organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Meth­­oxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undec­ane-8,11-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai - 400076, India
*Correspondence e-mail: srk@chem.iitb.ac.in

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 7 October 2020; accepted 15 October 2020; online 20 October 2020)

The structure of 7-meth­oxy­penta­cyclo­[5.4.0.02,6.03,10.05,9]undecane-8,11-dione, C12H12O3, at 150 K has monoclinic (P21/c) symmetry. The penta­cyclo­undecane cage compound is composed of four five-membered rings, a planar four-membered ring and a six-membered ring in a boat conformation fused into a closed strained-cage framework. All of the five-membered rings adopt an envelope conformation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Polycyclic cage hydro­carbons act as valuable synthons in pharmaceutical and medicinal chemistry (Bisetty et al., 2006[Bisetty, K., Govender, T. & Kruger, H. G. (2006). Biopolymers, 81, 339-349.]; Geldenhuys, et al., 2005[Geldenhuys, W. J., Malan, S. F., Bloomquist, J. R., Marchand, A. P. & Van der Schyf, C. J. (2005). Med. Res. Rev. 25, 21-48.]). They are also useful candidates in energetic materials (Zhang et al., 2018[Zhang, J., Hou, T., Zhang, L. & Luo, J. (2018). Org. Lett. 20, 7172-7176.]). Most of the cage systems display functions in supra­molecular chemistry and asymmetric catalysis (Gharpure et al., 2013[Gharpure, S. J. & Porwal, S. K. (2013). Org. Prep. Proced. Int. 45, 81-153.]). Oxygenated cage compounds show significant biological activity (Oliver et al., 1991[Oliver, D. W., Dekker, T. G., Snyckers, F. O. & Fourie, T. G. (1991). J. Med. Chem. 34, 851-854.]; van Dijk et al., 2008[Dijk, A. van, Johnston, C., Allbutt, H., Kassiou, M. & Henderson, J. (2008). Behav. Brain Res. 190, 14-21.]). In addition, various rearrangement approaches in penta­cyclo­undecane-containing cage frameworks provide an alternative route for the synthesis of biologically relevant frameworks such as D3-tris­homocubane derivatives that are not available by conventional multi-step synthetic routes (Liu et al., 2001[Liu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39-45.]; Sklyarova et al., 2013[Sklyarova, A. S., Rodionov, V. N., Parsons, C. G., Quack, G., Schreiner, P. R. & Fokin, A. A. (2013). Med. Chem. Res. 22, 360-366.]).

The bond angle C1—O1—C2 is 113.86°(16). Notably, the distance between the meth­oxy-substituted carbon atom, C2, and C3 is 1.521 (3) Å while the C8—C9 distance is 1.516 (3) Å. The meth­oxy substitution (presence of electron-donating group) has led to an elongation of the C2—C3 bond. Additionally, all bonds of the cyclo­butane ring are not equal, the observed range being 1.552 (3)–1.579 (3) Å. Thus, a slight distortion is observed after substitution with a meth­oxy group (Fig. 1[link]) compared to Cookson's dione skeleton (Linden et al., 2005[Linden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221-o226.]).

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement parameters are drawn at the 50% probability level.

Synthesis and crystallization

The title compound 1 was prepared (Fig. 2[link]) from quinone 3, which was derived from the commercially available starting materials 4-hy­droxy-3-meth­oxy­benzaldehyde 2 (vanillin) and cyclo­penta­diene 4 using the reported method (Pratt et al., 1987[Pratt, D. V., Ruan, F. & Hopkins, P. B. (1987). J. Org. Chem. 52, 5053-5055.]) via a Diels–Alder reaction and [2 + 2] photo­cyclo­addition as key steps (Mehta et al., 1984[Mehta, G., Sivakumar Reddy, D. & Veera Reddy, A. (1984). Tetrahedron Lett. 25, 2275-2278.]). The Diels–Alder adduct 5 (100 mg, 0.40 mmol, synthesized from quinone 3 via Diels–Alder reaction with freshly cracked cyclo­penta­diene 4) was dissolved in anhydrous ethyl acetate (300 ml) and irradiated in a Pyrex immersion well using a 125 W medium-pressure UV mercury-vapour lamp for 30 min under nitro­gen at room temperature. After conclusion of the reaction as monitored by TLC, the solvent was evaporated under reduced pressure and the crude reaction mixture was purified by silica gel column chromatography using 40% ethyl acetate/petroleum ether as an eluent, which furnished 1 as a colourless solid. The resulting isolated compound was crystallized from petroleum ether and CHCl3 (4:1) in a refrigerator by slow evaporation (83 mg, 83%). Colourless crystalline solid, m.p. 89–91°C; (lit. reported m.p. 85°C); 1H NMR (500 MHz, CDCl3): δ = 3.40 (s, 3H), 3.24–3.20 (m, 1H), 3.08–3.05 (m, 1H), 2.93 (s, 1H), 2.89 (s, 1H), 2.83 (d, J = 6.4 Hz, 1H), 2.68–2.58 (m, 2H), 2.00 (d, J = 11.4 Hz, 1H), 1.9 (d, J = 11.4 Hz, 1H) p.p.m. 13C NMR (125 MHz, CDCl3): δ = 210.8, 209.9, 82.1, 54.7, 53.5, 50.8, 48.5, 43.9, 43.2, 41.9, 36.4 p.p.m. HRMS (ESI): m/z calculated for C12H12NaO3 [M + K]+: 243.418; found: 243.415.

[Figure 2]
Figure 2
Reaction scheme for the synthesis of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C12H12O3
Mr 204.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 6.3136 (2), 11.6138 (5), 12.6330 (5)
β (°) 95.292 (3)
V3) 922.37 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.34 × 0.28 × 0.23
 
Data collection
Diffractometer Oxford Diffraction Xcalibur-S
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.965, 0.976
No. of measured, independent and observed [I > 2σ(I)] reflections 4686, 1620, 1432
Rint 0.020
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.111, 1.10
No. of reflections 1620
No. of parameters 137
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.19
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7-Methoxypentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione top
Crystal data top
C12H12O3F(000) = 432
Mr = 204.22Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.3136 (2) ÅCell parameters from 1649 reflections
b = 11.6138 (5) Åθ = 3.3–32.8°
c = 12.6330 (5) ŵ = 0.11 mm1
β = 95.292 (3)°T = 150 K
V = 922.37 (6) Å3Block, colourless
Z = 40.34 × 0.28 × 0.23 mm
Data collection top
Oxford Diffraction Xcalibur-S
diffractometer
1432 reflections with I > 2σ(I)
Detector resolution: 15.9948 pixels mm-1Rint = 0.020
ω/q–scanθmax = 25.0°, θmin = 3.7°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 74
Tmin = 0.965, Tmax = 0.976k = 1313
4686 measured reflectionsl = 1315
1620 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.1811P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
1620 reflectionsΔρmax = 0.31 e Å3
137 parametersΔρmin = 0.19 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were found in a difference map but refined using a riding model with C—H ranging from 0.98 Å to 1.00 Å and U(H) set to 1.2 Ueq(C) or 1.5 Ueq(Cmethyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5101 (2)0.05611 (13)0.88757 (12)0.0213 (4)
O20.7295 (2)0.00528 (14)0.69852 (12)0.0252 (4)
O30.1795 (2)0.10734 (14)0.62216 (13)0.0281 (4)
C10.7014 (4)0.1112 (2)0.93007 (18)0.0231 (5)
H1A0.81990.08560.89100.035*
H1B0.73040.09101.00530.035*
H1C0.68520.19490.92310.035*
C20.4378 (3)0.09282 (18)0.78544 (17)0.0183 (5)
C30.5748 (3)0.06703 (18)0.69536 (17)0.0186 (5)
C40.4765 (3)0.13774 (19)0.60217 (17)0.0205 (5)
H40.56640.14210.54110.025*
C50.4380 (3)0.25570 (19)0.65426 (17)0.0219 (5)
H50.56150.31000.65860.026*
C60.3617 (3)0.21926 (19)0.76243 (17)0.0204 (5)
H60.38140.27570.82230.024*
C70.1322 (3)0.17496 (19)0.73067 (17)0.0201 (5)
H70.01680.20550.77200.024*
C80.2040 (3)0.04885 (19)0.75312 (17)0.0202 (5)
H80.13220.00600.80840.024*
C90.2003 (3)0.00636 (19)0.64421 (18)0.0211 (5)
C100.2401 (3)0.0924 (2)0.57020 (18)0.0225 (5)
H100.21000.07350.49310.027*
C110.1045 (4)0.1921 (2)0.60828 (18)0.0232 (5)
H110.04610.19440.57590.028*
C120.2344 (4)0.30022 (19)0.59218 (18)0.0239 (5)
H12A0.17600.36930.62500.029*
H12B0.25280.31510.51640.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (8)0.0213 (8)0.0187 (8)0.0036 (7)0.0019 (6)0.0028 (6)
O20.0209 (8)0.0287 (9)0.0265 (9)0.0030 (7)0.0040 (6)0.0010 (7)
O30.0281 (9)0.0185 (9)0.0369 (10)0.0011 (7)0.0014 (7)0.0055 (7)
C10.0258 (12)0.0230 (12)0.0200 (11)0.0045 (10)0.0006 (9)0.0018 (9)
C20.0223 (11)0.0147 (11)0.0178 (11)0.0000 (9)0.0015 (9)0.0009 (8)
C30.0167 (11)0.0172 (11)0.0223 (11)0.0036 (9)0.0032 (8)0.0021 (9)
C40.0188 (10)0.0250 (12)0.0182 (11)0.0013 (9)0.0045 (8)0.0004 (9)
C50.0237 (11)0.0199 (12)0.0222 (12)0.0044 (9)0.0026 (9)0.0015 (9)
C60.0260 (11)0.0162 (11)0.0194 (11)0.0004 (9)0.0042 (9)0.0011 (9)
C70.0186 (11)0.0176 (11)0.0249 (12)0.0029 (9)0.0060 (9)0.0000 (9)
C80.0181 (11)0.0190 (11)0.0243 (12)0.0009 (9)0.0065 (8)0.0031 (9)
C90.0130 (10)0.0202 (12)0.0292 (12)0.0001 (9)0.0034 (8)0.0024 (9)
C100.0235 (12)0.0234 (12)0.0201 (12)0.0013 (9)0.0009 (9)0.0034 (9)
C110.0209 (11)0.0234 (12)0.0249 (12)0.0030 (9)0.0001 (9)0.0015 (10)
C120.0286 (12)0.0187 (11)0.0248 (12)0.0024 (10)0.0047 (9)0.0048 (9)
Geometric parameters (Å, º) top
O1—C11.427 (3)C5—C121.533 (3)
O1—C21.395 (3)C6—H61.0000
O2—C31.209 (3)C6—C71.555 (3)
O3—C91.210 (3)C7—H71.0000
C1—H1A0.9800C7—C81.552 (3)
C1—H1B0.9800C7—C111.553 (3)
C1—H1C0.9800C8—H81.0000
C2—C31.521 (3)C8—C91.516 (3)
C2—C61.564 (3)C9—C101.516 (3)
C2—C81.579 (3)C10—H101.0000
C3—C41.520 (3)C10—C111.543 (3)
C4—H41.0000C11—H111.0000
C4—C51.549 (3)C11—C121.523 (3)
C4—C101.599 (3)C12—H12A0.9900
C5—H51.0000C12—H12B0.9900
C5—C61.549 (3)
C2—O1—C1113.86 (16)C6—C7—H7117.0
O1—C1—H1A109.5C8—C7—C690.88 (16)
O1—C1—H1B109.5C8—C7—H7117.0
O1—C1—H1C109.5C8—C7—C11107.91 (17)
H1A—C1—H1B109.5C11—C7—C6103.36 (17)
H1A—C1—H1C109.5C11—C7—H7117.0
H1B—C1—H1C109.5C2—C8—H8117.0
O1—C2—C3118.11 (17)C7—C8—C289.57 (16)
O1—C2—C6121.84 (18)C7—C8—H8117.0
O1—C2—C8111.03 (17)C9—C8—C2107.88 (17)
C3—C2—C6103.41 (17)C9—C8—C7104.69 (18)
C3—C2—C8108.99 (17)C9—C8—H8117.0
C6—C2—C889.53 (15)O3—C9—C8127.7 (2)
O2—C3—C2127.2 (2)O3—C9—C10127.8 (2)
O2—C3—C4128.1 (2)C10—C9—C8104.48 (18)
C4—C3—C2104.68 (17)C4—C10—H10114.1
C3—C4—H4113.9C9—C10—C4107.28 (17)
C3—C4—C5102.57 (17)C9—C10—H10114.1
C3—C4—C10108.83 (17)C9—C10—C11104.33 (18)
C5—C4—H4113.9C11—C10—C4101.91 (17)
C5—C4—C10102.63 (17)C11—C10—H10114.1
C10—C4—H4113.9C7—C11—H11115.2
C4—C5—H5115.4C10—C11—C7101.50 (17)
C4—C5—C6101.95 (17)C10—C11—H11115.2
C6—C5—H5115.4C12—C11—C7103.08 (18)
C12—C5—C4103.79 (17)C12—C11—C10104.82 (18)
C12—C5—H5115.4C12—C11—H11115.2
C12—C5—C6103.25 (17)C5—C12—H12A112.7
C2—C6—H6117.4C5—C12—H12B112.7
C5—C6—C2107.77 (17)C11—C12—C595.17 (17)
C5—C6—H6117.4C11—C12—H12A112.7
C5—C6—C7102.77 (17)C11—C12—H12B112.7
C7—C6—C290.01 (16)H12A—C12—H12B110.2
C7—C6—H6117.4
O1—C2—C3—O210.0 (3)C5—C4—C10—C110.4 (2)
O1—C2—C3—C4168.95 (17)C5—C6—C7—C8108.30 (17)
O1—C2—C6—C5141.85 (19)C5—C6—C7—C110.3 (2)
O1—C2—C6—C7114.7 (2)C6—C2—C3—O2147.9 (2)
O1—C2—C8—C7124.27 (18)C6—C2—C3—C431.0 (2)
O1—C2—C8—C9130.43 (18)C6—C2—C8—C70.06 (16)
O2—C3—C4—C5134.1 (2)C6—C2—C8—C9105.37 (18)
O2—C3—C4—C10117.7 (2)C6—C5—C12—C1153.4 (2)
O3—C9—C10—C4111.3 (2)C6—C7—C8—C20.06 (16)
O3—C9—C10—C11141.1 (2)C6—C7—C8—C9108.45 (17)
C1—O1—C2—C365.0 (2)C6—C7—C11—C1074.92 (19)
C1—O1—C2—C664.9 (2)C6—C7—C11—C1233.4 (2)
C1—O1—C2—C8168.08 (17)C7—C8—C9—O3155.1 (2)
C2—C3—C4—C544.8 (2)C7—C8—C9—C1027.8 (2)
C2—C3—C4—C1063.4 (2)C7—C11—C12—C552.89 (19)
C2—C6—C7—C80.06 (16)C8—C2—C3—O2117.9 (2)
C2—C6—C7—C11108.58 (17)C8—C2—C3—C463.2 (2)
C2—C8—C9—O3110.5 (2)C8—C2—C6—C5103.48 (18)
C2—C8—C9—C1066.6 (2)C8—C2—C6—C70.06 (16)
C3—C2—C6—C55.9 (2)C8—C7—C11—C1020.4 (2)
C3—C2—C6—C7109.36 (17)C8—C7—C11—C12128.80 (18)
C3—C2—C8—C7103.97 (18)C8—C9—C10—C465.8 (2)
C3—C2—C8—C91.3 (2)C8—C9—C10—C1141.8 (2)
C3—C4—C5—C639.4 (2)C9—C10—C11—C737.7 (2)
C3—C4—C5—C12146.43 (17)C9—C10—C11—C12144.74 (18)
C3—C4—C10—C90.7 (2)C10—C4—C5—C673.49 (19)
C3—C4—C10—C11108.63 (19)C10—C4—C5—C1233.6 (2)
C4—C5—C6—C220.5 (2)C10—C11—C12—C553.0 (2)
C4—C5—C6—C773.64 (19)C11—C7—C8—C2104.29 (18)
C4—C5—C12—C1152.71 (19)C11—C7—C8—C94.1 (2)
C4—C10—C11—C773.82 (19)C12—C5—C6—C2128.00 (18)
C4—C10—C11—C1233.2 (2)C12—C5—C6—C733.8 (2)
C5—C4—C10—C9108.86 (19)
 

Acknowledgements

We thank Darshan S. Mhatre for his help with the data collection and structure refinement.

Funding information

Funding for this research was provided by: Department of Science and Technology, Ministry of Science and Technology, J C Bose Fellowship (award No. SR/S2/JCB-33/2010 to Prof. Sambasivarao Kotha); Defence Research and Development Organisation (grant No. ARDB/01/1041849/M/1 to Prof. Sambasivarao Kotha); University Grants Commission (scholarship to Saima Ansari, Subba Rao Cheekatla).

References

First citationBisetty, K., Govender, T. & Kruger, H. G. (2006). Biopolymers, 81, 339–349.  CrossRef PubMed CAS Google Scholar
First citationDijk, A. van, Johnston, C., Allbutt, H., Kassiou, M. & Henderson, J. (2008). Behav. Brain Res. 190, 14–21.  PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGeldenhuys, W. J., Malan, S. F., Bloomquist, J. R., Marchand, A. P. & Van der Schyf, C. J. (2005). Med. Res. Rev. 25, 21–48.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGharpure, S. J. & Porwal, S. K. (2013). Org. Prep. Proced. Int. 45, 81–153.  CrossRef CAS Google Scholar
First citationLinden, A., Romański, J., Mlostoń, G. & Heimgartner, H. (2005). Acta Cryst. C61, o221–o226.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLiu, X., Nuwayhid, S., Christie, M. J., Kassiou, M. & Werling, L. L. (2001). Eur. J. Pharmacol. 422, 39–45.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMehta, G., Sivakumar Reddy, D. & Veera Reddy, A. (1984). Tetrahedron Lett. 25, 2275–2278.  CrossRef CAS Google Scholar
First citationOliver, D. W., Dekker, T. G., Snyckers, F. O. & Fourie, T. G. (1991). J. Med. Chem. 34, 851–854.  CrossRef PubMed CAS Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPratt, D. V., Ruan, F. & Hopkins, P. B. (1987). J. Org. Chem. 52, 5053–5055.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSklyarova, A. S., Rodionov, V. N., Parsons, C. G., Quack, G., Schreiner, P. R. & Fokin, A. A. (2013). Med. Chem. Res. 22, 360–366.  CrossRef CAS Google Scholar
First citationZhang, J., Hou, T., Zhang, L. & Luo, J. (2018). Org. Lett. 20, 7172–7176.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds