 (9) | 0.0030 (7) | 0.0040 (6) | −0.0010 (7) |
O3 | 0.0281 (9) | 0.0185 (9) | 0.0369 (10) | −0.0011 (7) | −0.0014 (7) | −0.0055 (7) |
C1 | 0.0258 (12) | 0.0230 (12) | 0.0200 (11) | −0.0045 (10) | −0.0006 (9) | −0.0018 (9) |
C2 | 0.0223 (11) | 0.0147 (11) | 0.0178 (11) | 0.0000 (9) | 0.0015 (9) | 0.0009 (8) |
C3 | 0.0167 (11) | 0.0172 (11) | 0.0223 (11) | −0.0036 (9) | 0.0032 (8) | −0.0021 (9) |
C4 | 0.0188 (10) | 0.0250 (12) | 0.0182 (11) | −0.0013 (9) | 0.0045 (8) | −0.0004 (9) |
C5 | 0.0237 (11) | 0.0199 (12) | 0.0222 (12) | −0.0044 (9) | 0.0026 (9) | 0.0015 (9) |
C6 | 0.0260 (11) | 0.0162 (11) | 0.0194 (11) | −0.0004 (9) | 0.0042 (9) | −0.0011 (9) |
C7 | 0.0186 (11) | 0.0176 (11) | 0.0249 (12) | 0.0029 (9) | 0.0060 (9) | 0.0000 (9) |
C8 | 0.0181 (11) | 0.0190 (11) | 0.0243 (12) | −0.0009 (9) | 0.0065 (8) | 0.0031 (9) |
C9 | 0.0130 (10) | 0.0202 (12) | 0.0292 (12) | 0.0001 (9) | −0.0034 (8) | −0.0024 (9) |
C10 | 0.0235 (12) | 0.0234 (12) | 0.0201 (12) | 0.0013 (9) | −0.0009 (9) | −0.0034 (9) |
C11 | 0.0209 (11) | 0.0234 (12) | 0.0249 (12) | 0.0030 (9) | 0.0001 (9) | 0.0015 (10) |
C12 | 0.0286 (12) | 0.0187 (11) | 0.0248 (12) | 0.0024 (10) | 0.0047 (9) | 0.0048 (9) |
O1—C1 | 1.427 (3) | C5—C12 | 1.533 (3) |
O1—C2 | 1.395 (3) | C6—H6 | 1.0000 |
O2—C3 | 1.209 (3) | C6—C7 | 1.555 (3) |
O3—C9 | 1.210 (3) | C7—H7 | 1.0000 |
C1—H1A | 0.9800 | C7—C8 | 1.552 (3) |
C1—H1B | 0.9800 | C7—C11 | 1.553 (3) |
C1—H1C | 0.9800 | C8—H8 | 1.0000 |
C2—C3 | 1.521 (3) | C8—C9 | 1.516 (3) |
C2—C6 | 1.564 (3) | C9—C10 | 1.516 (3) |
C2—C8 | 1.579 (3) | C10—H10 | 1.0000 |
C3—C4 | 1.520 (3) | C10—C11 | 1.543 (3) |
C4—H4 | 1.0000 | C11—H11 | 1.0000 |
C4—C5 | 1.549 (3) | C11—C12 | 1.523 (3) |
C4—C10 | 1.599 (3) | C12—H12A | 0.9900 |
C5—H5 | 1.0000 | C12—H12B | 0.9900 |
C5—C6 | 1.549 (3) | ||
C2—O1—C1 | 113.86 (16) | C6—C7—H7 | 117.0 |
O1—C1—H1A | 109.5 | C8—C7—C6 | 90.88 (16) |
O1—C1—H1B | 109.5 | C8—C7—H7 | 117.0 |
O1—C1—H1C | 109.5 | C8—C7—C11 | 107.91 (17) |
H1A—C1—H1B | 109.5 | C11—C7—C6 | 103.36 (17) |
H1A—C1—H1C | 109.5 | C11—C7—H7 | 117.0 |
H1B—C1—H1C | 109.5 | C2—C8—H8 | 117.0 |
O1—C2—C3 | 118.11 (17) | C7—C8—C2 | 89.57 (16) |
O1—C2—C6 | 121.84 (18) | C7—C8—H8 | 117.0 |
O1—C2—C8 | 111.03 (17) | C9—C8—C2 | 107.88 (17) |
C3—C2—C6 | 103.41 (17) | C9—C8—C7 | 104.69 (18) |
C3—C2—C8 | 108.99 (17) | C9—C8—H8 | 117.0 |
C6—C2—C8 | 89.53 (15) | O3—C9—C8 | 127.7 (2) |
O2—C3—C2 | 127.2 (2) | O3—C9—C10 | 127.8 (2) |
O2—C3—C4 | 128.1 (2) | C10—C9—C8 | 104.48 (18) |
C4—C3—C2 | 104.68 (17) | C4—C10—H10 | 114.1 |
C3—C4—H4 | 113.9 | C9—C10—C4 | 107.28 (17) |
C3—C4—C5 | 102.57 (17) | C9—C10—H10 | 114.1 |
C3—C4—C10 | 108.83 (17) | C9—C10—C11 | 104.33 (18) |
C5—C4—H4 | 113.9 | C11—C10—C4 | 101.91 (17) |
C5—C4—C10 | 102.63 (17) | C11—C10—H10 | 114.1 |
C10—C4—H4 | 113.9 | C7—C11—H11 | 115.2 |
C4—C5—H5 | 115.4 | C10—C11—C7 | 101.50 (17) |
C4—C5—C6 | 101.95 (17) | C10—C11—H11 | 115.2 |
C6—C5—H5 | 115.4 | C12—C11—C7 | 103.08 (18) |
C12—C5—C4 | 103.79 (17) | C12—C11—C10 | 104.82 (18) |
C12—C5—H5 | 115.4 | C12—C11—H11 | 115.2 |
C12—C5—C6 | 103.25 (17) | C5—C12—H12A | 112.7 |
C2—C6—H6 | 117.4 | C5—C12—H12B | 112.7 |
C5—C6—C2 | 107.77 (17) | C11—C12—C5 | 95.17 (17) |
C5—C6—H6 | 117.4 | C11—C12—H12A | 112.7 |
C5—C6—C7 | 102.77 (17) | C11—C12—H12B | 112.7 |
C7—C6—C2 | 90.01 (16) | H12A—C12—H12B | 110.2 |
C7—C6—H6 | 117.4 | ||
O1—C2—C3—O2 | 10.0 (3) | C5—C4—C10—C11 | 0.4 (2) |
O1—C2—C3—C4 | −168.95 (17) | C5—C6—C7—C8 | 108.30 (17) |
O1—C2—C6—C5 | 141.85 (19) | C5—C6—C7—C11 | −0.3 (2) |
O1—C2—C6—C7 | −114.7 (2) | C6—C2—C3—O2 | 147.9 (2) |
O1—C2—C8—C7 | 124.27 (18) | C6—C2—C3—C4 | −31.0 (2) |
O1—C2—C8—C9 | −130.43 (18) | C6—C2—C8—C7 | 0.06 (16) |
O2—C3—C4—C5 | −134.1 (2) | C6—C2—C8—C9 | 105.37 (18) |
O2—C3—C4—C10 | 117.7 (2) | C6—C5—C12—C11 | −53.4 (2) |
O3—C9—C10—C4 | −111.3 (2) | C6—C7—C8—C2 | −0.06 (16) |
O3—C9—C10—C11 | 141.1 (2) | C6—C7—C8—C9 | −108.45 (17) |
C1—O1—C2—C3 | 65.0 (2) | C6—C7—C11—C10 | 74.92 (19) |
C1—O1—C2—C6 | −64.9 (2) | C6—C7—C11—C12 | −33.4 (2) |
C1—O1—C2—C8 | −168.08 (17) | C7—C8—C9—O3 | −155.1 (2) |
C2—C3—C4—C5 | 44.8 (2) | C7—C8—C9—C10 | 27.8 (2) |
C2—C3—C4—C10 | −63.4 (2) | C7—C11—C12—C5 | 52.89 (19) |
C2—C6—C7—C8 | 0.06 (16) | C8—C2—C3—O2 | −117.9 (2) |
C2—C6—C7—C11 | −108.58 (17) | C8—C2—C3—C4 | 63.2 (2) |
C2—C8—C9—O3 | 110.5 (2) | C8—C2—C6—C5 | −103.48 (18) |
C2—C8—C9—C10 | −66.6 (2) | C8—C2—C6—C7 | −0.06 (16) |
C3—C2—C6—C5 | 5.9 (2) | C8—C7—C11—C10 | −20.4 (2) |
C3—C2—C6—C7 | 109.36 (17) | C8—C7—C11—C12 | −128.80 (18) |
C3—C2—C8—C7 | −103.97 (18) | C8—C9—C10—C4 | 65.8 (2) |
C3—C2—C8—C9 | 1.3 (2) | C8—C9—C10—C11 | −41.8 (2) |
C3—C4—C5—C6 | −39.4 (2) | C9—C10—C11—C7 | 37.7 (2) |
C3—C4—C5—C12 | −146.43 (17) | C9—C10—C11—C12 | 144.74 (18) |
C3—C4—C10—C9 | −0.7 (2) | C10—C4—C5—C6 | 73.49 (19) |
C3—C4—C10—C11 | 108.63 (19) | C10—C4—C5—C12 | −33.6 (2) |
C4—C5—C6—C2 | 20.5 (2) | C10—C11—C12—C5 | −53.0 (2) |
C4—C5—C6—C7 | −73.64 (19) | C11—C7—C8—C2 | 104.29 (18) |
C4—C5—C12—C11 | 52.71 (19) | C11—C7—C8—C9 | −4.1 (2) |
C4—C10—C11—C7 | −73.82 (19) | C12—C5—C6—C2 | 128.00 (18) |
C4—C10—C11—C12 | 33.2 (2) | C12—C5—C6—C7 | 33.8 (2) |
C5—C4—C10—C9 | −108.86 (19) |
Acknowledgements
We thank Darshan S. Mhatre for his help with the data collection and structure refinement.
Funding information
Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, J C Bose Fellowship (award No. SR/S2/JCB-33/2010 to Prof. Sambasivarao Kotha); Defence Research and Development Organisation (grant No. ARDB/01/1041849/M/1 to Prof. Sambasivarao Kotha); University Grants Commission (scholarship to Saima Ansari, Subba Rao Cheekatla).
References
Bisetty, K., Govender, T. & Kruger, H. G. (2006). Biopolymers, 81, 339–349. CrossRef PubMed CAS Google Scholar
Dijk, A. van, Johnston, C., Allbutt, H., Kassiou, M. & Henderson, J. (2008). Behav. Brain Res. 190, 14–21. PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Geldenhuys, W. J., Malan, S. F., Bloomquist, J. R., Marchand, A. P. & Van der Schyf, C. J. (2005). Med. Res. Rev. 25, 21–48. Web of Science CrossRef PubMed CAS Google Scholar
Gharpure, S. J. & Porwal, S. K. (2013). Org. Prep. Proced. Int. 45, 81–153. CrossRef CAS Google Scholar
Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Liu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39–45. Web of Science CrossRef PubMed CAS Google Scholar
Mehta, G., Sivakumar Reddy, D. & Veera Reddy, A. (1984). Tetrahedron Lett. 25, 2275–2278. CrossRef CAS Google Scholar
Oliver, D. W., Dekker, T. G., Snyckers, F. O. & Fourie, T. G. (1991). J. Med. Chem. 34, 851–854. CrossRef PubMed CAS Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Pratt, D. V., Ruan, F. & Hopkins, P. B. (1987). J. Org. Chem. 52, 5053–5055. CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sklyarova, A. S., Rodionov, V. N., Parsons, C. G., Quack, G., Schreiner, P. R. & Fokin, A. A. (2013). Med. Chem. Res. 22, 360–366. CrossRef CAS Google Scholar
Zhang, J., Hou, T., Zhang, L. & Luo, J. (2018). Org. Lett. 20, 7172–7176. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.