organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Diosgenin-3,6-dione: second polymorph in space group P212121

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, bLicenciatura en Biotecnología, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, cInstituto de Física, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, dCentro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico, and eLaboratorio de Investigación, Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 20 August 2020; accepted 31 August 2020; online 8 September 2020)

The title steroid, [(25R)-spirost-4-en-3,6-dione, C27H38O4], is obtained by oxidation of diosgenin, using the Jones reagent (CrO3/H2SO4). The crystal structure was previously reported in space group P212121, but nonetheless with the wrong absolute configuration and omitting positions for H atoms [Rajnikant et al. (2000[Rajnikant, V., Goswami, K. N., Gupta, V. K., Bhutani, K. K. & Magotra, D. K. (2000). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101-110.]). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101–110]. The diffraction data set reported herein is for a second polymorph in the same space group, as evidenced by simulated powder patterns. Both forms are characterized by a similar ortho­rhom­bic unit cell, and a similar arrangement of the mol­ecules in the crystal structure. However, the conformation of the A/B rings in the steroid nucleus is slightly modified, leading to the observed polymorphism.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Diosgenin [(3β,25R)-spirost-5-en-3-ol, C27H42O3] is a natural product that has played a pivotal role in the early stages of the industry of steroidal compounds, including the large-scale synthesis of cortisone, and the manufacturing of the first combined oral contraceptive pills, at Syntex S.A., in Mexico (Djerassi, 1992[Djerassi, C. (1992). Steroids, 57, 631-641.]). Diosgenin treated with the Jones reagent gives the expected oxidation product, with carbonyl groups at C3 and C6. This compound was characterized by X-ray crystallography, and its structure reported twenty years ago (Rajnikant et al., 2000[Rajnikant, V., Goswami, K. N., Gupta, V. K., Bhutani, K. K. & Magotra, D. K. (2000). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101-110.]). The reported refinement is rather technically unsound, since all H atoms were omitted in the model and the wrong absolute configuration was assigned to the mol­ecule (see refcode QUPKUH in the CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Since the Jones oxidation does not affect the E/F rings of diosgenin, chiral centre C25 is expected to retains its original R configuration, while the structure currently deposited in the CSD has a 25S configuration. A suitable model can be restored after inversion of the structure and addition of H atoms in calculated positions.

While working with this mol­ecule, we obtained high-quality, well-shaped prismatic crystals (Fig. 1[link]), and collected diffraction data with the purpose of improving the previously reported structure. However, it soon became clear that a new form had been crystallized instead; although the crystal symmetry was unchanged, differences in cell parameters as large as 2 Å were observed. After structure refinement (Table 1[link]), a simulated powder diffraction pattern was compared with that obtained with the model of Rajnikant et al. (2000[Rajnikant, V., Goswami, K. N., Gupta, V. K., Bhutani, K. K. & Magotra, D. K. (2000). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101-110.]). Patterns are clearly different, as expected for two polymorphic forms (Fig. 2[link]). The polymorphism seems to be a consequence of a slight modification of the conformation for rings A and B (Fig. 2[link], inset). In the structure reported herein, ring A displays a distorted envelope conformation, with a puckering amplitude q = 0.458 (3) Å, and ring B is a distorted half-chair, with q = 0.476 (3) Å. For the previously characterized polymorph, ring A is nearest to an half-chair, and B to a chair conformation. The conformational flexibility of the A ring of steroids bearing a conjugated 4-ene-3,6-dione fragment had already been pointed out (Anthony et al., 1998[Anthony, A., Jaskolski, M., Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. C54, 1894-1898.]), and related to the modulation of the steroid-receptor inter­actions, which control hormonal responses for these mol­ecules (Duax et al., 1994[Duax, W. L., Griffin, J. F. & Ghosh, D. (1994). In Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 605-633. New York: VCH.]).

Table 1
Experimental details

Crystal data
Chemical formula C27H38O4
Mr 426.57
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 7.4768 (3), 16.2190 (9), 19.4101 (10)
V3) 2353.8 (2)
Z 4
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.05
Crystal size (mm) 0.50 × 0.40 × 0.15
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.471, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47703, 5150, 3345
Rint 0.073
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 0.88
No. of reflections 5150
No. of parameters 285
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.21
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
Mol­ecular structure of the title steroid, with displacement ellipsoids for non-H atoms at the 30% probability level. The inset is the crystal used for data collection. The largest dimension is 0.5 mm.
[Figure 2]
Figure 2
Simulated powder patterns (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) for the two P212121 polymorphs of the title compound, with λ = 1.54 Å. Some reflections are indexed, in order to illustrate reflection shifts and intensity variations between both polymorphs. The inset shows an overlay between mol­ecular structures, obtained by fitting C and O atoms in rings C/D/E/F. In the case of QUPKUH (Rajnikant et al., 2000[Rajnikant, V., Goswami, K. N., Gupta, V. K., Bhutani, K. K. & Magotra, D. K. (2000). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101-110.]), coordinates deposited in the CSD were inverted, and H atoms were placed in idealized positions.

Since the space group is unchanged, there is a degree of similarity between the crystal structures for the polymorphic forms: the mol­ecules, placed in general positions, lie approximately parallel to [010]. However, if a common orientation is chosen for the asymmetric units in both forms, the position of the mol­ecule in the unit cell is shifted. With the selection made in Fig. 3[link], the centroid of the mol­ecule constituting the asymmetric unit for the form reported herein is found at (0.313, 0.661, 0.380), while for the previously reported form, the centroid lies at (0.951, 1/5, 0.628). The action of the screw axis of space group P212121 then generates different crystal structures. This kind of polymorphism, resulting from the rearrangement of the asymmetric unit within a common space group, is certainly favoured by the lack of supra­molecular inter­actions. The title mol­ecule does not include donor groups for hydrogen bonds, and only very weak C—H⋯O contacts are present in the crystals. A closely related type of polymorphism in space group P21 was reported for diosgenone [(25R)-spirost-4-en-3-one, C27H40O3; Hernández Linares et al., 2012[Hernández Linares, M.-G., Guerrero-Luna, G., Bernès, S., Flores-Alamo, M. & Fernández-Herrera, M. A. (2012). Acta Cryst. E68, o2358.]], which crystallizes with Z′ = 2. In that case, one of the independent mol­ecules in the asymmetric unit changes its orientation, and unit-cell parameters vary considerably between polymorphs, even though crystal symmetry is retained.

[Figure 3]
Figure 3
Comparison of the crystal structure for the new polymorph (left) with that previously reported (right). One mol­ecule is chosen arbitrarily as the asymmetric unit and displayed in ball-and-stick style, in order to have roughly the same orientation with respect to cell axis in both forms. Projections are viewed down crystallographic a axis.

Synthesis and crystallization

To a solution of diosgenin (2.0 g, 4.8 mmol) in 20 mL of CH2Cl2 and 40 mL of acetone was slowly added a solution of Jones reagent (10 mL: 1.8 g, 18.4 mmol of CrO3 in H2O/H2SO4 8:2) over 10 min in an ice bath. The reaction was kept under stirring at room temperature and monitored by TLC until a change in colour (orange to green) was observed. Subsequently, 2-propanol was added to quench unreacted Jones reagent, and the reaction mixture was poured into a separating funnel and extracted with ethyl acetate. The solution was washed with distilled H2O, neutralized with NaHCO3, separated, dried over Na2SO4 and evaporated to dryness under reduced pressure. The purification was carried out on a chromatographic column with silica gel (hexa­ne:EtOAc, 9:1), affording 1.63 g (80% yield) of the title compound, while remaining solid was identified as starting material (20%). Single crystals for the compound of inter­est were obtained by slow evaporation of the corresponding chromatographic fraction.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(25R)-Spirost-4-en-3,6-dione top
Crystal data top
C27H38O4Dx = 1.204 Mg m3
Mr = 426.57Melting point: 453 K
Orthorhombic, P212121Ag Kα radiation, λ = 0.56083 Å
a = 7.4768 (3) ÅCell parameters from 25730 reflections
b = 16.2190 (9) Åθ = 2.3–25.0°
c = 19.4101 (10) ŵ = 0.05 mm1
V = 2353.8 (2) Å3T = 295 K
Z = 4Prism, yellow
F(000) = 9280.50 × 0.40 × 0.15 mm
Data collection top
Stoe Stadivari
diffractometer
5150 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source3345 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.073
Detector resolution: 5.81 pixels mm-1θmax = 21.0°, θmin = 2.3°
ω scansh = 99
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 2020
Tmin = 0.471, Tmax = 1.000l = 2424
47703 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
5150 reflectionsΔρmax = 0.23 e Å3
285 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0162 (19)
Primary atom site location: dual
Special details top

Refinement. All H atoms were placed in calculated positions and refined as riding to their carrier C-atoms (Sheldrick, 2015b).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0439 (3)0.97069 (16)0.37910 (14)0.0522 (7)
H1A0.0710250.9432630.3826190.063*
H1B0.0905670.9771850.4254170.063*
C20.0159 (4)1.05554 (17)0.34782 (16)0.0606 (7)
H2A0.0605291.0502860.3076870.073*
H2B0.0458021.0900350.3810140.073*
C30.1843 (4)1.09697 (19)0.32713 (19)0.0755 (9)
O30.1874 (4)1.16980 (15)0.3114 (2)0.1337 (13)
C40.3462 (4)1.04615 (18)0.32287 (16)0.0643 (8)
H40.4556971.0725240.3172330.077*
C50.3444 (3)0.96390 (17)0.32668 (13)0.0479 (6)
C60.5191 (3)0.91992 (17)0.31852 (13)0.0504 (7)
O60.6482 (2)0.95624 (13)0.29488 (12)0.0731 (6)
C70.5344 (3)0.83377 (17)0.34334 (15)0.0548 (7)
H7A0.5857280.8349320.3892240.066*
H7B0.6182890.8050130.3137430.066*
C80.3615 (3)0.78329 (14)0.34624 (13)0.0423 (6)
H80.3265050.7684610.2991950.051*
C90.2114 (3)0.83575 (14)0.37883 (12)0.0406 (6)
H90.2566000.8535850.4238120.049*
C100.1720 (3)0.91550 (15)0.33790 (12)0.0415 (6)
C110.0418 (3)0.78446 (15)0.39364 (15)0.0518 (7)
H11A0.0413580.8178450.4199560.062*
H11B0.0151800.7706310.3502620.062*
C120.0794 (3)0.70518 (16)0.43324 (14)0.0513 (7)
H12A0.1221400.7187910.4790360.062*
H12B0.0306780.6740980.4381010.062*
C130.2181 (3)0.65227 (14)0.39675 (12)0.0394 (6)
C140.3879 (3)0.70496 (15)0.38761 (13)0.0420 (6)
H140.4214770.7229610.4340370.050*
C150.5293 (3)0.64196 (16)0.36631 (15)0.0549 (7)
H15A0.5172890.6271420.3181160.066*
H15B0.6490950.6627470.3744350.066*
C160.4875 (3)0.56896 (16)0.41304 (14)0.0499 (6)
H160.5725690.5666200.4514080.060*
O160.4847 (2)0.49248 (10)0.37698 (9)0.0516 (5)
C170.2937 (3)0.58071 (16)0.44046 (13)0.0450 (6)
H170.2985340.5977790.4888570.054*
C180.1451 (3)0.62202 (17)0.32730 (13)0.0537 (7)
H18A0.0331820.5943180.3344070.081*
H18B0.2291100.5845240.3068350.081*
H18C0.1274870.6682800.2972040.081*
C190.0918 (3)0.89664 (18)0.26624 (13)0.0535 (7)
H19A0.0244070.8723280.2716900.080*
H19B0.1685380.8589880.2421080.080*
H19C0.0814580.9468910.2404110.080*
C200.2104 (3)0.49410 (16)0.43591 (14)0.0498 (7)
H200.1237110.4944550.3980320.060*
C210.1124 (4)0.46656 (19)0.50102 (16)0.0696 (9)
H21A0.1923880.4694270.5396420.104*
H21B0.0715250.4108600.4953630.104*
H21C0.0118070.5020700.5089750.104*
C220.3684 (3)0.43940 (16)0.41412 (14)0.0477 (6)
C230.3208 (3)0.36802 (17)0.36779 (15)0.0570 (7)
H23A0.2706370.3888370.3251160.068*
H23B0.2309780.3340860.3900460.068*
C240.4848 (4)0.31596 (18)0.35199 (15)0.0627 (8)
H24A0.4492560.2676180.3259400.075*
H24B0.5675010.3475840.3240020.075*
C250.5769 (4)0.28929 (18)0.41780 (16)0.0649 (8)
H250.4960660.2524660.4429520.078*
C260.6121 (4)0.36431 (18)0.46214 (15)0.0629 (8)
H26A0.6633720.3466870.5056170.076*
H26B0.6989090.3993180.4392670.076*
O260.4536 (2)0.41104 (11)0.47543 (9)0.0548 (5)
C270.7500 (5)0.2427 (2)0.4031 (2)0.0991 (13)
H27A0.7256900.1973300.3727420.149*
H27B0.7986570.2221110.4455730.149*
H27C0.8346580.2791810.3818800.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0547 (13)0.0515 (16)0.0503 (16)0.0115 (12)0.0024 (13)0.0007 (13)
C20.0636 (16)0.0550 (17)0.0631 (18)0.0144 (14)0.0016 (14)0.0002 (15)
C30.074 (2)0.0483 (19)0.104 (3)0.0016 (15)0.0102 (19)0.0028 (18)
O30.0990 (19)0.0509 (15)0.251 (4)0.0007 (14)0.004 (2)0.020 (2)
C40.0515 (14)0.0590 (19)0.082 (2)0.0071 (13)0.0075 (14)0.0043 (17)
C50.0440 (12)0.0564 (16)0.0432 (16)0.0002 (11)0.0065 (11)0.0027 (13)
C60.0366 (12)0.0634 (18)0.0514 (16)0.0059 (12)0.0057 (11)0.0028 (13)
O60.0471 (10)0.0768 (14)0.0954 (16)0.0070 (10)0.0063 (10)0.0133 (13)
C70.0341 (11)0.0633 (18)0.0669 (18)0.0033 (11)0.0019 (12)0.0072 (15)
C80.0340 (11)0.0520 (15)0.0409 (14)0.0035 (10)0.0014 (10)0.0007 (12)
C90.0375 (11)0.0466 (15)0.0378 (14)0.0042 (10)0.0018 (10)0.0049 (12)
C100.0379 (11)0.0494 (15)0.0373 (14)0.0045 (10)0.0013 (10)0.0007 (12)
C110.0379 (11)0.0494 (15)0.0682 (18)0.0069 (11)0.0106 (12)0.0001 (14)
C120.0440 (13)0.0485 (16)0.0615 (18)0.0040 (11)0.0125 (12)0.0017 (14)
C130.0333 (10)0.0446 (14)0.0402 (14)0.0035 (10)0.0002 (10)0.0049 (12)
C140.0353 (11)0.0483 (15)0.0424 (15)0.0027 (10)0.0042 (10)0.0033 (12)
C150.0358 (11)0.0571 (17)0.0718 (19)0.0073 (11)0.0039 (12)0.0051 (15)
C160.0401 (12)0.0511 (16)0.0584 (16)0.0047 (12)0.0068 (12)0.0021 (14)
O160.0461 (9)0.0493 (11)0.0593 (11)0.0051 (8)0.0042 (8)0.0001 (9)
C170.0418 (11)0.0505 (15)0.0426 (14)0.0018 (11)0.0016 (11)0.0027 (12)
C180.0539 (14)0.0549 (16)0.0524 (17)0.0021 (13)0.0117 (12)0.0033 (13)
C190.0458 (13)0.0684 (18)0.0462 (16)0.0077 (12)0.0069 (12)0.0036 (14)
C200.0444 (13)0.0497 (16)0.0553 (17)0.0040 (12)0.0008 (12)0.0018 (14)
C210.0601 (16)0.0624 (19)0.086 (2)0.0003 (14)0.0207 (16)0.0036 (17)
C220.0464 (12)0.0491 (16)0.0478 (15)0.0022 (12)0.0022 (12)0.0003 (13)
C230.0549 (14)0.0574 (17)0.0586 (18)0.0007 (13)0.0019 (13)0.0072 (15)
C240.0678 (18)0.0545 (17)0.0657 (19)0.0029 (14)0.0051 (15)0.0107 (15)
C250.0748 (19)0.0535 (18)0.066 (2)0.0132 (14)0.0097 (16)0.0111 (16)
C260.0606 (16)0.067 (2)0.061 (2)0.0149 (15)0.0047 (14)0.0072 (16)
O260.0579 (10)0.0583 (11)0.0483 (11)0.0113 (9)0.0048 (9)0.0006 (9)
C270.111 (3)0.092 (3)0.095 (3)0.052 (2)0.007 (2)0.011 (2)
Geometric parameters (Å, º) top
C1—C21.519 (4)C15—H15A0.9700
C1—C101.536 (3)C15—H15B0.9700
C1—H1A0.9700C16—O161.424 (3)
C1—H1B0.9700C16—C171.556 (3)
C2—C31.483 (4)C16—H160.9800
C2—H2A0.9700O16—C221.420 (3)
C2—H2B0.9700C17—C201.539 (4)
C3—O31.220 (4)C17—H170.9800
C3—C41.467 (4)C18—H18A0.9600
C4—C51.336 (4)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C5—C61.497 (3)C19—H19A0.9600
C5—C101.525 (3)C19—H19B0.9600
C6—O61.220 (3)C19—H19C0.9600
C6—C71.482 (4)C20—C211.528 (4)
C7—C81.531 (3)C20—C221.537 (3)
C7—H7A0.9700C20—H200.9800
C7—H7B0.9700C21—H21A0.9600
C8—C141.516 (3)C21—H21B0.9600
C8—C91.544 (3)C21—H21C0.9600
C8—H80.9800C22—O261.426 (3)
C9—C111.543 (3)C22—C231.508 (3)
C9—C101.546 (3)C23—C241.520 (4)
C9—H90.9800C23—H23A0.9700
C10—C191.545 (3)C23—H23B0.9700
C11—C121.524 (3)C24—C251.514 (4)
C11—H11A0.9700C24—H24A0.9700
C11—H11B0.9700C24—H24B0.9700
C12—C131.521 (3)C25—C261.513 (4)
C12—H12A0.9700C25—C271.526 (4)
C12—H12B0.9700C25—H250.9800
C13—C181.535 (3)C26—O261.430 (3)
C13—C141.540 (3)C26—H26A0.9700
C13—C171.545 (3)C26—H26B0.9700
C14—C151.527 (3)C27—H27A0.9600
C14—H140.9800C27—H27B0.9600
C15—C161.524 (4)C27—H27C0.9600
C2—C1—C10113.9 (2)C14—C15—H15B111.3
C2—C1—H1A108.8H15A—C15—H15B109.2
C10—C1—H1A108.8O16—C16—C15112.8 (2)
C2—C1—H1B108.8O16—C16—C17105.13 (19)
C10—C1—H1B108.8C15—C16—C17107.42 (19)
H1A—C1—H1B107.7O16—C16—H16110.4
C3—C2—C1113.7 (2)C15—C16—H16110.4
C3—C2—H2A108.8C17—C16—H16110.4
C1—C2—H2A108.8C22—O16—C16106.70 (18)
C3—C2—H2B108.8C20—C17—C13120.4 (2)
C1—C2—H2B108.8C20—C17—C16104.2 (2)
H2A—C2—H2B107.7C13—C17—C16104.2 (2)
O3—C3—C4120.9 (3)C20—C17—H17109.1
O3—C3—C2121.5 (3)C13—C17—H17109.1
C4—C3—C2117.5 (3)C16—C17—H17109.1
C5—C4—C3123.3 (3)C13—C18—H18A109.5
C5—C4—H4118.3C13—C18—H18B109.5
C3—C4—H4118.3H18A—C18—H18B109.5
C4—C5—C6117.4 (2)C13—C18—H18C109.5
C4—C5—C10122.0 (2)H18A—C18—H18C109.5
C6—C5—C10120.5 (2)H18B—C18—H18C109.5
O6—C6—C7121.1 (2)C10—C19—H19A109.5
O6—C6—C5120.0 (2)C10—C19—H19B109.5
C7—C6—C5118.8 (2)H19A—C19—H19B109.5
C6—C7—C8116.8 (2)C10—C19—H19C109.5
C6—C7—H7A108.1H19A—C19—H19C109.5
C8—C7—H7A108.1H19B—C19—H19C109.5
C6—C7—H7B108.1C21—C20—C22115.3 (2)
C8—C7—H7B108.1C21—C20—C17114.4 (2)
H7A—C7—H7B107.3C22—C20—C17103.40 (19)
C14—C8—C7110.98 (19)C21—C20—H20107.8
C14—C8—C9109.83 (19)C22—C20—H20107.8
C7—C8—C9109.53 (19)C17—C20—H20107.8
C14—C8—H8108.8C20—C21—H21A109.5
C7—C8—H8108.8C20—C21—H21B109.5
C9—C8—H8108.8H21A—C21—H21B109.5
C11—C9—C8112.12 (19)C20—C21—H21C109.5
C11—C9—C10112.97 (17)H21A—C21—H21C109.5
C8—C9—C10112.89 (19)H21B—C21—H21C109.5
C11—C9—H9106.1O16—C22—O26110.21 (18)
C8—C9—H9106.1O16—C22—C23107.9 (2)
C10—C9—H9106.1O26—C22—C23110.8 (2)
C5—C10—C1107.5 (2)O16—C22—C20105.09 (19)
C5—C10—C19107.54 (19)O26—C22—C20107.5 (2)
C1—C10—C19110.02 (19)C23—C22—C20115.2 (2)
C5—C10—C9110.05 (18)C22—C23—C24110.9 (2)
C1—C10—C9109.80 (19)C22—C23—H23A109.5
C19—C10—C9111.8 (2)C24—C23—H23A109.5
C12—C11—C9113.40 (19)C22—C23—H23B109.5
C12—C11—H11A108.9C24—C23—H23B109.5
C9—C11—H11A108.9H23A—C23—H23B108.0
C12—C11—H11B108.9C25—C24—C23110.8 (2)
C9—C11—H11B108.9C25—C24—H24A109.5
H11A—C11—H11B107.7C23—C24—H24A109.5
C13—C12—C11111.5 (2)C25—C24—H24B109.5
C13—C12—H12A109.3C23—C24—H24B109.5
C11—C12—H12A109.3H24A—C24—H24B108.1
C13—C12—H12B109.3C26—C25—C24109.2 (2)
C11—C12—H12B109.3C26—C25—C27110.9 (3)
H12A—C12—H12B108.0C24—C25—C27111.7 (3)
C12—C13—C18110.30 (19)C26—C25—H25108.3
C12—C13—C14107.60 (19)C24—C25—H25108.3
C18—C13—C14111.7 (2)C27—C25—H25108.3
C12—C13—C17114.7 (2)O26—C26—C25112.6 (2)
C18—C13—C17111.9 (2)O26—C26—H26A109.1
C14—C13—C17100.30 (17)C25—C26—H26A109.1
C8—C14—C15120.5 (2)O26—C26—H26B109.1
C8—C14—C13114.77 (18)C25—C26—H26B109.1
C15—C14—C13103.32 (19)H26A—C26—H26B107.8
C8—C14—H14105.7C22—O26—C26113.00 (19)
C15—C14—H14105.7C25—C27—H27A109.5
C13—C14—H14105.7C25—C27—H27B109.5
C16—C15—C14102.52 (19)H27A—C27—H27B109.5
C16—C15—H15A111.3C25—C27—H27C109.5
C14—C15—H15A111.3H27A—C27—H27C109.5
C16—C15—H15B111.3H27B—C27—H27C109.5
C10—C1—C2—C347.1 (3)C17—C13—C14—C8179.5 (2)
C1—C2—C3—O3168.3 (4)C12—C13—C14—C15167.6 (2)
C1—C2—C3—C414.7 (4)C18—C13—C14—C1571.3 (2)
O3—C3—C4—C5166.9 (4)C17—C13—C14—C1547.4 (2)
C2—C3—C4—C510.1 (5)C8—C14—C15—C16170.6 (2)
C3—C4—C5—C6177.4 (3)C13—C14—C15—C1640.9 (2)
C3—C4—C5—C101.7 (5)C14—C15—C16—O16133.7 (2)
C4—C5—C6—O615.3 (4)C14—C15—C16—C1718.3 (3)
C10—C5—C6—O6163.9 (2)C15—C16—O16—C22153.07 (18)
C4—C5—C6—C7161.2 (3)C17—C16—O16—C2236.3 (2)
C10—C5—C6—C719.6 (3)C12—C13—C17—C2094.0 (3)
O6—C6—C7—C8157.6 (3)C18—C13—C17—C2032.6 (3)
C5—C6—C7—C825.9 (4)C14—C13—C17—C20151.1 (2)
C6—C7—C8—C14166.6 (2)C12—C13—C17—C16149.8 (2)
C6—C7—C8—C945.2 (3)C18—C13—C17—C1683.7 (2)
C14—C8—C9—C1149.0 (3)C14—C13—C17—C1634.9 (2)
C7—C8—C9—C11171.1 (2)O16—C16—C17—C2017.4 (3)
C14—C8—C9—C10177.97 (19)C15—C16—C17—C20137.7 (2)
C7—C8—C9—C1059.9 (3)O16—C16—C17—C13109.7 (2)
C4—C5—C10—C129.0 (3)C15—C16—C17—C1310.7 (3)
C6—C5—C10—C1151.8 (2)C13—C17—C20—C21111.6 (3)
C4—C5—C10—C1989.4 (3)C16—C17—C20—C21132.2 (2)
C6—C5—C10—C1989.7 (3)C13—C17—C20—C22122.2 (2)
C4—C5—C10—C9148.6 (3)C16—C17—C20—C226.0 (3)
C6—C5—C10—C932.2 (3)C16—O16—C22—O2674.8 (2)
C2—C1—C10—C552.6 (3)C16—O16—C22—C23164.07 (18)
C2—C1—C10—C1964.3 (3)C16—O16—C22—C2040.7 (2)
C2—C1—C10—C9172.3 (2)C21—C20—C22—O16153.3 (2)
C11—C9—C10—C5178.7 (2)C17—C20—C22—O1627.6 (2)
C8—C9—C10—C552.8 (2)C21—C20—C22—O2635.9 (3)
C11—C9—C10—C160.5 (3)C17—C20—C22—O2689.8 (2)
C8—C9—C10—C1171.03 (19)C21—C20—C22—C2388.2 (3)
C11—C9—C10—C1961.9 (2)C17—C20—C22—C23146.2 (2)
C8—C9—C10—C1966.6 (2)O16—C22—C23—C2465.5 (3)
C8—C9—C11—C1250.4 (3)O26—C22—C23—C2455.2 (3)
C10—C9—C11—C12179.3 (2)C20—C22—C23—C24177.5 (2)
C9—C11—C12—C1355.1 (3)C22—C23—C24—C2553.6 (3)
C11—C12—C13—C1865.2 (3)C23—C24—C25—C2652.4 (3)
C11—C12—C13—C1456.8 (3)C23—C24—C25—C27175.5 (3)
C11—C12—C13—C17167.5 (2)C24—C25—C26—O2654.8 (3)
C7—C8—C14—C1558.7 (3)C27—C25—C26—O26178.3 (3)
C9—C8—C14—C15179.9 (2)O16—C22—O26—C2661.5 (3)
C7—C8—C14—C13176.8 (2)C23—C22—O26—C2657.9 (3)
C9—C8—C14—C1355.6 (3)C20—C22—O26—C26175.5 (2)
C12—C13—C14—C859.3 (3)C25—C26—O26—C2258.6 (3)
C18—C13—C14—C861.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O6i0.972.643.474 (4)144
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Funding information

Funding for this research was provided by: Consejo Nacional de Ciencia y Tecnología (grant No. 268178; grant No. 294412).

References

First citationAnthony, A., Jaskolski, M., Nangia, A. & Desiraju, G. R. (1998). Acta Cryst. C54, 1894–1898.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDjerassi, C. (1992). Steroids, 57, 631–641.  CrossRef PubMed CAS Web of Science Google Scholar
First citationDuax, W. L., Griffin, J. F. & Ghosh, D. (1994). In Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 605–633. New York: VCH.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHernández Linares, M.-G., Guerrero-Luna, G., Bernès, S., Flores-Alamo, M. & Fernández-Herrera, M. A. (2012). Acta Cryst. E68, o2358.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRajnikant, V., Goswami, K. N., Gupta, V. K., Bhutani, K. K. & Magotra, D. K. (2000). Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C, 12, 101–110.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds