inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Re-refinement of sodium ammonium sulfate dihydrate at 170 K

CROSSMARK_Color_square_no_text.svg

aInstitut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitut für Chemie, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 26 August 2020; accepted 18 September 2020; online 25 September 2020)

The title compound, sodium ammonium sulfate dihydrate (SASD), NaNH4SO4·2H2O, a synthetic analogue of the mineral lecontite, is a well known ferroelectric. The crystal structure of the paraelectric phase has been re-refined at 170 K on the basis of single-crystal X-ray data, improving the previous study [Arzt & Glazer (1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]). Acta Cryst. B50, 425–431] in terms of accuracy regarding hydrogen-atom positions and thus details of the hydrogen bonding. O—H⋯O and N—H⋯O hydrogen bonds between the principal building units [Na(OH2)4O2 octa­hedra, SO4 tetra­hedra and ammonium cations] constitute a three-dimensional network structure.

3D view (loading...)
[Scheme 3D1]

Structure description

The title compound, sodium ammonium sulfate dihydrate (SASD), NaNH4SO4·2H2O, is the synthetic analogue of the mineral lecontite (Hawthorne et al., 2000[Hawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1-112.]), as revealed by Faust & Bloss (1963[Faust, R. J. & Bloss, F. D. (1963). Am. Mineral. 48, 180-188.]) through a diffractometry study of both synthetic and natural material. The crystal structure of SASD was first determined by Corazza et al. (1967[Corazza, E., Sabelli, C. & Giuseppetti, G. (1967). Acta Cryst. 22, 683-687.]) from equi-inclination Weissenberg photographs at room temperature. Arzt & Glazer (1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]) redetermined the crystal structure at room temperature based on serial detector data. Properties of the well-known ferroelectric SASD have been widely studied (Arzt & Glazer, 1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]; Fawcett et al., 1975[Fawcett, V. J., Long, D. A. & Sankaranarayanan, V. N. (1975). J. Raman Spectrosc. 3, 217-228.]; Genin & O'Reilly, 1969[Genin, D. J. & O'Reilly, D. E. (1969). J. Chem. Phys. 50, 2842-2850.]; Hilczer et al., 1991[Hilczer, B., Darwish, H. G. & Wolak, J. (1991). Ferroelectrics, 124, 391-396.], 1992[Hilczer, B., Piskunowicz, P., Darwish, H. G. & Szczepańska, L. (1992). Int. J. Thermophys. 13, 719-728.], 1993[Hilczer, B., Bravina, S. L., Morozovsky, N. V. & Szczepańska, L. (1993). Ferroelectrics, 140, 287-292.]; Kanesaka & Ozaki, 1994[Kanesaka, I. & Ozaki, K. (1994). J. Raman Spectrosc. 25, 321-325.]; Kassem & Hedewy, 1988[Kassem, M. E. & Hedewy, S. (1988). J. Mater. Sci. Lett. 7, 1007-1009.]; Kloprogge et al., 2006[Kloprogge, J. T., Broekmans, M., Duong, L. V., Martens, W. N., Hickey, L. & Frost, R. L. (2006). J. Mater. Sci. 41, 3535-3539.]; Lipinski et al., 2003[Lipinski, I. E., Kuriata, J. & Korynevskii, (2003). Condens. Matter Phys. 6, 245-250.]; Lipinski & Kuriata, 2005[Lipinski, I. E. & Kuriata, J. (2005). Mater. Sci.-Pol. 23, 1023-1027.]; Ono et al., 1993[Ono, H., Irokawa, K., Miyazaki, A., Komukae, M., Osaka, T. & Makita, Y. (1993). J. Phys. Soc. Jpn, 62, 4194-4197.]; Osaka, 1978[Osaka, T. (1978). J. Phys. Soc. Jpn, 45, 571-574.]; Osaka & Makita, 1970[Osaka, T. & Makita, Y. (1970). J. Phys. Soc. Jpn, 28, 1378.]; Ribeiro et al., 2006[Ribeiro, J. L., Vieira, L. G., Tarroso Gomes, I., Agostinho Moreira, J., Almeida, A., Chaves, M. R., Santos, M. L. & Alferes, P. P. (2006). J. Phys. Condens. Matter, 18, 7761-7778.]). Kloprogge et al. (2006[Kloprogge, J. T., Broekmans, M., Duong, L. V., Martens, W. N., Hickey, L. & Frost, R. L. (2006). J. Mater. Sci. 41, 3535-3539.]) also reported a Rietveld refinement of the structure of SASD at room temperature, thereby confirming the results of the previous single-crystal X-ray analyses. We have now re-refined the crystal structure of the paralectric phase of SASD at 170 K on the basis of single-crystal X-ray diffraction data.

As shown in Fig. 1[link], the sodium cation is hexa-coordinated with a considerably distorted octa­hedral coordination sphere formed by four water mol­ecules in the equatorial plane and two sulfate O atoms in the apical positions. Selected bond lengths and angles are listed in Table 1[link]. Each of the ligands links two sodium cations in a μ-coordination mode, resulting in chains along the [100] direction with the Na cations located near to a 21 screw axis. Na1⋯Na1i and Na1⋯Na1ii are separated by 3.1317 (2) and 3.1316 (2) Å, respectively [symmetry codes: (i) x − [{1\over 2}], −y + [{3\over 2}], −z + 1; (ii) x + [{1\over 2}], −y + [{3\over 2}], −z + 1]. The chains can be described as consisting of NaO6 octa­hedra sharing one face (Fig. 2[link]) defined by atoms O1, O2 and O4. The sulfate anion exhibits the typical tetra­hedral shape with an r.m.s. deviation from exact Td symmetry of only 0.0092 Å, as calculated with MOLSYM in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). In the chains, the SO4 tetra­hedra have one O atom in common with a pair of NaO6 octa­hedra. Chain motifs are encountered in the structures of many other sulfates (Gorogotskaya & Bokii, 1973[Gorogotskaya, L. I. & Bokii, G. B. (1973). J. Struct. Chem. 13, 600-609.]).

Table 1
Selected geometric parameters (Å, °)

Na1—O2i 2.3229 (15) Na1—O4i 2.4546 (14)
Na1—O4 2.3733 (14) S1—O5 1.4628 (14)
Na1—O2 2.4054 (16) S1—O4 1.4721 (12)
Na1—O1 2.4087 (15) S1—O3 1.4728 (15)
Na1—O1i 2.4389 (16) S1—O6 1.4740 (15)
       
O2i—Na1—O4 111.05 (5) O4—Na1—O4i 167.55 (5)
O2i—Na1—O2 166.61 (6) O2—Na1—O4i 86.58 (5)
O4—Na1—O2 81.31 (5) O1—Na1—O4i 92.00 (5)
O2i—Na1—O1 103.97 (6) O1i—Na1—O4i 81.23 (5)
O4—Na1—O1 83.54 (5) O5—S1—O4 109.42 (8)
O2—Na1—O1 81.97 (5) O5—S1—O3 109.02 (11)
O2i—Na1—O1i 83.03 (5) O4—S1—O3 110.07 (8)
O4—Na1—O1i 101.42 (5) O5—S1—O6 109.17 (11)
O2—Na1—O1i 89.58 (5) O4—S1—O6 109.83 (8)
O1—Na1—O1i 169.50 (3) O3—S1—O6 109.31 (9)
O2i—Na1—O4i 81.28 (5)    
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
Section of the crystal structure of SASD, viewed approximately along the c-axis direction towards the origin. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are represented by small spheres of arbitrary radius. Thick dashed lines represent hydrogen bonds. [Symmetry codes: (i) x + [{1\over 2}], −y + [{3\over 2}], −z + 1; (ii) x − [{1\over 2}], −y + [{3\over 2}], −z + 1.]
[Figure 2]
Figure 2
The crystal structure of SASD viewed down the b-axis direction, showing the chains featuring face-sharing NaO6 octa­hedra with appended SO4 tetra­hedra. Ammonium ions are omitted for clarity.

The crystal structure features hydrogen bonds of the O—H⋯O and N—H⋯O type (Table 2[link]). The water mol­ecules form medium–strong and nearly linear intra- and inter­chain hydrogen bonds to sulfate oxygen atoms. The inter­stices between the [Na(μ-SO4)(μ-H2O)2]n chains accommodate the ammonium cations, which form hydrogen bonds to sulfate oxygen atoms, thus establishing a three-dimensional network. The positions of the ammonium hydrogen atoms determined in the current study appear to be more accurate than those in the room-temperature structure reported by Arzt & Glazer (1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]). Note that details of hydrogen bonding were not discussed in the latter report; based on the reported structure data (Arzt & Glazer, 1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]), N—H distances range between 0.73 and 0.99 Å. Corazza et al. (1967[Corazza, E., Sabelli, C. & Giuseppetti, G. (1967). Acta Cryst. 22, 683-687.]) did not refine hydrogen-atom parameters in the original room-temperature structure determination but included their presumed positions in the structure-factor calculation for the final refinement of the non-hydrogen atoms. In the current study, semi-free refinement applying only similarity restraints on the 1,2-distances involving hydrogen atoms resulted in reasonable hydrogen-atom parameters and a sensible hydrogen-bonding scheme.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6ii 0.84 (2) 1.99 (2) 2.812 (2) 165 (3)
O1—H1B⋯O5iii 0.85 (2) 1.89 (2) 2.7439 (19) 175 (3)
O2—H2A⋯O3iv 0.81 (2) 1.98 (2) 2.781 (2) 171 (3)
O2—H2B⋯O6i 0.81 (2) 1.98 (2) 2.781 (2) 175 (3)
N1—H1C⋯O4 0.81 (2) 2.14 (2) 2.948 (2) 172 (3)
N1—H1D⋯O3iv 0.83 (2) 2.03 (2) 2.854 (2) 172 (3)
N1—H1E⋯O3v 0.81 (2) 2.23 (2) 2.977 (2) 152 (3)
N1—H1E⋯O5v 0.81 (2) 2.60 (3) 3.324 (3) 149 (3)
N1—H1F⋯O5vi 0.81 (2) 2.58 (3) 3.245 (3) 140 (3)
N1—H1F⋯O6vi 0.81 (2) 2.13 (2) 2.897 (3) 157 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (vi) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

The absolute structure of the crystal was established by anomalous-dispersion effects in the diffraction data, as indicated by a Flack x parameter close to zero with a reasonably small standard uncertainty (Table 3[link]). The Hooft y parameter (Hooft et al., 2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]), as calculated with PLATON, is 0.07 (2). Inter­estingly, the structure exhibits chirality opposite to the previously reported room temperature structures (Corazza et al., 1967[Corazza, E., Sabelli, C. & Giuseppetti, G. (1967). Acta Cryst. 22, 683-687.]; Arzt & Glazer, 1994[Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425-431.]).

Table 3
Experimental details

Crystal data
Chemical formula NaNH4SO4·2H2O
Mr 173.12
Crystal system, space group Orthorhombic, P212121
Temperature (K) 170
a, b, c (Å) 6.2001 (2), 8.1917 (3), 12.8121 (6)
V3) 650.72 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.50 × 0.48 × 0.28
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Multi-scan [MULABS (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.])]
Tmin, Tmax 0.728, 1.117
No. of measured, independent and observed [I > 2σ(I)] reflections 14489, 1754, 1690
Rint 0.038
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.09
No. of reflections 1754
No. of parameters 114
No. of restraints 12
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.20, −0.34
Absolute structure Flack x determined using 672 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (2)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2016[Stoe & Cie (2016). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2018[Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Synthesis and crystallization

A crystal of the title compound suitable for single-crystal X-ray analysis was obtained unintentionally from a solution in an aceto­nitrile/water mixture after synthesis of an organic compound. Ammonium ions and sodium sulfate in this mixture originated from an employed reagent and the drying agent, respectively.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2016); cell refinement: X-AREA (Stoe & Cie, 2016); data reduction: X-RED (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Ammonium sodium sulfate dihydrate top
Crystal data top
Na+·NH4+·SO42·2H2ODx = 1.767 Mg m3
Mr = 173.12Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 15574 reflections
a = 6.2001 (2) Åθ = 3.0–29.5°
b = 8.1917 (3) ŵ = 0.53 mm1
c = 12.8121 (6) ÅT = 170 K
V = 650.72 (4) Å3Prism, colourless
Z = 40.50 × 0.48 × 0.28 mm
F(000) = 360
Data collection top
STOE IPDS 2T
diffractometer
1754 independent reflections
Radiation source: sealed X-ray tube, Incoatec Iµs1690 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.038
ω scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in PLATON (Spek, 2020)]
h = 87
Tmin = 0.728, Tmax = 1.117k = 1111
14489 measured reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0357P)2 + 0.0942P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1754 reflectionsΔρmax = 0.20 e Å3
114 parametersΔρmin = 0.34 e Å3
12 restraintsAbsolute structure: Flack x determined using 672 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.05 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen-atom positions were located in a difference Fourier map, and their parameters were refined with standard similarity restraints on 1,2-distances for O—H and and N—H bonds (with a standard uncertainty of 0.02 Å). Uiso(H) values were refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.08933 (10)0.73476 (8)0.51432 (5)0.01968 (17)
S10.37520 (7)0.41221 (5)0.62681 (3)0.01762 (11)
O10.3414 (2)0.91744 (17)0.59691 (11)0.0248 (3)
H1A0.368 (6)0.903 (4)0.6609 (18)0.060 (10)*
H1B0.351 (5)1.020 (3)0.587 (2)0.050 (9)*
O20.3121 (2)0.79007 (17)0.36474 (11)0.0228 (3)
H2A0.303 (5)0.721 (3)0.320 (2)0.040 (8)*
H2B0.250 (5)0.873 (3)0.348 (2)0.035 (7)*
O30.1880 (3)0.4256 (2)0.69708 (12)0.0326 (3)
O40.3627 (2)0.53757 (14)0.54471 (10)0.0212 (3)
O50.3756 (4)0.25020 (16)0.57880 (12)0.0390 (4)
O60.5751 (2)0.4335 (2)0.68758 (12)0.0337 (4)
N10.3688 (3)0.3331 (2)0.35538 (13)0.0244 (3)
H1C0.356 (5)0.394 (3)0.4051 (19)0.042 (8)*
H1D0.364 (6)0.401 (3)0.308 (2)0.051 (9)*
H1E0.483 (4)0.284 (4)0.354 (3)0.056 (10)*
H1F0.269 (4)0.269 (3)0.358 (3)0.050 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0170 (3)0.0211 (3)0.0209 (3)0.0009 (2)0.0010 (3)0.0001 (2)
S10.02186 (19)0.01448 (17)0.01652 (18)0.00021 (15)0.00033 (15)0.00224 (14)
O10.0334 (7)0.0183 (6)0.0226 (6)0.0006 (6)0.0037 (5)0.0011 (5)
O20.0253 (6)0.0237 (6)0.0195 (6)0.0023 (5)0.0034 (5)0.0005 (5)
O30.0308 (7)0.0383 (8)0.0288 (7)0.0050 (6)0.0113 (6)0.0072 (6)
O40.0259 (6)0.0170 (5)0.0206 (5)0.0001 (5)0.0020 (5)0.0056 (4)
O50.0715 (11)0.0150 (6)0.0304 (7)0.0014 (8)0.0006 (8)0.0004 (5)
O60.0311 (7)0.0402 (8)0.0298 (7)0.0088 (6)0.0106 (6)0.0138 (6)
N10.0263 (8)0.0266 (7)0.0201 (7)0.0006 (7)0.0007 (7)0.0009 (6)
Geometric parameters (Å, º) top
Na1—O2i2.3229 (15)S1—O31.4728 (15)
Na1—O42.3733 (14)S1—O61.4740 (15)
Na1—O22.4054 (16)O1—H1A0.84 (2)
Na1—O12.4087 (15)O1—H1B0.85 (2)
Na1—O1i2.4389 (16)O2—H2A0.81 (2)
Na1—O4i2.4546 (14)O2—H2B0.81 (2)
Na1—Na1ii3.1316 (2)N1—H1C0.814 (19)
Na1—Na1i3.1317 (2)N1—H1D0.828 (19)
Na1—H2B2.61 (3)N1—H1E0.81 (2)
S1—O51.4628 (14)N1—H1F0.81 (2)
S1—O41.4721 (12)
O2i—Na1—O4111.05 (5)O1i—Na1—H2B89.2 (6)
O2i—Na1—O2166.61 (6)O4i—Na1—H2B68.8 (5)
O4—Na1—O281.31 (5)Na1ii—Na1—H2B59.5 (6)
O2i—Na1—O1103.97 (6)Na1i—Na1—H2B104.3 (6)
O4—Na1—O183.54 (5)O5—S1—O4109.42 (8)
O2—Na1—O181.97 (5)O5—S1—O3109.02 (11)
O2i—Na1—O1i83.03 (5)O4—S1—O3110.07 (8)
O4—Na1—O1i101.42 (5)O5—S1—O6109.17 (11)
O2—Na1—O1i89.58 (5)O4—S1—O6109.83 (8)
O1—Na1—O1i169.50 (3)O3—S1—O6109.31 (9)
O2i—Na1—O4i81.28 (5)Na1—O1—Na1ii80.48 (4)
O4—Na1—O4i167.55 (5)Na1—O1—H1A118 (2)
O2—Na1—O4i86.58 (5)Na1ii—O1—H1A112 (2)
O1—Na1—O4i92.00 (5)Na1—O1—H1B127 (2)
O1i—Na1—O4i81.23 (5)Na1ii—O1—H1B112 (2)
O2i—Na1—Na1ii144.84 (5)H1A—O1—H1B105 (3)
O4—Na1—Na1ii50.70 (4)Na1ii—O2—Na182.93 (4)
O2—Na1—Na1ii47.40 (4)Na1ii—O2—H2A118 (2)
O1—Na1—Na1ii50.18 (4)Na1—O2—H2A113 (2)
O1i—Na1—Na1ii126.60 (5)Na1ii—O2—H2B127 (2)
O4i—Na1—Na1ii118.04 (5)Na1—O2—H2B95 (2)
O2i—Na1—Na1i49.66 (4)H2A—O2—H2B111 (3)
O4—Na1—Na1i141.29 (5)S1—O4—Na1129.03 (8)
O2—Na1—Na1i117.40 (5)S1—O4—Na1ii136.05 (8)
O1—Na1—Na1i130.11 (5)Na1—O4—Na1ii80.86 (4)
O1i—Na1—Na1i49.34 (4)H1C—N1—H1D99 (3)
O4i—Na1—Na1i48.44 (4)H1C—N1—H1E114 (3)
Na1ii—Na1—Na1i163.71 (5)H1D—N1—H1E110 (3)
O2i—Na1—H2B149.9 (5)H1C—N1—H1F107 (3)
O4—Na1—H2B99.0 (5)H1D—N1—H1F116 (3)
O2—Na1—H2B18.0 (5)H1E—N1—H1F110 (3)
O1—Na1—H2B80.9 (6)
Symmetry codes: (i) x1/2, y+3/2, z+1; (ii) x+1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O6iii0.84 (2)1.99 (2)2.812 (2)165 (3)
O1—H1B···O5iv0.85 (2)1.89 (2)2.7439 (19)175 (3)
O2—H2A···O3v0.81 (2)1.98 (2)2.781 (2)171 (3)
O2—H2B···O6i0.81 (2)1.98 (2)2.781 (2)175 (3)
N1—H1C···O40.81 (2)2.14 (2)2.948 (2)172 (3)
N1—H1D···O3v0.83 (2)2.03 (2)2.854 (2)172 (3)
N1—H1E···O3vi0.81 (2)2.23 (2)2.977 (2)152 (3)
N1—H1E···O5vi0.81 (2)2.60 (3)3.324 (3)149 (3)
N1—H1F···O5vii0.81 (2)2.58 (3)3.245 (3)140 (3)
N1—H1F···O6vii0.81 (2)2.13 (2)2.897 (3)157 (3)
Symmetry codes: (i) x1/2, y+3/2, z+1; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1, z; (v) x+1/2, y+1, z1/2; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+1/2, z+1.
 

Acknowledgements

Professor Kurt Merzweiler is gratefully acknowledged for providing diffractometer time. TE would like to thank Christoph Lehmann for his support. RWS would like to thank Dr Richard Goddard and Jan Henrik Halz for helpful discussions.

Funding information

We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425–431.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCorazza, E., Sabelli, C. & Giuseppetti, G. (1967). Acta Cryst. 22, 683–687.  CrossRef ICSD IUCr Journals Google Scholar
First citationFaust, R. J. & Bloss, F. D. (1963). Am. Mineral. 48, 180–188.  CAS Google Scholar
First citationFawcett, V. J., Long, D. A. & Sankaranarayanan, V. N. (1975). J. Raman Spectrosc. 3, 217–228.  CrossRef CAS Google Scholar
First citationGenin, D. J. & O'Reilly, D. E. (1969). J. Chem. Phys. 50, 2842–2850.  CrossRef CAS Google Scholar
First citationGorogotskaya, L. I. & Bokii, G. B. (1973). J. Struct. Chem. 13, 600–609.  CrossRef Google Scholar
First citationHawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1–112.  Web of Science CrossRef CAS Google Scholar
First citationHilczer, B., Bravina, S. L., Morozovsky, N. V. & Szczepańska, L. (1993). Ferroelectrics, 140, 287–292.  CrossRef CAS Google Scholar
First citationHilczer, B., Darwish, H. G. & Wolak, J. (1991). Ferroelectrics, 124, 391–396.  CrossRef CAS Google Scholar
First citationHilczer, B., Piskunowicz, P., Darwish, H. G. & Szczepańska, L. (1992). Int. J. Thermophys. 13, 719–728.  CrossRef CAS Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKanesaka, I. & Ozaki, K. (1994). J. Raman Spectrosc. 25, 321–325.  CrossRef CAS Google Scholar
First citationKassem, M. E. & Hedewy, S. (1988). J. Mater. Sci. Lett. 7, 1007–1009.  CrossRef CAS Google Scholar
First citationKloprogge, J. T., Broekmans, M., Duong, L. V., Martens, W. N., Hickey, L. & Frost, R. L. (2006). J. Mater. Sci. 41, 3535–3539.  CrossRef CAS Google Scholar
First citationLipinski, I. E. & Kuriata, J. (2005). Mater. Sci.-Pol. 23, 1023–1027.  CAS Google Scholar
First citationLipinski, I. E., Kuriata, J. & Korynevskii, (2003). Condens. Matter Phys. 6, 245–250.  Google Scholar
First citationOno, H., Irokawa, K., Miyazaki, A., Komukae, M., Osaka, T. & Makita, Y. (1993). J. Phys. Soc. Jpn, 62, 4194–4197.  CrossRef CAS Google Scholar
First citationOsaka, T. (1978). J. Phys. Soc. Jpn, 45, 571–574.  CrossRef CAS Google Scholar
First citationOsaka, T. & Makita, Y. (1970). J. Phys. Soc. Jpn, 28, 1378.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRibeiro, J. L., Vieira, L. G., Tarroso Gomes, I., Agostinho Moreira, J., Almeida, A., Chaves, M. R., Santos, M. L. & Alferes, P. P. (2006). J. Phys. Condens. Matter, 18, 7761–7778.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2016). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds