organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Pyridine-4-carboxamidoxime N-oxide

CROSSMARK_Color_square_no_text.svg

aGeorgia Southern University, 11935 Abercorn St., Department of Chemistry and Biochemistry, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by S. Bernès, Benemérita Universidad Autónoma de Puebla, México (Received 9 September 2020; accepted 5 October 2020; online 9 October 2020)

Our work in the area of synthesis of metal–organic frameworks (MOFs) based on organic N-oxides led to the crystallization of pyridine-4-carboxamidoxime N-oxide. Herein we report the first crystal structure of the title compound, C6H7N3O2 [systematic name: (Z)-4-(N′-hy­droxy­carbamimido­yl)pyridine N-oxide]. The hy­droxy­carbamimidoyl group is essentially coplanar with the aromatic ring, r.m.s.d. = 0.112 Å. The compound crystallizes in hydrogen-bonding layers built from the formation of strong O—H⋯O hydrogen bonds between the oxime oxygen atom and the oxygen atom of the N-oxide, and the formation of N—H⋯O hydrogen bonds between one amine nitro­gen atom and the N-oxide oxygen atom. These combined build R34(24) ring motifs in the crystal. The crystal structure has no ππ inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Since their first reported syntheses (Meisenheimer et al., 1926[Meisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. 59, 1848-1853.]), pyridine N-oxide and related compounds have garnered much inter­est in chemistry. We are particularly inter­ested in their uses in coordination polymers and as potential catalysts. The utility of these aromatic N-oxides to facilitate organic oxotransfer reactions has been well documented over the years (see, for example: Espenson, 2003[Espenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.]). Many of these reactions are actually catalyzed by transition-metal inter­actions with the N-oxide ligands (see, for example: Moustafa et al., 2014[Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.]). Others have reported their use as coordination polymers (Ren et al., 2018[Ren, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145-151.]). We have also previously reported N-oxides used in coordination polymers of Mn (Kang et al., 2017[Kang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434-1438.] and Lynch et al., 2018[Lynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405-1410.]). In this work, the syntheses of metal complexes of the title compound were attempted (Mn, Cu, Ce, Nd, Er, and Pr) by mixing the halide or nitrate salts of the metals with the title compound in methanol; unfortunately, all resulting crystals were of the uncomplexed ligand.

Herein we report the first crystal structure of pyridine-4-carboxamidoxime N-oxide (Fig. 1[link]), which crystallizes in the monoclinic space group P21/c. The mol­ecule is nearly planar with a r.m.s.d. of 0.112 Å for all non-hydrogen atoms, with the carbamimidoyl group slightly rotated by 15.09 (8)° with respect to the pyridine ring plane. N1—O1 has a distance of 1.3226 (18) Å and is consistent with normal N-oxide distances. The crystal structure contains a strong inter­molecular hydrogen bond between O2⋯O1i which forms a chain running parallel to the b axis; the O2⋯O1i separation is 2.6747 (19) Å. Another hydrogen bond is formed between N3⋯O1ii which links neighboring chains together; the N3⋯O1ii separation is 2.899 (2) Å [symmetry codes: (i) x, y + 1, z; (ii) x, −y + [{1\over 2}], z + [{1\over 2}], see Table 1[link]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.91 (3) 1.77 (3) 2.6747 (19) 172 (2)
N3—H3A⋯O1ii 0.91 (2) 2.00 (2) 2.899 (2) 167 (2)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

These hydrogen bonds link four mol­ecules together and form an R43(24) ring motif in the crystal. Each mol­ecule is also part of four different R(24) synthons, generating sheets of hydrogen-bonding mol­ecules parallel to the (100) face of the unit cell (Fig. 2[link]). There are no other short contacts or ππ inter­actions observed in the crystal.

[Figure 2]
Figure 2
Crystal packing diagram of title compound viewed along [100]. Hydrogen bonds are colored red.

Synthesis and crystallization

An amount of 0.025 g of pyridine-4-carboxamidoxime N-oxide (Alfa Aesar) was weighed and dissolved in a 25 ml beaker in enough methanol to form a solution that allowed to slowly evaporate at room temperature. The clear crystals were analyzed on a Rigaku Xtal Miniflex.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H7N3O2
Mr 153.15
Crystal system, space group Monoclinic, P21/c
Temperature (K) 170
a, b, c (Å) 7.4130 (8), 9.2858 (7), 10.1238 (10)
β (°) 102.841 (10)
V3) 679.45 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.35 × 0.2 × 0.2
 
Data collection
Diffractometer Rigaku XtaLAB mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.940, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5858, 1238, 961
Rint 0.034
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.101, 1.04
No. of reflections 1238
No. of parameters 113
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.15
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(Z)-4-(N'-Hydroxycarbamimidoyl)pyridine N-oxide top
Crystal data top
C6H7N3O2F(000) = 320
Mr = 153.15Dx = 1.497 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4130 (8) ÅCell parameters from 3017 reflections
b = 9.2858 (7) Åθ = 2.1–32.6°
c = 10.1238 (10) ŵ = 0.12 mm1
β = 102.841 (10)°T = 170 K
V = 679.45 (11) Å3Block, clear dark colourless
Z = 40.35 × 0.2 × 0.2 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
1238 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source961 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.034
Detector resolution: 13.6612 pixels mm-1θmax = 25.4°, θmin = 2.8°
ω–scansh = 88
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
k = 1111
Tmin = 0.940, Tmax = 1.000l = 1212
5858 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.2172P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1238 reflectionsΔρmax = 0.17 e Å3
113 parametersΔρmin = 0.14 e Å3
3 restraintsExtinction correction: SHELXL-2018/1 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.007 (2)
Special details top

Refinement. All carbon-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C). N—H and O—H hydrogen atoms were refined with free coordinates and isotropic displacement parameters.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7185 (2)0.20253 (15)0.40257 (15)0.0361 (4)
C10.6365 (3)0.31255 (19)0.32458 (18)0.0392 (5)
H10.5658090.2935560.2359210.047*
O10.6953 (2)0.06920 (13)0.35596 (13)0.0498 (4)
C20.6543 (2)0.45181 (18)0.37200 (17)0.0371 (5)
H20.5969710.5281860.3155180.044*
N20.7210 (2)0.73345 (15)0.47364 (16)0.0434 (4)
O20.7388 (2)0.86472 (14)0.54650 (15)0.0628 (5)
H2A0.713 (3)0.933 (3)0.481 (2)0.084 (8)*
C30.7554 (2)0.48156 (17)0.50187 (16)0.0311 (4)
N30.8319 (3)0.64526 (18)0.69433 (16)0.0450 (5)
H3A0.807 (3)0.572 (2)0.748 (2)0.066 (7)*
H3B0.805 (3)0.7337 (18)0.722 (2)0.059 (7)*
C40.8403 (3)0.36626 (19)0.57809 (18)0.0382 (5)
H40.9127480.3825720.6667500.046*
C50.8210 (3)0.22887 (19)0.52697 (19)0.0407 (5)
H50.8811590.1513560.5804410.049*
C60.7673 (2)0.62923 (18)0.55763 (17)0.0337 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0481 (9)0.0226 (7)0.0376 (8)0.0000 (7)0.0092 (7)0.0035 (6)
C10.0496 (11)0.0309 (10)0.0334 (9)0.0011 (8)0.0016 (8)0.0018 (8)
O10.0790 (10)0.0213 (7)0.0470 (8)0.0002 (6)0.0098 (7)0.0077 (6)
C20.0468 (11)0.0263 (9)0.0359 (10)0.0036 (8)0.0044 (8)0.0038 (7)
N20.0670 (11)0.0213 (8)0.0419 (9)0.0020 (7)0.0119 (8)0.0021 (7)
O20.1140 (14)0.0213 (7)0.0520 (9)0.0023 (8)0.0158 (9)0.0038 (7)
C30.0334 (9)0.0255 (9)0.0348 (9)0.0015 (7)0.0083 (8)0.0008 (7)
N30.0656 (11)0.0286 (9)0.0387 (9)0.0060 (8)0.0068 (8)0.0042 (7)
C40.0446 (11)0.0299 (9)0.0360 (10)0.0018 (8)0.0002 (8)0.0005 (8)
C50.0517 (11)0.0288 (10)0.0377 (10)0.0064 (8)0.0018 (9)0.0036 (8)
C60.0382 (10)0.0265 (9)0.0365 (10)0.0046 (7)0.0088 (8)0.0013 (8)
Geometric parameters (Å, º) top
N1—C11.350 (2)O2—H2A0.91 (3)
N1—O11.3226 (18)C3—C41.386 (2)
N1—C51.341 (2)C3—C61.478 (2)
C1—H10.9500N3—H3A0.912 (16)
C1—C21.376 (2)N3—H3B0.903 (15)
C2—H20.9500N3—C61.368 (2)
C2—C31.389 (2)C4—H40.9500
N2—O21.4156 (19)C4—C51.372 (2)
N2—C61.284 (2)C5—H50.9500
O1—N1—C1119.59 (15)C4—C3—C6121.51 (15)
O1—N1—C5120.50 (15)H3A—N3—H3B114 (2)
C5—N1—C1119.91 (15)C6—N3—H3A116.5 (14)
N1—C1—H1119.6C6—N3—H3B111.1 (14)
N1—C1—C2120.77 (16)C3—C4—H4119.6
C2—C1—H1119.6C5—C4—C3120.77 (16)
C1—C2—H2119.8C5—C4—H4119.6
C1—C2—C3120.47 (16)N1—C5—C4120.90 (16)
C3—C2—H2119.8N1—C5—H5119.5
C6—N2—O2108.89 (15)C4—C5—H5119.5
N2—O2—H2A103.8 (16)N2—C6—C3117.52 (15)
C2—C3—C6121.33 (15)N2—C6—N3124.75 (16)
C4—C3—C2117.14 (16)N3—C6—C3117.71 (15)
N1—C1—C2—C30.7 (3)C2—C3—C6—N3165.27 (17)
C1—N1—C5—C41.7 (3)O2—N2—C6—C3179.01 (15)
C1—C2—C3—C41.8 (3)O2—N2—C6—N33.0 (3)
C1—C2—C3—C6176.45 (16)C3—C4—C5—N10.5 (3)
O1—N1—C1—C2178.21 (17)C4—C3—C6—N2165.18 (17)
O1—N1—C5—C4177.58 (17)C4—C3—C6—N313.0 (3)
C2—C3—C4—C51.2 (3)C5—N1—C1—C21.1 (3)
C2—C3—C6—N216.6 (3)C6—C3—C4—C5177.05 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.91 (3)1.77 (3)2.6747 (19)172 (2)
N3—H3A···O1ii0.91 (2)2.00 (2)2.899 (2)167 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to thank Georgia Southern University and the Department of Chemistry and Biochemistry for financial support of the department X–ray facility.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEspenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.  Web of Science CrossRef CAS Google Scholar
First citationKang, L., Lynch, G., Lynch, W. & Padgett, C. (2017). Acta Cryst. E73, 1434–1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLynch, W., Lynch, G., Sheriff, K. & Padgett, C. (2018). Acta Cryst. E74, 1405–1410.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMeisenheimer, J. (1926). Ber. Dtsch. Chem. Ges. 59, 1848–1853.  CrossRef Google Scholar
First citationMoustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X.-H., Wang, P., Cheng, J.-Y. & Dong, Y.-B. (2018). J. Mol. Struct. 1161, 145–151.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds