metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis(di­cyclo­hexyl­amido)­zirconium(IV)

CROSSMARK_Color_square_no_text.svg

aCarl von Ossietzky Universität Oldenburg, Fakultät V, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26129 Oldenburg, Germany
*Correspondence e-mail: ruediger.beckhaus@uol.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 July 2020; accepted 20 August 2020; online 4 September 2020)

The reaction of ZrCl4 with three equivalents of LiNCy2 (Cy is cyclo­hex­yl) resulted in the formation of tris­(di­cyclo­hexyl­amido)­zirconium chloride and the title compound, [Zr(C12H22N)4]. The latter is isotypic with its cerium(IV) analogue and crystallizes with three independent mol­ecules in the asymmetric unit. One mol­ecule is located about a twofold rotation axis, and the other two on fourfold inversion axes. In each mol­ecule, the ZrIV atom has a distorted tetra­hedral coordination environment. The crystal under investigation was twinned by inversion in a 1:1 ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Amido complexes of group 4 metals play an important role in synthetic chemistry. They are widely used as catalysts in hydro­amino­alkyl­ation reactions (Roesky et al., 2009[Roesky, P. W. (2009). Angew. Chem. Int. Ed. 48, 4892-4894.]) or in the catalysis of olefin polymerization reactions (Shafir & Arnold, 2001[Shafir, A. & Arnold, A. (2001). J. Am. Chem. Soc. 123, 9212-9213.]; Motolko et al., 2017[Motolko, K. S. A., Price, J. S., Emslie, D. J. H., Jenkins, H. A. & Britten, J. F. (2017). Organometallics, 36, 3084-3093.]). Tetra­kis(di­alkyl­amido)­zirconium(IV) compounds are commonly known as precursors of a variety of more complex zirconium-containing compounds (Diamond et al., 1995[Diamond, G. M., Rodewald, S. & Jordan, R. F. (1995). Organometallics, 14, 5-7.], 1996[Diamond, G. M., Jordan, R. F. & Petersen, J. L. (1996). Organometallics, 15, 4030-4037.]). Amido ligands are known for their ability to stabilize electron-deficient transition-metal complexes by N(pπ)—M(dπ) inter­actions (Yu et al., 2004[Yu, X., Bi, S., Guzei, I. A., Lin, Z. & Xue, Z.-L. (2004). Inorg. Chem. 43, 7111-7119.]). Combined with the possibility of double substitution at the nitro­gen atom, which allows a broad variety in ligand design (Kasani et al., 1997[Kasani, A., Gambarotta, S. & Bensimon, C. (1997). Can. J. Chem. 75, 1494-1499.]), amido ligands appear to be an inter­esting alternative to Cp-based ligands (Kempe, 2000[Kempe, R. (2000). Angew. Chem. Int. Ed. 39, 468-493.]; Guérin et al., 2000[Guérin, F., Stewart, J. C., Beddie, C. & Stephan, D. W. (2000). Organometallics, 19, 2994-3000.]). In particular, di­cyclo­hexyl­amine seems to be useful due to its steric demand that is similar to cyclo­penta­dienyl ligands (Duan et al., 1997[Duan, Z., Thomas, L. M. & Verkade, J. G. (1997). Polyhedron, 16, 635-641.]). Additionally, di­cyclo­hexyl­amido complexes of group 4 metals show close contacts between the central metal cation and the carbon atom of the CH group of one di­cyclo­hexyl­amido ligand, which is an indicator for attractive agostic inter­actions (Duan et al., 1997[Duan, Z., Thomas, L. M. & Verkade, J. G. (1997). Polyhedron, 16, 635-641.]; Adler et al., 2014b[Adler, C., Bekurdts, A., Haase, D., Saak, W., Schmidtmann, M. & Beckhaus, R. (2014b). Eur. J. Inorg. Chem. pp. 1289-1302.]). The understanding of these inter­actions is very important (Scherer et al., 2010[Scherer, W., Wolstenholme, D. J., Herz, V., Eickerling, G., Brück, A., Benndorf, P. & Roesky, P. W. (2010). Angew. Chem. Int. Ed. 49, 2242-2246.]) because they are considered to be inter­mediates in C—H bond-activation processes.

The title compound, 1, crystallizes in the tetra­gonal space group P[\overline{4}] and is isostructural with tetra­kis­(di­cyclo­hexyl­amido)­cerium(IV) (Hitchcock et al., 2006[Hitchcock, P. B., Lappert, M. F. & Protchenko, A. V. (2006). Chem. Commun. pp. 3546-3548.]). The structure of 1 exhibits three independent mol­ecules, two of which lie on a fourfold inversion axis (Zr2, Zr3) as well as one (Zr1) lying on a twofold rotation axis. One of these mol­ecules is shown in Fig. 1[link]. In each mol­ecule, the zirconium(IV) atom is coordinated in a slightly distorted tetra­hedral fashion with bond angles around zirconium(IV) ranging from 104.53 (8) to 112.00 (4)°. The nitro­gen atoms have a trigonal planar environment (sum of angles: N1: 359.2°, N2: 359.9°, N3: 359.6°, N4: 359.6°). The mean Zr—N bond length of 2.094 Å is slightly elongated compared to tris­(di­cyclo­hexyl­amido)­zirconium(IV) chloride (mean 2.044 Å; Adler et al., 2014a[Adler, C., Tomaschun, G., Schmidtmann, M. & Beckhaus, R. (2014a). Organometallics, 33, 7011-7014.]) but still short for a Zr—N single bond, indicating N(pπ)—Zr(dπ) inter­actions (Pyykkö & Atsumi et al., 2009[Pyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770-12779.]). The slight elongation can either be caused by a greater steric hindrance or by a less elctrophilic central metal atom in complex 1. The large Zr—N—C bond angles [e.g. Zr3—N4—C37 = 138.00 (10)°, Zr3—N4—C43 = 108.15 (9)°] indicate that agostic inter­actions are not present.

[Figure 1]
Figure 1
Representative for the three different mol­ecules of 1 in the asymmetric unit, the mol­ecular structure of complex Zr3 is displayed. Displacement ellipsoids correspond to the 50% probability level. H atoms have been omitted for clarity.

No significant supra­molecular features are observed in the crystal structure of 1. The molecular packing (Fig. 2[link]) appears to be dominated by van der Waals inter­actions only.

[Figure 2]
Figure 2
A view along the c axis showing the packing of individual mol­ecules in the crystal of 1. No significant supra­molecular features can be observed. Colour code: C grey, N blue, Zr brown spheres.

Synthesis and crystallization

All reactions were carried out under a dry nitro­gen atmosphere using Schlenk techniques or in a glove box. Lithium di­cyclo­hexyl­amide was synthesized by treatment of di­cyclo­hexyl­amine with one equivalent of n-butyl­lithium (2.5 M in n-hexa­ne). Solvents were dried according to standard procedures over Na/K alloy with benzo­phenone as indicator and distilled under a nitro­gen atmosphere.

Zirconiumtetra­chloride and three equivalents of lithium di­cyclo­hexyl­amide were suspended in 50 ml of n-hexane. After 16 h the reaction mixture was filtered hot through a P4-frit and stored at 243 K overnight. The solvent was deca­nted. After renewed storage of the mother liquor at 243 K, the title compound 1 crystallized in form of colourless blocks as the minor product, besides the mainproduct tris­(di­cyclo­hexyl­amido)­zirconium(IV) chloride.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystal under investigation was twinned by inversion in a 1:1 ratio.

Table 1
Experimental details

Crystal data
Chemical formula [Zr(C12H22N)4]
Mr 812.44
Crystal system, space group Tetragonal, P[\overline{4}]
Temperature (K) 100
a, c (Å) 21.0321 (7), 10.2412 (5)
V3) 4530.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.28
Crystal size (mm) 0.15 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker Photon III CPAD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.936, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 350034, 21937, 20806
Rint 0.047
(sin θ/λ)max−1) 0.833
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.080, 1.07
No. of reflections 21937
No. of parameters 479
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.50, −0.42
Absolute structure Refined as an inversion twin.
Absolute structure parameter 0.491 (17)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis(dicyclohexylamido)zirconium(IV) top
Crystal data top
[Zr(C12H22N)4]Dx = 1.191 Mg m3
Mr = 812.44Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4Cell parameters from 9855 reflections
a = 21.0321 (7) Åθ = 2.2–36.3°
c = 10.2412 (5) ŵ = 0.28 mm1
V = 4530.2 (4) Å3T = 100 K
Z = 4Block, colourless
F(000) = 17760.15 × 0.11 × 0.07 mm
Data collection top
Bruker Photon III CPAD
diffractometer
20806 reflections with I > 2σ(I)
Radiation source: IµS microfocusRint = 0.047
φ and ω scansθmax = 36.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 3435
Tmin = 0.936, Tmax = 1.000k = 3535
350034 measured reflectionsl = 1717
21937 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.045P)2 + 0.9P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
21937 reflectionsΔρmax = 2.50 e Å3
479 parametersΔρmin = 0.42 e Å3
0 restraintsAbsolute structure: Refined as an inversion twin.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.491 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.5000000.0000000.15631 (2)0.00900 (3)
N10.42803 (6)0.03193 (6)0.03168 (12)0.01353 (19)
N20.53112 (6)0.07285 (6)0.27997 (12)0.01322 (19)
C10.39758 (6)0.02236 (7)0.03612 (14)0.0134 (2)
H10.4130640.0616680.0086810.016*
C20.41569 (7)0.02952 (7)0.18129 (15)0.0163 (2)
H2A0.4017430.0087700.2296710.020*
H2B0.4625030.0326260.1890910.020*
C30.38522 (7)0.08849 (8)0.24255 (17)0.0195 (3)
H3A0.3966900.0905390.3362090.023*
H3B0.4021760.1270590.1994670.023*
C40.31327 (8)0.08745 (9)0.22921 (17)0.0223 (3)
H4A0.2952610.1270560.2661070.027*
H4B0.2957840.0511090.2790630.027*
C50.29407 (8)0.08151 (9)0.08555 (17)0.0217 (3)
H5A0.2472310.0781310.0789330.026*
H5B0.3075810.1200800.0375980.026*
C60.32481 (7)0.02284 (8)0.02371 (16)0.0180 (2)
H6A0.3132330.0212100.0699320.022*
H6B0.3074920.0157790.0660200.022*
C70.40759 (7)0.09482 (7)0.01821 (15)0.0164 (2)
H70.3875750.0877860.1055950.020*
C80.35773 (8)0.12664 (8)0.06910 (16)0.0203 (3)
H8A0.3195170.0992380.0735680.024*
H8B0.3749950.1308460.1586140.024*
C90.33865 (11)0.19220 (10)0.0188 (2)0.0315 (4)
H9A0.3083030.2119500.0805870.038*
H9B0.3171190.1877390.0666530.038*
C100.39710 (13)0.23528 (10)0.0037 (2)0.0360 (5)
H10A0.3839060.2767660.0330780.043*
H10B0.4163210.2430680.0904880.043*
C110.44601 (12)0.20469 (9)0.0856 (2)0.0321 (4)
H11A0.4843830.2318960.0892010.039*
H11B0.4283580.2017100.1749970.039*
C120.46478 (8)0.13813 (7)0.03852 (17)0.0205 (3)
H12A0.4936000.1185370.1035130.025*
H12B0.4883760.1419230.0447630.025*
C130.47597 (7)0.10288 (7)0.34634 (14)0.0134 (2)
H130.4371440.0866120.3009530.016*
C140.47425 (7)0.17561 (7)0.33277 (15)0.0163 (2)
H14A0.4767750.1869160.2390750.020*
H14B0.5119750.1938440.3768080.020*
C150.41395 (8)0.20536 (8)0.39145 (17)0.0187 (3)
H15A0.4169670.2522640.3860740.022*
H15B0.3764910.1917990.3399540.022*
C160.40488 (8)0.18573 (8)0.53359 (17)0.0206 (3)
H16A0.4388600.2049580.5875850.025*
H16B0.3635110.2019180.5655470.025*
C170.40676 (8)0.11366 (7)0.54837 (17)0.0190 (3)
H17A0.3696480.0948440.5031910.023*
H17B0.4037960.1024880.6420770.023*
C180.46806 (7)0.08557 (7)0.49133 (15)0.0163 (2)
H18A0.4671680.0387260.5006370.020*
H18B0.5050040.1017980.5411090.020*
C190.59346 (7)0.09533 (7)0.32831 (15)0.0140 (2)
H190.5857890.1181390.4125210.017*
C200.62529 (7)0.14248 (7)0.23477 (16)0.0165 (2)
H20A0.6299730.1223110.1479590.020*
H20B0.5975600.1801890.2244990.020*
C210.69080 (8)0.16400 (8)0.28315 (17)0.0199 (3)
H21A0.7105600.1919810.2168600.024*
H21B0.6857180.1888670.3645620.024*
C220.73425 (7)0.10744 (8)0.30895 (18)0.0201 (3)
H22A0.7752880.1225740.3446520.024*
H22B0.7428730.0848430.2260110.024*
C230.70308 (7)0.06202 (8)0.40578 (16)0.0190 (3)
H23A0.6979080.0837490.4908760.023*
H23B0.7310860.0247600.4192360.023*
C240.63806 (7)0.03938 (7)0.35741 (16)0.0165 (2)
H24A0.6184500.0117760.4245510.020*
H24B0.6437590.0137730.2771510.020*
Zr20.0000000.0000000.5000000.00830 (5)
N30.02989 (5)0.07316 (5)0.37512 (13)0.01094 (19)
C250.02635 (6)0.10124 (6)0.30879 (14)0.01102 (19)
H250.0647000.0834850.3535380.013*
C260.03299 (7)0.08426 (6)0.16306 (13)0.0131 (2)
H26A0.0042740.1007980.1147540.016*
H26B0.0336040.0374450.1531590.016*
C270.09397 (8)0.11227 (7)0.10426 (16)0.0173 (2)
H27A0.0962200.1012430.0103910.021*
H27B0.1313710.0932950.1481580.021*
C280.09609 (8)0.18446 (7)0.11954 (17)0.0193 (3)
H28A0.0610170.2038500.0688390.023*
H28B0.1367790.2008440.0844770.023*
C290.08982 (8)0.20312 (7)0.26268 (16)0.0170 (2)
H29A0.1277950.1883540.3110980.020*
H29B0.0878980.2500280.2698130.020*
C300.02993 (7)0.17417 (6)0.32438 (15)0.0136 (2)
H30A0.0291150.1848460.4185150.016*
H30B0.0080680.1935170.2834400.016*
C310.09123 (6)0.09799 (6)0.32725 (14)0.0122 (2)
H310.0825120.1202100.2428050.015*
C320.12070 (7)0.14711 (7)0.41949 (15)0.0145 (2)
H32A0.1268360.1275230.5064770.017*
H32B0.0909240.1832280.4297400.017*
C330.18483 (7)0.17221 (7)0.36974 (18)0.0187 (3)
H33A0.1781240.1963000.2878360.022*
H33B0.2031370.2016310.4351690.022*
C340.23144 (7)0.11790 (8)0.34465 (16)0.0188 (3)
H34A0.2714480.1350680.3079150.023*
H34B0.2415760.0962910.4279720.023*
C350.20235 (7)0.07030 (8)0.24929 (16)0.0180 (3)
H35A0.2322140.0344450.2366730.022*
H35B0.1960870.0912190.1636470.022*
C360.13850 (7)0.04449 (7)0.29786 (15)0.0150 (2)
H36A0.1202300.0159800.2307240.018*
H36B0.1455250.0191460.3780320.018*
Zr30.5000000.5000000.5000000.01251 (5)
N40.49034 (6)0.42185 (6)0.62514 (14)0.0149 (2)
C370.52996 (7)0.36924 (7)0.67418 (16)0.0166 (2)
H370.5098700.3534800.7565450.020*
C380.59725 (8)0.39077 (8)0.70820 (17)0.0202 (3)
H38A0.5950890.4238260.7768850.024*
H38B0.6171120.4100360.6299970.024*
C390.63894 (8)0.33570 (9)0.75637 (18)0.0236 (3)
H39A0.6826550.3514830.7717250.028*
H39B0.6220670.3198970.8405790.028*
C400.64117 (9)0.28090 (9)0.65863 (18)0.0237 (3)
H40A0.6661740.2453120.6956120.028*
H40B0.6623380.2951500.5773970.028*
C410.57382 (9)0.25823 (8)0.62754 (19)0.0233 (3)
H41A0.5544840.2396630.7070060.028*
H41B0.5756400.2246340.5599280.028*
C420.53237 (8)0.31323 (7)0.57869 (17)0.0194 (3)
H42A0.5491820.3283240.4938870.023*
H42B0.4886200.2974260.5638830.023*
C430.42730 (7)0.42635 (7)0.69037 (16)0.0168 (2)
H430.4034590.4606020.6435900.020*
C440.38717 (8)0.36572 (8)0.67626 (18)0.0211 (3)
H44A0.4090260.3302650.7212930.025*
H44B0.3838670.3545790.5825770.025*
C450.31995 (8)0.37302 (10)0.73308 (19)0.0266 (3)
H45A0.2957380.4037880.6793990.032*
H45B0.2977440.3315770.7285710.032*
C460.32096 (9)0.39577 (10)0.87375 (19)0.0253 (3)
H46A0.3387040.3618960.9301380.030*
H46B0.2769530.4044820.9029880.030*
C470.36079 (8)0.45570 (9)0.88819 (19)0.0244 (3)
H47A0.3630150.4677130.9815420.029*
H47B0.3401630.4909700.8401990.029*
C480.42844 (8)0.44587 (8)0.83523 (16)0.0203 (3)
H48A0.4500400.4124280.8868280.024*
H48B0.4529470.4857710.8450520.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.00815 (7)0.01012 (8)0.00874 (6)0.00008 (6)0.0000.000
N10.0123 (4)0.0157 (5)0.0125 (4)0.0019 (4)0.0011 (4)0.0002 (4)
N20.0118 (4)0.0142 (5)0.0137 (5)0.0003 (4)0.0008 (4)0.0020 (4)
C10.0111 (5)0.0170 (5)0.0120 (5)0.0009 (4)0.0015 (4)0.0005 (4)
C20.0138 (5)0.0207 (6)0.0144 (5)0.0005 (5)0.0003 (5)0.0002 (5)
C30.0145 (6)0.0245 (7)0.0196 (6)0.0006 (5)0.0016 (5)0.0062 (5)
C40.0141 (6)0.0334 (8)0.0194 (7)0.0025 (5)0.0041 (5)0.0048 (6)
C50.0137 (6)0.0308 (8)0.0205 (7)0.0053 (5)0.0012 (5)0.0016 (6)
C60.0122 (5)0.0261 (7)0.0155 (6)0.0005 (5)0.0003 (5)0.0007 (5)
C70.0167 (6)0.0176 (6)0.0148 (6)0.0042 (5)0.0003 (5)0.0003 (5)
C80.0184 (6)0.0239 (7)0.0187 (6)0.0075 (5)0.0002 (5)0.0021 (5)
C90.0356 (10)0.0307 (9)0.0282 (9)0.0200 (8)0.0068 (8)0.0043 (7)
C100.0607 (15)0.0201 (8)0.0271 (9)0.0162 (9)0.0058 (9)0.0028 (6)
C110.0532 (13)0.0188 (7)0.0243 (8)0.0049 (8)0.0107 (9)0.0047 (6)
C120.0258 (7)0.0151 (6)0.0205 (7)0.0020 (5)0.0085 (6)0.0005 (5)
C130.0130 (5)0.0136 (5)0.0135 (5)0.0004 (4)0.0010 (4)0.0011 (4)
C140.0189 (6)0.0143 (6)0.0156 (6)0.0013 (4)0.0004 (5)0.0004 (4)
C150.0205 (7)0.0169 (6)0.0188 (6)0.0045 (5)0.0001 (5)0.0017 (5)
C160.0250 (7)0.0169 (6)0.0201 (7)0.0021 (5)0.0040 (6)0.0033 (5)
C170.0204 (6)0.0166 (6)0.0200 (7)0.0009 (5)0.0058 (5)0.0004 (5)
C180.0172 (6)0.0169 (6)0.0148 (6)0.0010 (5)0.0008 (4)0.0004 (4)
C190.0130 (5)0.0144 (5)0.0146 (5)0.0015 (4)0.0002 (4)0.0005 (4)
C200.0153 (6)0.0156 (6)0.0186 (6)0.0022 (4)0.0002 (5)0.0020 (5)
C210.0175 (6)0.0189 (6)0.0232 (7)0.0053 (5)0.0002 (5)0.0007 (5)
C220.0137 (6)0.0256 (7)0.0208 (7)0.0032 (5)0.0009 (5)0.0013 (6)
C230.0145 (6)0.0238 (7)0.0187 (6)0.0011 (5)0.0032 (5)0.0015 (5)
C240.0127 (5)0.0170 (6)0.0197 (6)0.0004 (4)0.0016 (5)0.0023 (5)
Zr20.00851 (6)0.00851 (6)0.00787 (10)0.0000.0000.000
N30.0097 (4)0.0107 (4)0.0124 (5)0.0004 (3)0.0007 (4)0.0017 (4)
C250.0125 (5)0.0089 (5)0.0116 (5)0.0001 (4)0.0009 (4)0.0004 (4)
C260.0164 (5)0.0107 (5)0.0122 (5)0.0001 (4)0.0007 (4)0.0001 (4)
C270.0208 (6)0.0139 (5)0.0173 (6)0.0003 (5)0.0063 (5)0.0011 (5)
C280.0268 (7)0.0128 (5)0.0182 (6)0.0022 (5)0.0060 (5)0.0026 (5)
C290.0194 (6)0.0125 (5)0.0192 (6)0.0032 (5)0.0019 (5)0.0002 (5)
C300.0154 (5)0.0101 (5)0.0152 (5)0.0002 (4)0.0003 (4)0.0001 (4)
C310.0114 (5)0.0118 (5)0.0135 (5)0.0022 (4)0.0002 (4)0.0011 (4)
C320.0145 (5)0.0136 (5)0.0154 (6)0.0024 (4)0.0010 (4)0.0019 (4)
C330.0158 (6)0.0155 (6)0.0249 (7)0.0045 (4)0.0002 (5)0.0006 (5)
C340.0133 (6)0.0227 (7)0.0203 (7)0.0029 (5)0.0007 (5)0.0007 (5)
C350.0143 (6)0.0228 (7)0.0170 (6)0.0001 (5)0.0031 (5)0.0015 (5)
C360.0152 (5)0.0146 (5)0.0152 (6)0.0003 (4)0.0019 (4)0.0018 (4)
Zr30.01181 (7)0.01181 (7)0.01390 (12)0.0000.0000.000
N40.0132 (5)0.0144 (5)0.0170 (5)0.0013 (4)0.0008 (4)0.0030 (4)
C370.0163 (6)0.0166 (6)0.0170 (6)0.0008 (4)0.0007 (5)0.0009 (5)
C380.0180 (6)0.0190 (6)0.0237 (7)0.0016 (5)0.0041 (5)0.0027 (5)
C390.0211 (7)0.0252 (7)0.0244 (7)0.0050 (6)0.0062 (6)0.0023 (6)
C400.0221 (7)0.0220 (7)0.0269 (8)0.0058 (6)0.0012 (6)0.0002 (6)
C410.0268 (8)0.0160 (6)0.0271 (8)0.0026 (5)0.0026 (6)0.0000 (6)
C420.0215 (7)0.0151 (6)0.0214 (7)0.0003 (5)0.0037 (5)0.0003 (5)
C430.0152 (5)0.0189 (6)0.0162 (5)0.0002 (4)0.0001 (5)0.0033 (5)
C440.0180 (6)0.0231 (7)0.0222 (7)0.0040 (5)0.0010 (5)0.0023 (6)
C450.0182 (7)0.0359 (9)0.0258 (8)0.0066 (6)0.0015 (6)0.0037 (7)
C460.0205 (7)0.0312 (8)0.0242 (8)0.0012 (6)0.0029 (6)0.0075 (7)
C470.0203 (7)0.0286 (8)0.0245 (7)0.0019 (6)0.0054 (6)0.0004 (6)
C480.0180 (6)0.0240 (7)0.0188 (7)0.0009 (5)0.0012 (5)0.0003 (5)
Geometric parameters (Å, º) top
Zr1—N1i2.0908 (12)Zr2—N3iv2.0973 (12)
Zr1—N12.0908 (12)Zr2—N32.0973 (12)
Zr1—N22.0928 (12)N3—C311.4756 (18)
Zr1—N2i2.0929 (12)N3—C251.4863 (18)
N1—C71.4816 (19)C25—C261.541 (2)
N1—C11.4821 (19)C25—C301.5441 (18)
N2—C191.4790 (18)C25—H251.0000
N2—C131.4854 (19)C26—C271.534 (2)
C1—C61.536 (2)C26—H26A0.9900
C1—C21.542 (2)C26—H26B0.9900
C1—H11.0000C27—C281.527 (2)
C2—C31.530 (2)C27—H27A0.9900
C2—H2A0.9900C27—H27B0.9900
C2—H2B0.9900C28—C291.523 (2)
C3—C41.520 (2)C28—H28A0.9900
C3—H3A0.9900C28—H28B0.9900
C3—H3B0.9900C29—C301.535 (2)
C4—C51.531 (3)C29—H29A0.9900
C4—H4A0.9900C29—H29B0.9900
C4—H4B0.9900C30—H30A0.9900
C5—C61.530 (2)C30—H30B0.9900
C5—H5A0.9900C31—C321.531 (2)
C5—H5B0.9900C31—C361.531 (2)
C6—H6A0.9900C31—H311.0000
C6—H6B0.9900C32—C331.536 (2)
C7—C121.523 (2)C32—H32A0.9900
C7—C81.532 (2)C32—H32B0.9900
C7—H71.0000C33—C341.527 (2)
C8—C91.526 (3)C33—H33A0.9900
C8—H8A0.9900C33—H33B0.9900
C8—H8B0.9900C34—C351.527 (2)
C9—C101.535 (4)C34—H34A0.9900
C9—H9A0.9900C34—H34B0.9900
C9—H9B0.9900C35—C361.531 (2)
C10—C111.519 (3)C35—H35A0.9900
C10—H10A0.9900C35—H35B0.9900
C10—H10B0.9900C36—H36A0.9900
C11—C121.532 (2)C36—H36B0.9900
C11—H11A0.9900Zr3—N4v2.0940 (13)
C11—H11B0.9900Zr3—N4vi2.0940 (13)
C12—H12A0.9900Zr3—N4vii2.0940 (13)
C12—H12B0.9900Zr3—N42.0940 (13)
C13—C141.536 (2)N4—C371.473 (2)
C13—C181.538 (2)N4—C431.488 (2)
C13—H131.0000C37—C381.526 (2)
C14—C151.537 (2)C37—C421.532 (2)
C14—H14A0.9900C37—H371.0000
C14—H14B0.9900C38—C391.534 (2)
C15—C161.525 (2)C38—H38A0.9900
C15—H15A0.9900C38—H38B0.9900
C15—H15B0.9900C39—C401.527 (3)
C16—C171.524 (2)C39—H39A0.9900
C16—H16A0.9900C39—H39B0.9900
C16—H16B0.9900C40—C411.528 (3)
C17—C181.534 (2)C40—H40A0.9900
C17—H17A0.9900C40—H40B0.9900
C17—H17B0.9900C41—C421.532 (2)
C18—H18A0.9900C41—H41A0.9900
C18—H18B0.9900C41—H41B0.9900
C19—C201.533 (2)C42—H42A0.9900
C19—C241.534 (2)C42—H42B0.9900
C19—H191.0000C43—C441.536 (2)
C20—C211.532 (2)C43—C481.539 (2)
C20—H20A0.9900C43—H431.0000
C20—H20B0.9900C44—C451.537 (2)
C21—C221.523 (2)C44—H44A0.9900
C21—H21A0.9900C44—H44B0.9900
C21—H21B0.9900C45—C461.518 (3)
C22—C231.525 (2)C45—H45A0.9900
C22—H22A0.9900C45—H45B0.9900
C22—H22B0.9900C46—C471.521 (3)
C23—C241.530 (2)C46—H46A0.9900
C23—H23A0.9900C46—H46B0.9900
C23—H23B0.9900C47—C481.537 (2)
C24—H24A0.9900C47—H47A0.9900
C24—H24B0.9900C47—H47B0.9900
Zr2—N3ii2.0973 (12)C48—H48A0.9900
Zr2—N3iii2.0973 (12)C48—H48B0.9900
N1i—Zr1—N1104.75 (7)N3ii—Zr2—N3104.85 (7)
N1i—Zr1—N2112.22 (5)N3iii—Zr2—N3111.83 (4)
N1—Zr1—N2111.14 (5)N3iv—Zr2—N3111.83 (4)
N1i—Zr1—N2i111.14 (5)C31—N3—C25113.79 (11)
N1—Zr1—N2i112.22 (5)C31—N3—Zr2136.41 (9)
N2—Zr1—N2i105.53 (7)C25—N3—Zr2109.37 (8)
C7—N1—C1113.64 (11)N3—C25—C26115.01 (11)
C7—N1—Zr1135.02 (10)N3—C25—C30112.72 (11)
C1—N1—Zr1110.57 (9)C26—C25—C30109.02 (11)
C19—N2—C13113.77 (11)N3—C25—H25106.5
C19—N2—Zr1135.54 (9)C26—C25—H25106.5
C13—N2—Zr1110.12 (8)C30—C25—H25106.5
N1—C1—C6113.38 (12)C27—C26—C25111.53 (12)
N1—C1—C2114.84 (12)C27—C26—H26A109.3
C6—C1—C2108.99 (12)C25—C26—H26A109.3
N1—C1—H1106.3C27—C26—H26B109.3
C6—C1—H1106.3C25—C26—H26B109.3
C2—C1—H1106.3H26A—C26—H26B108.0
C3—C2—C1111.77 (13)C28—C27—C26111.46 (12)
C3—C2—H2A109.3C28—C27—H27A109.3
C1—C2—H2A109.3C26—C27—H27A109.3
C3—C2—H2B109.3C28—C27—H27B109.3
C1—C2—H2B109.3C26—C27—H27B109.3
H2A—C2—H2B107.9H27A—C27—H27B108.0
C4—C3—C2111.63 (13)C29—C28—C27110.63 (13)
C4—C3—H3A109.3C29—C28—H28A109.5
C2—C3—H3A109.3C27—C28—H28A109.5
C4—C3—H3B109.3C29—C28—H28B109.5
C2—C3—H3B109.3C27—C28—H28B109.5
H3A—C3—H3B108.0H28A—C28—H28B108.1
C3—C4—C5110.50 (13)C28—C29—C30111.40 (13)
C3—C4—H4A109.5C28—C29—H29A109.3
C5—C4—H4A109.5C30—C29—H29A109.3
C3—C4—H4B109.5C28—C29—H29B109.3
C5—C4—H4B109.5C30—C29—H29B109.3
H4A—C4—H4B108.1H29A—C29—H29B108.0
C6—C5—C4110.62 (14)C29—C30—C25113.05 (11)
C6—C5—H5A109.5C29—C30—H30A109.0
C4—C5—H5A109.5C25—C30—H30A109.0
C6—C5—H5B109.5C29—C30—H30B109.0
C4—C5—H5B109.5C25—C30—H30B109.0
H5A—C5—H5B108.1H30A—C30—H30B107.8
C5—C6—C1113.08 (13)N3—C31—C32112.82 (11)
C5—C6—H6A109.0N3—C31—C36111.90 (11)
C1—C6—H6A109.0C32—C31—C36110.75 (11)
C5—C6—H6B109.0N3—C31—H31107.0
C1—C6—H6B109.0C32—C31—H31107.0
H6A—C6—H6B107.8C36—C31—H31107.0
N1—C7—C12110.60 (12)C31—C32—C33112.51 (12)
N1—C7—C8112.79 (13)C31—C32—H32A109.1
C12—C7—C8111.04 (13)C33—C32—H32A109.1
N1—C7—H7107.4C31—C32—H32B109.1
C12—C7—H7107.4C33—C32—H32B109.1
C8—C7—H7107.4H32A—C32—H32B107.8
C9—C8—C7112.20 (15)C34—C33—C32111.26 (12)
C9—C8—H8A109.2C34—C33—H33A109.4
C7—C8—H8A109.2C32—C33—H33A109.4
C9—C8—H8B109.2C34—C33—H33B109.4
C7—C8—H8B109.2C32—C33—H33B109.4
H8A—C8—H8B107.9H33A—C33—H33B108.0
C8—C9—C10110.91 (16)C35—C34—C33109.93 (13)
C8—C9—H9A109.5C35—C34—H34A109.7
C10—C9—H9A109.5C33—C34—H34A109.7
C8—C9—H9B109.5C35—C34—H34B109.7
C10—C9—H9B109.5C33—C34—H34B109.7
H9A—C9—H9B108.0H34A—C34—H34B108.2
C11—C10—C9110.67 (18)C34—C35—C36112.09 (13)
C11—C10—H10A109.5C34—C35—H35A109.2
C9—C10—H10A109.5C36—C35—H35A109.2
C11—C10—H10B109.5C34—C35—H35B109.2
C9—C10—H10B109.5C36—C35—H35B109.2
H10A—C10—H10B108.1H35A—C35—H35B107.9
C10—C11—C12111.84 (16)C31—C36—C35111.88 (12)
C10—C11—H11A109.2C31—C36—H36A109.2
C12—C11—H11A109.2C35—C36—H36A109.2
C10—C11—H11B109.2C31—C36—H36B109.2
C12—C11—H11B109.2C35—C36—H36B109.2
H11A—C11—H11B107.9H36A—C36—H36B107.9
C7—C12—C11112.70 (16)N4v—Zr3—N4vi112.00 (4)
C7—C12—H12A109.1N4v—Zr3—N4vii112.00 (4)
C11—C12—H12A109.1N4vi—Zr3—N4vii104.53 (8)
C7—C12—H12B109.1N4v—Zr3—N4104.53 (8)
C11—C12—H12B109.1N4vi—Zr3—N4112.00 (4)
H12A—C12—H12B107.8N4vii—Zr3—N4112.00 (4)
N2—C13—C14113.60 (12)C37—N4—C43113.49 (12)
N2—C13—C18115.19 (12)C37—N4—Zr3138.00 (10)
C14—C13—C18108.70 (12)C43—N4—Zr3108.15 (9)
N2—C13—H13106.2N4—C37—C38112.30 (13)
C14—C13—H13106.2N4—C37—C42112.25 (13)
C18—C13—H13106.2C38—C37—C42110.07 (13)
C13—C14—C15112.93 (13)N4—C37—H37107.3
C13—C14—H14A109.0C38—C37—H37107.3
C15—C14—H14A109.0C42—C37—H37107.3
C13—C14—H14B109.0C37—C38—C39112.30 (14)
C15—C14—H14B109.0C37—C38—H38A109.1
H14A—C14—H14B107.8C39—C38—H38A109.1
C16—C15—C14111.48 (13)C37—C38—H38B109.1
C16—C15—H15A109.3C39—C38—H38B109.1
C14—C15—H15A109.3H38A—C38—H38B107.9
C16—C15—H15B109.3C40—C39—C38112.12 (14)
C14—C15—H15B109.3C40—C39—H39A109.2
H15A—C15—H15B108.0C38—C39—H39A109.2
C17—C16—C15111.16 (13)C40—C39—H39B109.2
C17—C16—H16A109.4C38—C39—H39B109.2
C15—C16—H16A109.4H39A—C39—H39B107.9
C17—C16—H16B109.4C39—C40—C41110.09 (14)
C15—C16—H16B109.4C39—C40—H40A109.6
H16A—C16—H16B108.0C41—C40—H40A109.6
C16—C17—C18111.54 (13)C39—C40—H40B109.6
C16—C17—H17A109.3C41—C40—H40B109.6
C18—C17—H17A109.3H40A—C40—H40B108.2
C16—C17—H17B109.3C40—C41—C42111.09 (14)
C18—C17—H17B109.3C40—C41—H41A109.4
H17A—C17—H17B108.0C42—C41—H41A109.4
C17—C18—C13111.56 (13)C40—C41—H41B109.4
C17—C18—H18A109.3C42—C41—H41B109.4
C13—C18—H18A109.3H41A—C41—H41B108.0
C17—C18—H18B109.3C37—C42—C41113.01 (14)
C13—C18—H18B109.3C37—C42—H42A109.0
H18A—C18—H18B108.0C41—C42—H42A109.0
N2—C19—C20112.63 (12)C37—C42—H42B109.0
N2—C19—C24111.22 (11)C41—C42—H42B109.0
C20—C19—C24110.52 (12)H42A—C42—H42B107.8
N2—C19—H19107.4N4—C43—C44113.25 (13)
C20—C19—H19107.4N4—C43—C48115.83 (13)
C24—C19—H19107.4C44—C43—C48108.70 (13)
C21—C20—C19112.44 (13)N4—C43—H43106.1
C21—C20—H20A109.1C44—C43—H43106.1
C19—C20—H20A109.1C48—C43—H43106.1
C21—C20—H20B109.1C43—C44—C45112.76 (15)
C19—C20—H20B109.1C43—C44—H44A109.0
H20A—C20—H20B107.8C45—C44—H44A109.0
C22—C21—C20111.40 (13)C43—C44—H44B109.0
C22—C21—H21A109.3C45—C44—H44B109.0
C20—C21—H21A109.3H44A—C44—H44B107.8
C22—C21—H21B109.3C46—C45—C44112.21 (15)
C20—C21—H21B109.3C46—C45—H45A109.2
H21A—C21—H21B108.0C44—C45—H45A109.2
C21—C22—C23110.12 (13)C46—C45—H45B109.2
C21—C22—H22A109.6C44—C45—H45B109.2
C23—C22—H22A109.6H45A—C45—H45B107.9
C21—C22—H22B109.6C45—C46—C47111.17 (15)
C23—C22—H22B109.6C45—C46—H46A109.4
H22A—C22—H22B108.2C47—C46—H46A109.4
C22—C23—C24111.62 (13)C45—C46—H46B109.4
C22—C23—H23A109.3C47—C46—H46B109.4
C24—C23—H23A109.3H46A—C46—H46B108.0
C22—C23—H23B109.3C46—C47—C48111.36 (15)
C24—C23—H23B109.3C46—C47—H47A109.4
H23A—C23—H23B108.0C48—C47—H47A109.4
C23—C24—C19111.76 (13)C46—C47—H47B109.4
C23—C24—H24A109.3C48—C47—H47B109.4
C19—C24—H24A109.3H47A—C47—H47B108.0
C23—C24—H24B109.3C47—C48—C43111.19 (14)
C19—C24—H24B109.3C47—C48—H48A109.4
H24A—C24—H24B107.9C43—C48—H48A109.4
N3ii—Zr2—N3iii111.83 (4)C47—C48—H48B109.4
N3ii—Zr2—N3iv111.83 (4)C43—C48—H48B109.4
N3iii—Zr2—N3iv104.85 (7)H48A—C48—H48B108.0
C7—N1—C1—C660.51 (16)C31—N3—C25—C2666.47 (15)
Zr1—N1—C1—C6128.03 (11)Zr2—N3—C25—C26107.23 (11)
C7—N1—C1—C265.70 (15)C31—N3—C25—C3059.35 (15)
Zr1—N1—C1—C2105.76 (11)Zr2—N3—C25—C30126.95 (10)
N1—C1—C2—C3177.00 (12)N3—C25—C26—C27177.03 (11)
C6—C1—C2—C354.55 (16)C30—C25—C26—C2755.26 (14)
C1—C2—C3—C456.96 (18)C25—C26—C27—C2857.80 (17)
C2—C3—C4—C556.6 (2)C26—C27—C28—C2956.56 (18)
C3—C4—C5—C655.6 (2)C27—C28—C29—C3054.61 (18)
C4—C5—C6—C156.12 (19)C28—C29—C30—C2554.78 (17)
N1—C1—C6—C5175.90 (13)N3—C25—C30—C29176.80 (12)
C2—C1—C6—C554.84 (17)C26—C25—C30—C2954.21 (15)
C1—N1—C7—C12134.13 (13)C25—N3—C31—C32102.30 (13)
Zr1—N1—C7—C1234.53 (19)Zr2—N3—C31—C3286.34 (15)
C1—N1—C7—C8100.85 (15)C25—N3—C31—C36132.02 (12)
Zr1—N1—C7—C890.50 (16)Zr2—N3—C31—C3639.35 (18)
N1—C7—C8—C9178.24 (14)N3—C31—C32—C33179.41 (12)
C12—C7—C8—C953.45 (19)C36—C31—C32—C3353.10 (16)
C7—C8—C9—C1056.0 (2)C31—C32—C33—C3455.50 (18)
C8—C9—C10—C1156.4 (2)C32—C33—C34—C3556.09 (18)
C9—C10—C11—C1255.2 (3)C33—C34—C35—C3656.52 (18)
N1—C7—C12—C11177.98 (14)N3—C31—C36—C35179.52 (12)
C8—C7—C12—C1151.97 (19)C32—C31—C36—C3552.70 (16)
C10—C11—C12—C753.7 (2)C34—C35—C36—C3155.46 (17)
C19—N2—C13—C1459.28 (16)C43—N4—C37—C38130.74 (14)
Zr1—N2—C13—C14127.95 (10)Zr3—N4—C37—C3841.3 (2)
C19—N2—C13—C1867.03 (15)C43—N4—C37—C42104.61 (15)
Zr1—N2—C13—C18105.75 (12)Zr3—N4—C37—C4283.35 (18)
N2—C13—C14—C15174.94 (12)N4—C37—C38—C39178.72 (14)
C18—C13—C14—C1555.41 (16)C42—C37—C38—C3952.88 (18)
C13—C14—C15—C1654.66 (18)C37—C38—C39—C4055.3 (2)
C14—C15—C16—C1753.20 (19)C38—C39—C40—C4155.7 (2)
C15—C16—C17—C1855.06 (19)C39—C40—C41—C4255.5 (2)
C16—C17—C18—C1357.60 (18)N4—C37—C42—C41179.54 (13)
N2—C13—C18—C17174.76 (12)C38—C37—C42—C4153.66 (18)
C14—C13—C18—C1756.47 (16)C40—C41—C42—C3755.8 (2)
C13—N2—C19—C20103.47 (14)C37—N4—C43—C4458.69 (18)
Zr1—N2—C19—C2086.23 (16)Zr3—N4—C43—C44126.91 (12)
C13—N2—C19—C24131.82 (13)C37—N4—C43—C4867.88 (17)
Zr1—N2—C19—C2438.48 (19)Zr3—N4—C43—C48106.52 (13)
N2—C19—C20—C21178.17 (12)N4—C43—C44—C45174.77 (14)
C24—C19—C20—C2153.08 (17)C48—C43—C44—C4554.97 (18)
C19—C20—C21—C2255.22 (18)C43—C44—C45—C4653.7 (2)
C20—C21—C22—C2356.17 (18)C44—C45—C46—C4752.7 (2)
C21—C22—C23—C2456.95 (18)C45—C46—C47—C4855.2 (2)
C22—C23—C24—C1956.19 (18)C46—C47—C48—C4358.40 (19)
N2—C19—C24—C23179.23 (12)N4—C43—C48—C47174.08 (13)
C20—C19—C24—C2353.35 (17)C44—C43—C48—C4757.09 (17)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z; (iii) y, x, z+1; (iv) y, x, z+1; (v) x+1, y+1, z; (vi) y, x+1, z+1; (vii) y+1, x, z+1.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (GRK No. 2226).

References

First citationAdler, C., Bekurdts, A., Haase, D., Saak, W., Schmidtmann, M. & Beckhaus, R. (2014b). Eur. J. Inorg. Chem. pp. 1289–1302.  Web of Science CSD CrossRef Google Scholar
First citationAdler, C., Tomaschun, G., Schmidtmann, M. & Beckhaus, R. (2014a). Organometallics, 33, 7011–7014.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiamond, G. M., Jordan, R. F. & Petersen, J. L. (1996). Organometallics, 15, 4030–4037.  CSD CrossRef CAS Web of Science Google Scholar
First citationDiamond, G. M., Rodewald, S. & Jordan, R. F. (1995). Organometallics, 14, 5–7.  CrossRef CAS Web of Science Google Scholar
First citationDuan, Z., Thomas, L. M. & Verkade, J. G. (1997). Polyhedron, 16, 635–641.  CSD CrossRef CAS Web of Science Google Scholar
First citationGuérin, F., Stewart, J. C., Beddie, C. & Stephan, D. W. (2000). Organometallics, 19, 2994–3000.  Google Scholar
First citationHitchcock, P. B., Lappert, M. F. & Protchenko, A. V. (2006). Chem. Commun. pp. 3546–3548.  Web of Science CSD CrossRef Google Scholar
First citationKasani, A., Gambarotta, S. & Bensimon, C. (1997). Can. J. Chem. 75, 1494–1499.  Web of Science CSD CrossRef CAS Google Scholar
First citationKempe, R. (2000). Angew. Chem. Int. Ed. 39, 468–493.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMotolko, K. S. A., Price, J. S., Emslie, D. J. H., Jenkins, H. A. & Britten, J. F. (2017). Organometallics, 36, 3084–3093.  Web of Science CSD CrossRef CAS Google Scholar
First citationPyykkö, P. & Atsumi, M. (2009). Chem. Eur. J. 15, 12770–12779.  Web of Science CrossRef PubMed Google Scholar
First citationRoesky, P. W. (2009). Angew. Chem. Int. Ed. 48, 4892–4894.  Web of Science CrossRef CAS Google Scholar
First citationScherer, W., Wolstenholme, D. J., Herz, V., Eickerling, G., Brück, A., Benndorf, P. & Roesky, P. W. (2010). Angew. Chem. Int. Ed. 49, 2242–2246.  Web of Science CSD CrossRef CAS Google Scholar
First citationShafir, A. & Arnold, A. (2001). J. Am. Chem. Soc. 123, 9212–9213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, X., Bi, S., Guzei, I. A., Lin, Z. & Xue, Z.-L. (2004). Inorg. Chem. 43, 7111–7119.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds