inorganic compounds
Re-refinement of sodium ammonium sulfate dihydrate at 170 K
aInstitut für Pharmazie, Wolfgang-Langenbeck-Str. 4, 06120 Halle (Saale), Germany, and bInstitut für Chemie, Kurt-Mothes-Str. 2, 06120 Halle (Saale), Germany
*Correspondence e-mail: ruediger.seidel@pharmazie.uni-halle.de
The title compound, sodium ammonium sulfate dihydrate (SASD), NaNH4SO4·2H2O, a synthetic analogue of the mineral lecontite, is a well known ferroelectric. The of the paraelectric phase has been re-refined at 170 K on the basis of single-crystal X-ray data, improving the previous study [Arzt & Glazer (1994). Acta Cryst. B50, 425–431] in terms of accuracy regarding hydrogen-atom positions and thus details of the hydrogen bonding. O—H⋯O and N—H⋯O hydrogen bonds between the principal building units [Na(OH2)4O2 octahedra, SO4 tetrahedra and ammonium cations] constitute a three-dimensional network structure.
Keywords: crystal structure; hydrogen bonding; chirality; chain structure; ferroelectric; sulfate mineral.
CCDC reference: 2032745
Structure description
The title compound, sodium ammonium sulfate dihydrate (SASD), NaNH4SO4·2H2O, is the synthetic analogue of the mineral lecontite (Hawthorne et al., 2000), as revealed by Faust & Bloss (1963) through a diffractometry study of both synthetic and natural material. The of SASD was first determined by Corazza et al. (1967) from equi-inclination Weissenberg photographs at room temperature. Arzt & Glazer (1994) redetermined the at room temperature based on serial detector data. Properties of the well-known ferroelectric SASD have been widely studied (Arzt & Glazer, 1994; Fawcett et al., 1975; Genin & O'Reilly, 1969; Hilczer et al., 1991, 1992, 1993; Kanesaka & Ozaki, 1994; Kassem & Hedewy, 1988; Kloprogge et al., 2006; Lipinski et al., 2003; Lipinski & Kuriata, 2005; Ono et al., 1993; Osaka, 1978; Osaka & Makita, 1970; Ribeiro et al., 2006). Kloprogge et al. (2006) also reported a of the structure of SASD at room temperature, thereby confirming the results of the previous single-crystal X-ray analyses. We have now re-refined the of the paralectric phase of SASD at 170 K on the basis of single-crystal X-ray diffraction data.
As shown in Fig. 1, the sodium cation is hexa-coordinated with a considerably distorted octahedral coordination sphere formed by four water molecules in the equatorial plane and two sulfate O atoms in the apical positions. Selected bond lengths and angles are listed in Table 1. Each of the ligands links two sodium cations in a μ-coordination mode, resulting in chains along the [100] direction with the Na cations located near to a 21 screw axis. Na1⋯Na1i and Na1⋯Na1ii are separated by 3.1317 (2) and 3.1316 (2) Å, respectively [symmetry codes: (i) x − , −y + , −z + 1; (ii) x + , −y + , −z + 1]. The chains can be described as consisting of NaO6 octahedra sharing one face (Fig. 2) defined by atoms O1, O2 and O4. The sulfate anion exhibits the typical tetrahedral shape with an r.m.s. deviation from exact Td symmetry of only 0.0092 Å, as calculated with MOLSYM in PLATON (Spek, 2020). In the chains, the SO4 tetrahedra have one O atom in common with a pair of NaO6 octahedra. Chain motifs are encountered in the structures of many other sulfates (Gorogotskaya & Bokii, 1973).
The ). The water molecules form medium–strong and nearly linear intra- and interchain hydrogen bonds to sulfate oxygen atoms. The interstices between the [Na(μ-SO4)(μ-H2O)2]n− chains accommodate the ammonium cations, which form hydrogen bonds to sulfate oxygen atoms, thus establishing a three-dimensional network. The positions of the ammonium hydrogen atoms determined in the current study appear to be more accurate than those in the room-temperature structure reported by Arzt & Glazer (1994). Note that details of hydrogen bonding were not discussed in the latter report; based on the reported structure data (Arzt & Glazer, 1994), N—H distances range between 0.73 and 0.99 Å. Corazza et al. (1967) did not refine hydrogen-atom parameters in the original room-temperature but included their presumed positions in the structure-factor calculation for the final of the non-hydrogen atoms. In the current study, semi-free applying only similarity restraints on the 1,2-distances involving hydrogen atoms resulted in reasonable hydrogen-atom parameters and a sensible hydrogen-bonding scheme.
features hydrogen bonds of the O—H⋯O and N—H⋯O type (Table 2
|
The x parameter close to zero with a reasonably small (Table 3). The Hooft y parameter (Hooft et al., 2008), as calculated with PLATON, is 0.07 (2). Interestingly, the structure exhibits opposite to the previously reported room temperature structures (Corazza et al., 1967; Arzt & Glazer, 1994).
of the crystal was established by anomalous-dispersion effects in the diffraction data, as indicated by a Flack
|
Synthesis and crystallization
A crystal of the title compound suitable for single-crystal X-ray analysis was obtained unintentionally from a solution in an acetonitrile/water mixture after synthesis of an organic compound. Ammonium ions and sodium sulfate in this mixture originated from an employed reagent and the
respectively.Structural data
CCDC reference: 2032745
https://doi.org/10.1107/S2414314620012754/wm4138sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620012754/wm4138Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620012754/wm4138Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2016); cell
X-AREA (Stoe & Cie, 2016); data reduction: X-RED (Stoe & Cie, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 2018); software used to prepare material for publication: enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).Na+·NH4+·SO42−·2H2O | Dx = 1.767 Mg m−3 |
Mr = 173.12 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 15574 reflections |
a = 6.2001 (2) Å | θ = 3.0–29.5° |
b = 8.1917 (3) Å | µ = 0.53 mm−1 |
c = 12.8121 (6) Å | T = 170 K |
V = 650.72 (4) Å3 | Prism, colourless |
Z = 4 | 0.50 × 0.48 × 0.28 mm |
F(000) = 360 |
STOE IPDS 2T diffractometer | 1754 independent reflections |
Radiation source: sealed X-ray tube, Incoatec Iµs | 1690 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.038 |
ω scans | θmax = 29.2°, θmin = 3.0° |
Absorption correction: multi-scan [MULABS (Blessing, 1995) in PLATON (Spek, 2020)] | h = −8→7 |
Tmin = 0.728, Tmax = 1.117 | k = −11→11 |
14489 measured reflections | l = −17→17 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | All H-atom parameters refined |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0357P)2 + 0.0942P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1754 reflections | Δρmax = 0.20 e Å−3 |
114 parameters | Δρmin = −0.34 e Å−3 |
12 restraints | Absolute structure: Flack x determined using 672 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: dual | Absolute structure parameter: −0.05 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen-atom positions were located in a difference Fourier map, and their parameters were refined with standard similarity restraints on 1,2-distances for O—H and and N—H bonds (with a standard uncertainty of 0.02 Å). Uiso(H) values were refined freely. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.08933 (10) | 0.73476 (8) | 0.51432 (5) | 0.01968 (17) | |
S1 | 0.37520 (7) | 0.41221 (5) | 0.62681 (3) | 0.01762 (11) | |
O1 | 0.3414 (2) | 0.91744 (17) | 0.59691 (11) | 0.0248 (3) | |
H1A | 0.368 (6) | 0.903 (4) | 0.6609 (18) | 0.060 (10)* | |
H1B | 0.351 (5) | 1.020 (3) | 0.587 (2) | 0.050 (9)* | |
O2 | 0.3121 (2) | 0.79007 (17) | 0.36474 (11) | 0.0228 (3) | |
H2A | 0.303 (5) | 0.721 (3) | 0.320 (2) | 0.040 (8)* | |
H2B | 0.250 (5) | 0.873 (3) | 0.348 (2) | 0.035 (7)* | |
O3 | 0.1880 (3) | 0.4256 (2) | 0.69708 (12) | 0.0326 (3) | |
O4 | 0.3627 (2) | 0.53757 (14) | 0.54471 (10) | 0.0212 (3) | |
O5 | 0.3756 (4) | 0.25020 (16) | 0.57880 (12) | 0.0390 (4) | |
O6 | 0.5751 (2) | 0.4335 (2) | 0.68758 (12) | 0.0337 (4) | |
N1 | 0.3688 (3) | 0.3331 (2) | 0.35538 (13) | 0.0244 (3) | |
H1C | 0.356 (5) | 0.394 (3) | 0.4051 (19) | 0.042 (8)* | |
H1D | 0.364 (6) | 0.401 (3) | 0.308 (2) | 0.051 (9)* | |
H1E | 0.483 (4) | 0.284 (4) | 0.354 (3) | 0.056 (10)* | |
H1F | 0.269 (4) | 0.269 (3) | 0.358 (3) | 0.050 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0170 (3) | 0.0211 (3) | 0.0209 (3) | 0.0009 (2) | 0.0010 (3) | −0.0001 (2) |
S1 | 0.02186 (19) | 0.01448 (17) | 0.01652 (18) | −0.00021 (15) | 0.00033 (15) | 0.00224 (14) |
O1 | 0.0334 (7) | 0.0183 (6) | 0.0226 (6) | −0.0006 (6) | −0.0037 (5) | −0.0011 (5) |
O2 | 0.0253 (6) | 0.0237 (6) | 0.0195 (6) | 0.0023 (5) | −0.0034 (5) | 0.0005 (5) |
O3 | 0.0308 (7) | 0.0383 (8) | 0.0288 (7) | 0.0050 (6) | 0.0113 (6) | 0.0072 (6) |
O4 | 0.0259 (6) | 0.0170 (5) | 0.0206 (5) | −0.0001 (5) | −0.0020 (5) | 0.0056 (4) |
O5 | 0.0715 (11) | 0.0150 (6) | 0.0304 (7) | 0.0014 (8) | 0.0006 (8) | −0.0004 (5) |
O6 | 0.0311 (7) | 0.0402 (8) | 0.0298 (7) | −0.0088 (6) | −0.0106 (6) | 0.0138 (6) |
N1 | 0.0263 (8) | 0.0266 (7) | 0.0201 (7) | 0.0006 (7) | 0.0007 (7) | −0.0009 (6) |
Na1—O2i | 2.3229 (15) | S1—O3 | 1.4728 (15) |
Na1—O4 | 2.3733 (14) | S1—O6 | 1.4740 (15) |
Na1—O2 | 2.4054 (16) | O1—H1A | 0.84 (2) |
Na1—O1 | 2.4087 (15) | O1—H1B | 0.85 (2) |
Na1—O1i | 2.4389 (16) | O2—H2A | 0.81 (2) |
Na1—O4i | 2.4546 (14) | O2—H2B | 0.81 (2) |
Na1—Na1ii | 3.1316 (2) | N1—H1C | 0.814 (19) |
Na1—Na1i | 3.1317 (2) | N1—H1D | 0.828 (19) |
Na1—H2B | 2.61 (3) | N1—H1E | 0.81 (2) |
S1—O5 | 1.4628 (14) | N1—H1F | 0.81 (2) |
S1—O4 | 1.4721 (12) | ||
O2i—Na1—O4 | 111.05 (5) | O1i—Na1—H2B | 89.2 (6) |
O2i—Na1—O2 | 166.61 (6) | O4i—Na1—H2B | 68.8 (5) |
O4—Na1—O2 | 81.31 (5) | Na1ii—Na1—H2B | 59.5 (6) |
O2i—Na1—O1 | 103.97 (6) | Na1i—Na1—H2B | 104.3 (6) |
O4—Na1—O1 | 83.54 (5) | O5—S1—O4 | 109.42 (8) |
O2—Na1—O1 | 81.97 (5) | O5—S1—O3 | 109.02 (11) |
O2i—Na1—O1i | 83.03 (5) | O4—S1—O3 | 110.07 (8) |
O4—Na1—O1i | 101.42 (5) | O5—S1—O6 | 109.17 (11) |
O2—Na1—O1i | 89.58 (5) | O4—S1—O6 | 109.83 (8) |
O1—Na1—O1i | 169.50 (3) | O3—S1—O6 | 109.31 (9) |
O2i—Na1—O4i | 81.28 (5) | Na1—O1—Na1ii | 80.48 (4) |
O4—Na1—O4i | 167.55 (5) | Na1—O1—H1A | 118 (2) |
O2—Na1—O4i | 86.58 (5) | Na1ii—O1—H1A | 112 (2) |
O1—Na1—O4i | 92.00 (5) | Na1—O1—H1B | 127 (2) |
O1i—Na1—O4i | 81.23 (5) | Na1ii—O1—H1B | 112 (2) |
O2i—Na1—Na1ii | 144.84 (5) | H1A—O1—H1B | 105 (3) |
O4—Na1—Na1ii | 50.70 (4) | Na1ii—O2—Na1 | 82.93 (4) |
O2—Na1—Na1ii | 47.40 (4) | Na1ii—O2—H2A | 118 (2) |
O1—Na1—Na1ii | 50.18 (4) | Na1—O2—H2A | 113 (2) |
O1i—Na1—Na1ii | 126.60 (5) | Na1ii—O2—H2B | 127 (2) |
O4i—Na1—Na1ii | 118.04 (5) | Na1—O2—H2B | 95 (2) |
O2i—Na1—Na1i | 49.66 (4) | H2A—O2—H2B | 111 (3) |
O4—Na1—Na1i | 141.29 (5) | S1—O4—Na1 | 129.03 (8) |
O2—Na1—Na1i | 117.40 (5) | S1—O4—Na1ii | 136.05 (8) |
O1—Na1—Na1i | 130.11 (5) | Na1—O4—Na1ii | 80.86 (4) |
O1i—Na1—Na1i | 49.34 (4) | H1C—N1—H1D | 99 (3) |
O4i—Na1—Na1i | 48.44 (4) | H1C—N1—H1E | 114 (3) |
Na1ii—Na1—Na1i | 163.71 (5) | H1D—N1—H1E | 110 (3) |
O2i—Na1—H2B | 149.9 (5) | H1C—N1—H1F | 107 (3) |
O4—Na1—H2B | 99.0 (5) | H1D—N1—H1F | 116 (3) |
O2—Na1—H2B | 18.0 (5) | H1E—N1—H1F | 110 (3) |
O1—Na1—H2B | 80.9 (6) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) x+1/2, −y+3/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O6iii | 0.84 (2) | 1.99 (2) | 2.812 (2) | 165 (3) |
O1—H1B···O5iv | 0.85 (2) | 1.89 (2) | 2.7439 (19) | 175 (3) |
O2—H2A···O3v | 0.81 (2) | 1.98 (2) | 2.781 (2) | 171 (3) |
O2—H2B···O6i | 0.81 (2) | 1.98 (2) | 2.781 (2) | 175 (3) |
N1—H1C···O4 | 0.81 (2) | 2.14 (2) | 2.948 (2) | 172 (3) |
N1—H1D···O3v | 0.83 (2) | 2.03 (2) | 2.854 (2) | 172 (3) |
N1—H1E···O3vi | 0.81 (2) | 2.23 (2) | 2.977 (2) | 152 (3) |
N1—H1E···O5vi | 0.81 (2) | 2.60 (3) | 3.324 (3) | 149 (3) |
N1—H1F···O5vii | 0.81 (2) | 2.58 (3) | 3.245 (3) | 140 (3) |
N1—H1F···O6vii | 0.81 (2) | 2.13 (2) | 2.897 (3) | 157 (3) |
Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (iii) −x+1, y+1/2, −z+3/2; (iv) x, y+1, z; (v) −x+1/2, −y+1, z−1/2; (vi) x+1/2, −y+1/2, −z+1; (vii) x−1/2, −y+1/2, −z+1. |
Acknowledgements
Professor Kurt Merzweiler is gratefully acknowledged for providing diffractometer time. TE would like to thank Christoph Lehmann for his support. RWS would like to thank Dr Richard Goddard and Jan Henrik Halz for helpful discussions.
Funding information
We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arzt, S. & Glazer, A. M. (1994). Acta Cryst. B50, 425–431. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Brandenburg, K. (2018). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Corazza, E., Sabelli, C. & Giuseppetti, G. (1967). Acta Cryst. 22, 683–687. CrossRef ICSD IUCr Journals Google Scholar
Faust, R. J. & Bloss, F. D. (1963). Am. Mineral. 48, 180–188. CAS Google Scholar
Fawcett, V. J., Long, D. A. & Sankaranarayanan, V. N. (1975). J. Raman Spectrosc. 3, 217–228. CrossRef CAS Google Scholar
Genin, D. J. & O'Reilly, D. E. (1969). J. Chem. Phys. 50, 2842–2850. CrossRef CAS Google Scholar
Gorogotskaya, L. I. & Bokii, G. B. (1973). J. Struct. Chem. 13, 600–609. CrossRef Google Scholar
Hawthorne, F. C., Krivovichev, S. V. & Burns, P. C. (2000). Rev. Mineral. Geochem. 40, 1–112. Web of Science CrossRef CAS Google Scholar
Hilczer, B., Bravina, S. L., Morozovsky, N. V. & Szczepańska, L. (1993). Ferroelectrics, 140, 287–292. CrossRef CAS Google Scholar
Hilczer, B., Darwish, H. G. & Wolak, J. (1991). Ferroelectrics, 124, 391–396. CrossRef CAS Google Scholar
Hilczer, B., Piskunowicz, P., Darwish, H. G. & Szczepańska, L. (1992). Int. J. Thermophys. 13, 719–728. CrossRef CAS Google Scholar
Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kanesaka, I. & Ozaki, K. (1994). J. Raman Spectrosc. 25, 321–325. CrossRef CAS Google Scholar
Kassem, M. E. & Hedewy, S. (1988). J. Mater. Sci. Lett. 7, 1007–1009. CrossRef CAS Google Scholar
Kloprogge, J. T., Broekmans, M., Duong, L. V., Martens, W. N., Hickey, L. & Frost, R. L. (2006). J. Mater. Sci. 41, 3535–3539. CrossRef CAS Google Scholar
Lipinski, I. E. & Kuriata, J. (2005). Mater. Sci.-Pol. 23, 1023–1027. CAS Google Scholar
Lipinski, I. E., Kuriata, J. & Korynevskii, (2003). Condens. Matter Phys. 6, 245–250. Google Scholar
Ono, H., Irokawa, K., Miyazaki, A., Komukae, M., Osaka, T. & Makita, Y. (1993). J. Phys. Soc. Jpn, 62, 4194–4197. CrossRef CAS Google Scholar
Osaka, T. (1978). J. Phys. Soc. Jpn, 45, 571–574. CrossRef CAS Google Scholar
Osaka, T. & Makita, Y. (1970). J. Phys. Soc. Jpn, 28, 1378. CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ribeiro, J. L., Vieira, L. G., Tarroso Gomes, I., Agostinho Moreira, J., Almeida, A., Chaves, M. R., Santos, M. L. & Alferes, P. P. (2006). J. Phys. Condens. Matter, 18, 7761–7778. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2016). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.