metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(μ4-adamantane-1,3-di­carboxyl­ato-1κO1:2κO1′:3κO3:4κO3′)octa­carbonyl-1κ2C,2κ2C,3κ2C,4κ2C-tetra­kis­[tris­­(4-methyl­phen­yl)phosphane]-1κP,2κP,3κP,4κP-tetra­osmium(I)(2 OsOs)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Abilene Christian University, Abilene, Texas 79699-8132, USA, and bRigaku Americas Corp., 9009 New Trails Dr., The Woodlands, TX 77381, USA
*Correspondence e-mail: powellg@acu.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 August 2020; accepted 31 August 2020; online 8 September 2020)

The title complex, [{Os2(CO)4(C21H21P)2}2(C12H14O4)2], is a centrosymmetric mol­ecular loop consisting of two Os—Os sawhorse units linked by two adamantane di­carboxyl­ato bridges. It was synthesized by the microwave-mediated reaction between Os3(CO)12 and adamantane-1,3-di­carb­oxy­lic acid. In contrast to the related complex [{Os2(CO)6}2(μ4-adamantane-1,3-di­acetate)2], the metal–metal axes within each mol­ecule are oriented parallel rather than perpendicular to one another. The crystal structure exhibits cavities that contain residual electron density peaks, but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using the SQUEEZE (Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18) routine in PLATON [Spek (2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). Acta Cryst. E76, 1–11]. These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Group VIIIB sawhorse units with metal–metal bonds may have potential as building blocks for larger framework compounds including metal–organic frameworks (Köberl et al., 2011[Köberl, M., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 6834-6859.]; Therrien & Süss-Fink, 2009[Therrien, B. & Süss-Fink, G. (2009). Coord. Chem. Rev. 253, 2639-2664.]). There are nine Ru2 carboxyl­ato sawhorse assemblies in the Cambridge Structural Database (Version 5.41, last update November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Three are mol­ecular loops consisting of two sawhorse units (Bianchi et al., 1981[Bianchi, M., Frediani, P., Nardelli, M. & Pelizzi, G. (1981). Acta Cryst. A37, C236-C237.]; Shiu et al., 2002[Shiu, K.-B., Lee, H.-C., Lee, G.-H. & Wang, Y. (2002). Organometallics, 21, 4013-4016.]; Auzias et al., 2007[Auzias, M., Therrien, B. & Süss-Fink, G. (2007). Inorg. Chem. Commun. 10, 1420-1424.]), five are mol­ecular triangles consisting of three sawhorse units (Auzias et al., 2007[Auzias, M., Therrien, B. & Süss-Fink, G. (2007). Inorg. Chem. Commun. 10, 1420-1424.]; Süss-Fink et al., 1990[Süss-Fink, G., Wolfender, J.-L., Neuman, F. & Stoeckli-Evans, H. (1990). Angew. Chem. Int. Ed. Engl. 29, 429-431.]; Shiu et al., 2003[Shiu, K.-B., Lee, H.-C., Lee, G.-H., Ko, B.-T., Wang, Y. & Lin, C.-C. (2003). Angew. Chem. Int. Ed. 42, 2999-3001.], 2010[Shiu, K.-B., Lee, H.-C. & Lee, G.-H. (2010). Cryst. Growth Des. 10, 2083-2089.]), and one is a mol­ecular square consisting of four sawhorse units (Shiu et al., 2002[Shiu, K.-B., Lee, H.-C., Lee, G.-H. & Wang, Y. (2002). Organometallics, 21, 4013-4016.]). In all of these, the Ru—Ru axes are parallel rather than perpendicular to one another. The CSD also contains six Os2 carboxyl­ato sawhorse assemblies: five are mol­ecular loops of two sawhorse units and one is a mol­ecular triangle consisting of three sawhorse units (Fikes et al., 2014[Fikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772-773, 188-191.]; Gwini et al., 2017[Gwini, N., Marolf, D. M., Yoon, S. H., Fikes, A. G., Dugan, A. C., Powell, G. L., Lynch, V. M., Nesterov, V. N. & McCandless, G. T. (2017). J. Organomet. Chem. 849-850, 324-331.]). In all but one of these assemblies, the Os—Os axes within a mol­ecule are parallel to one another. Only the mol­ecular loop [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2 has Os—Os axes that are oriented perpendicular to one another (Fikes et al., 2014[Fikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772-773, 188-191.]). No Ru2 sawhorse assemblies containing adamantane-based di­carboxyl­ato linkers have been reported. Our goal was to investigate the orientation of Os2 units that would result when using adamantane-1,3-di­carb­oxy­lic acid rather than adamantane-1,3-di­acetic acid as a starting material.

The structure of the cluster mol­ecule in the title compound is illustrated in Fig. 1[link]. The cluster entity resides on an inversion center and consists of a mol­ecular loop in which two Os2(CO)4(phosphine)2 sawhorse units are bridged by two adamantane-1,3-di­carboxyl­ato ligands. The four tri-p-tolyl­phosphine ligands occupy axial coordination sites with Os—Os—P angles of 170.20 (2) and 170.60 (2)°, which are typical for diosmium sawhorse complexes. Like Ru2 sawhorse carboxyl­ato macrocycles in which the Ru—Ru axes are parallel to one another, the two Os—Os axes in this structure are also parallel. This is in contrast to the related mol­ecular loop [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2 in which the metal–metal axes within each mol­ecule are oriented perpendicular to one another (Fikes et al., 2014[Fikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772-773, 188-191.]). In the title compound, the Os—Os bond length is 2.7398 (2) Å. In [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2, where the axial sites are occupied by carbonyl ligands instead of phosphine ligands, the metal–metal bond lengths are somewhat longer at 2.7433 (3) and 2.7561 (3) Å.

[Figure 1]
Figure 1
View of the title mol­ecule showing the atom-labeling scheme. Displacement ellipsoids are scaled to the 35% probability level. For the sake of clarity, all H atoms are omitted. [Symmetry code: (1) 1 − x, 1 − y, 1 – z].

The cluster mol­ecules of the title compound stack so that the Os—Os vectors are nearly parallel to the b axis and nearly perpendicular to the a axis. When viewed down the b axis, the central cavities of the mol­ecular loops align to form narrow channels, as shown in Fig. 2[link]. Because sawhorse clusters with di­carboxyl­ato ligands have sometimes crystallized with solvent mol­ecules trapped in the center of the macrocycle, it is common to list the dimensions of the central cavity (Therrien & Süss-Fink, 2009[Therrien, B. & Süss-Fink, G. (2009). Coord. Chem. Rev. 253, 2639-2664.]). The cavity in the center of the title compound is a distorted rhombus with unique edge lengths of 4.684 (1) and 4.976 (1) Å as measured from the Os—Os midpoints to the central adamantane carbon atom C58. This cavity is smaller than that in [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2 in which these distances average 5.2 Å (Fikes et al., 2014[Fikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772-773, 188-191.]). The size difference was expected since there are two fewer carbon atoms per linker ligand in the title compound. As a result of their small sizes, the centers of the mol­ecular loops cannot serve as a trap for solvent mol­ecules in either one of these complexes. As shown in Fig. 3[link], the central portions of these two mol­ecular loops also display different shapes. Connecting the centroids of the two Os—Os vectors and the centroids of the two adamantane groups leads to a butterfly shape in the case of [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2 and an approximate square in the case of the title compound. The butterfly wings of the adamantane di­acetato complex are joined at an angle of 126°, while all four centroids are coplanar in the square of the title compound. The distances between adamantane centroids for the title cluster and for [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2 are 7.087 (2) and 7.598 (2) Å, respectively. Despite the differences in dimensions and spacing for the adamantane-based ligands in these two complexes, the distances between Os—Os centroids are remarkably similar at 8.983 (2) and 8.964 (2) Å, respectively.

[Figure 2]
Figure 2
Packing of the title mol­ecules viewed approximately along the b axis.
[Figure 3]
Figure 3
Views of the central shapes and core dimensions for (a) the title compound and (b) [Os2(CO)6]2(μ4-adamantane-1,3-di­acetate)2. On the left are perspective views in which atoms toward the front appear larger and atoms toward the back appear smaller. On the right are illustrations of the underlying core shapes in which blue dots represent the centroids of the two Os—Os units and gray dots represent the centroids of the two adamantane moieties.

Synthesis and crystallization

Os3(CO)12 (73.9 mg, 0.0815 mmol) and adamantane-1,3-di­carb­oxy­lic acid (29.2 mg, 0.130 mmol) were added to 7 ml of 1,2-di­chloro­benzene in a 35 ml microwave vessel. This solution was stirred and heated in the microwave reactor at 478 K for 13 minutes. The resulting solution had a pale-yellow color. The solvent was removed, then the residue was mixed with 25 ml of 1,2-di­chloro­ethane and 5 ml of aceto­nitrile and added to a 100 ml round-bottom flask equipped with a magnetic stir bar. Tri(p-tol­yl)phosphine (64.0 mg, 0.210 mmol) was added and the mixture was refluxed for 60 min. The solution was cooled to 277 K, 4 ml of n-hexane were added, and the products were isolated by fractional crystallization. The first fraction to precipitate was the desired product. Yield: 47.3 mg, 29.2%. IR (νCO, cm−1): 2013 (s), 1967 (w), and 1938 (s). Analysis calculated (%) for C116H112O16Os4P4·C6H14: C 53.61, H 4.65; found: C 53.00, H 4.78. Crystals of the title compound were obtained by slow diffusion of hexa­nes into a di­chloro­methane solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Inter­stitial solvent mol­ecules could not be modeled in a satisfactory manner, so a solvent mask was generated revealing voids at (1/2, 0, 1/2) and (1/2, 1/2, 0), each with a volume of 394.4 Å3 and containing about 110 electrons. The contribution of the disordered solvent mol­ecules to the scattering was removed using the SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) routine in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). These solvent mol­ecules are not considered in the given chemical formula and other crystal data.

Table 1
Experimental details

Crystal data
Chemical formula [Os4(C12H14O4)2(C21H21P)4(CO)8]
Mr 2646.73
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.71423 (13), 17.04149 (18), 26.1784 (3)
β (°) 96.7054 (9)
V3) 5633.26 (10)
Z 2
Radiation type Cu Kα
μ (mm−1) 9.33
Crystal size (mm) 0.27 × 0.21 × 0.10
 
Data collection
Diffractometer Rigaku SuperNova, Dual, Cu, Pilatus 200/300K
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.411, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30975, 10059, 9674
Rint 0.033
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.06
No. of reflections 10059
No. of parameters 637
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.22, −1.34
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2018/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT2018/3 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Bis(µ4-adamantane-1,3-dicarboxylato-1κO1:2κO1':3κO3:4κO3')octacarbonyl-1κ2C,2κ2C,3κ2C,4κ2C-tetrakis[tris(4-methylphenyl)phosphane]-1κP,2κP,3κP,4κP-tetraosmium(I)(2 OsOs) top
Crystal data top
[Os4(C12H14O4)2(C21H21P)4(CO)8]F(000) = 2600
Mr = 2646.73Dx = 1.560 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 12.71423 (13) ÅCell parameters from 25347 reflections
b = 17.04149 (18) Åθ = 2.6–77.3°
c = 26.1784 (3) ŵ = 9.33 mm1
β = 96.7054 (9)°T = 100 K
V = 5633.26 (10) Å3Block, yellow
Z = 20.27 × 0.21 × 0.10 mm
Data collection top
Rigaku SuperNova, Dual, Cu, Pilatus 200/300K
diffractometer
10059 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source9674 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 67.1°, θmin = 5.7°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1115
Tmin = 0.411, Tmax = 1.000k = 2020
30975 measured reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0375P)2 + 7.1306P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.003
10059 reflectionsΔρmax = 1.22 e Å3
637 parametersΔρmin = 1.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Os20.25720 (2)0.61407 (2)0.60158 (2)0.01693 (5)
Os10.24924 (2)0.45454 (2)0.61351 (2)0.01735 (5)
P20.29032 (6)0.74958 (5)0.58494 (3)0.02141 (17)
P10.27376 (6)0.31514 (5)0.62196 (3)0.02018 (17)
O50.41485 (18)0.46765 (13)0.63120 (9)0.0219 (5)
O70.70994 (18)0.54451 (13)0.46337 (9)0.0200 (5)
O80.73816 (17)0.41608 (13)0.47687 (8)0.0211 (5)
O60.42202 (16)0.59267 (14)0.60497 (9)0.0217 (5)
O40.02026 (18)0.62535 (14)0.59194 (10)0.0296 (6)
O30.2741 (2)0.64628 (16)0.71537 (9)0.0341 (6)
O20.0191 (2)0.44367 (16)0.57153 (12)0.0384 (7)
O10.1945 (3)0.46999 (17)0.72174 (11)0.0466 (8)
C60.7201 (2)0.48462 (19)0.49227 (12)0.0178 (6)
C490.5819 (2)0.51894 (19)0.61418 (12)0.0184 (6)
C510.7592 (2)0.5842 (2)0.62477 (13)0.0243 (7)
H510.79880.63270.63680.029*
C500.6422 (2)0.5942 (2)0.63210 (12)0.0219 (7)
H50A0.61210.63960.61180.026*
H50B0.63510.60410.66880.026*
C280.2264 (3)0.8181 (2)0.62644 (13)0.0253 (7)
C540.6286 (3)0.4485 (2)0.64515 (13)0.0231 (7)
H54A0.58950.40030.63340.028*
H54B0.62120.45620.68200.028*
C40.1111 (2)0.62182 (18)0.59547 (13)0.0195 (7)
C580.5922 (2)0.50562 (19)0.55659 (11)0.0176 (6)
H58A0.55220.45810.54430.021*
H58B0.56210.55100.53630.021*
C80.2435 (3)0.2145 (2)0.70621 (13)0.0267 (7)
H80.31410.19700.70520.032*
C10.2165 (3)0.4633 (2)0.68037 (15)0.0286 (8)
C560.7100 (2)0.49564 (19)0.54905 (12)0.0184 (6)
C530.7461 (3)0.4393 (2)0.63792 (13)0.0243 (7)
H530.77650.39360.65850.029*
C50.4636 (2)0.52736 (19)0.61791 (12)0.0180 (6)
C360.1640 (3)0.7508 (2)0.49043 (14)0.0287 (8)
H360.14560.69870.49880.034*
C20.1064 (3)0.4478 (2)0.58887 (15)0.0249 (7)
C290.1324 (3)0.7978 (2)0.64379 (16)0.0339 (9)
H290.10440.74680.63660.041*
C420.4299 (3)0.7757 (2)0.59678 (14)0.0257 (7)
C550.7692 (2)0.5714 (2)0.56791 (12)0.0212 (7)
H55A0.84490.56700.56280.025*
H55B0.73880.61680.54770.025*
C100.0774 (3)0.2041 (2)0.74291 (13)0.0251 (7)
C160.5683 (3)0.2778 (2)0.69879 (14)0.0333 (8)
H160.60210.28620.73270.040*
C520.8063 (3)0.5139 (2)0.65596 (13)0.0283 (8)
H52A0.88200.50810.65130.034*
H52B0.80100.52260.69300.034*
C470.4942 (3)0.7828 (2)0.55779 (15)0.0351 (9)
H470.46460.77690.52300.042*
C70.2028 (3)0.2735 (2)0.67298 (13)0.0224 (7)
C250.1718 (3)0.1197 (2)0.53986 (15)0.0318 (8)
H250.17650.06450.54490.038*
C90.1820 (3)0.1808 (2)0.74093 (14)0.0296 (8)
H90.21180.14120.76370.036*
C120.0982 (3)0.2973 (2)0.67532 (14)0.0266 (7)
H120.06850.33750.65300.032*
C30.2664 (3)0.6339 (2)0.67137 (15)0.0256 (7)
C220.1644 (3)0.2799 (2)0.52520 (13)0.0242 (7)
H220.16250.33490.51950.029*
C300.0769 (3)0.8496 (2)0.67153 (16)0.0356 (9)
H300.01210.83300.68280.043*
C350.2418 (3)0.7906 (2)0.52221 (13)0.0256 (7)
C440.5840 (3)0.7957 (3)0.65881 (16)0.0401 (10)
H440.61400.79880.69370.048*
C570.7557 (2)0.4251 (2)0.58085 (12)0.0213 (7)
H57A0.71670.37690.56920.026*
H57B0.83110.41780.57580.026*
C140.4102 (3)0.2842 (2)0.63794 (13)0.0231 (7)
C370.1129 (3)0.7861 (2)0.44668 (14)0.0327 (8)
H370.05940.75810.42580.039*
C210.2208 (3)0.2501 (2)0.56945 (13)0.0234 (7)
C110.0376 (3)0.2631 (2)0.70974 (14)0.0260 (7)
H110.03310.28050.71070.031*
C130.0095 (3)0.1657 (2)0.77931 (15)0.0317 (8)
H13A0.01550.10850.77670.048*
H13B0.06450.18130.77030.048*
H13C0.03350.18220.81460.048*
C240.1110 (3)0.1492 (2)0.49648 (14)0.0277 (7)
C150.4625 (3)0.2981 (2)0.68698 (13)0.0268 (7)
H150.42540.32170.71250.032*
C270.0453 (3)0.0956 (2)0.46000 (16)0.0348 (8)
H27A0.06490.04090.46800.052*
H27B0.05790.10760.42460.052*
H27C0.02990.10330.46360.052*
C190.4682 (3)0.2526 (2)0.60059 (15)0.0329 (8)
H190.43450.24380.56670.039*
C170.6259 (3)0.2454 (2)0.66182 (15)0.0316 (8)
C400.2691 (3)0.8659 (2)0.50738 (16)0.0348 (9)
H400.32340.89370.52790.042*
C450.6480 (3)0.8063 (2)0.62011 (16)0.0334 (8)
C230.1108 (3)0.2303 (2)0.48932 (13)0.0253 (7)
H230.07300.25200.45910.030*
C460.6026 (3)0.7985 (3)0.56931 (16)0.0396 (9)
H460.64560.80390.54220.048*
C430.4768 (3)0.7806 (3)0.64735 (15)0.0397 (10)
H430.43450.77350.67460.048*
C200.7412 (3)0.2254 (3)0.67495 (17)0.0424 (10)
H20A0.76880.25180.70700.064*
H20B0.78090.24290.64710.064*
H20C0.74900.16850.67930.064*
C410.0788 (4)0.9010 (3)0.38623 (17)0.0426 (10)
H41A0.04930.86070.36190.064*
H41B0.12720.93470.36960.064*
H41C0.02110.93280.39700.064*
C260.2254 (3)0.1689 (2)0.57566 (14)0.0306 (8)
H260.26600.14720.60500.037*
C180.5747 (3)0.2341 (2)0.61253 (16)0.0358 (9)
H180.61320.21330.58660.043*
C390.2188 (3)0.9006 (2)0.46349 (17)0.0389 (9)
H390.23940.95180.45420.047*
C310.1127 (3)0.9229 (2)0.68301 (14)0.0319 (8)
C380.1385 (3)0.8618 (2)0.43278 (15)0.0327 (8)
C480.7645 (3)0.8245 (3)0.63302 (19)0.0437 (10)
H48A0.77670.88040.62740.066*
H48B0.80560.79330.61090.066*
H48C0.78670.81140.66910.066*
C330.2633 (4)0.8923 (3)0.6380 (3)0.0705 (19)
H330.32900.90830.62740.085*
C340.0505 (3)0.9778 (3)0.71285 (18)0.0422 (10)
H34A0.02480.97420.69980.063*
H34B0.07521.03170.70890.063*
H34C0.06050.96320.74930.063*
C320.2065 (5)0.9446 (3)0.6649 (3)0.076 (2)
H320.23270.99630.67100.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Os20.01309 (8)0.01962 (9)0.01877 (8)0.00181 (5)0.00478 (5)0.00414 (5)
Os10.01328 (8)0.02051 (8)0.01932 (8)0.00221 (5)0.00641 (5)0.00143 (5)
P20.0186 (4)0.0222 (4)0.0242 (4)0.0045 (3)0.0059 (3)0.0036 (3)
P10.0172 (4)0.0220 (4)0.0222 (4)0.0000 (3)0.0059 (3)0.0006 (3)
O50.0147 (11)0.0282 (13)0.0231 (12)0.0018 (9)0.0034 (9)0.0019 (9)
O70.0165 (11)0.0224 (12)0.0214 (11)0.0011 (8)0.0034 (9)0.0022 (9)
O80.0226 (11)0.0217 (12)0.0205 (11)0.0022 (9)0.0084 (9)0.0025 (9)
O60.0114 (10)0.0246 (12)0.0298 (12)0.0033 (9)0.0058 (9)0.0060 (10)
O40.0179 (13)0.0280 (13)0.0428 (15)0.0003 (10)0.0025 (10)0.0016 (11)
O30.0432 (15)0.0413 (16)0.0176 (13)0.0019 (12)0.0031 (10)0.0092 (11)
O20.0154 (14)0.0328 (14)0.067 (2)0.0014 (11)0.0043 (12)0.0038 (13)
O10.068 (2)0.0454 (18)0.0316 (15)0.0182 (14)0.0294 (15)0.0102 (13)
C60.0091 (14)0.0246 (17)0.0200 (15)0.0028 (12)0.0025 (11)0.0029 (13)
C490.0145 (15)0.0237 (16)0.0173 (15)0.0032 (13)0.0032 (11)0.0023 (13)
C510.0166 (16)0.0322 (19)0.0237 (17)0.0056 (14)0.0010 (12)0.0089 (15)
C500.0179 (16)0.0292 (18)0.0185 (15)0.0041 (13)0.0019 (12)0.0074 (14)
C280.0244 (17)0.0239 (18)0.0279 (17)0.0025 (14)0.0046 (14)0.0055 (14)
C540.0218 (17)0.0294 (18)0.0183 (15)0.0000 (14)0.0033 (13)0.0002 (13)
C40.0126 (16)0.0195 (16)0.0275 (17)0.0003 (12)0.0071 (12)0.0022 (13)
C580.0139 (15)0.0222 (16)0.0165 (15)0.0015 (12)0.0013 (11)0.0027 (12)
C80.0204 (17)0.032 (2)0.0280 (18)0.0026 (14)0.0052 (13)0.0035 (15)
C10.027 (2)0.0269 (19)0.034 (2)0.0057 (14)0.0150 (16)0.0028 (15)
C560.0123 (14)0.0248 (17)0.0183 (15)0.0017 (13)0.0022 (11)0.0038 (13)
C530.0190 (17)0.0348 (19)0.0189 (16)0.0041 (14)0.0008 (12)0.0031 (14)
C50.0140 (15)0.0249 (17)0.0153 (14)0.0017 (12)0.0020 (11)0.0039 (12)
C360.0328 (19)0.0258 (18)0.0284 (18)0.0039 (15)0.0068 (14)0.0032 (15)
C20.0155 (18)0.0221 (17)0.039 (2)0.0012 (13)0.0092 (14)0.0005 (15)
C290.0299 (19)0.0235 (18)0.051 (2)0.0059 (15)0.0149 (17)0.0109 (17)
C420.0217 (17)0.0261 (18)0.0306 (18)0.0049 (14)0.0082 (14)0.0056 (14)
C550.0132 (15)0.0274 (18)0.0232 (16)0.0066 (13)0.0028 (12)0.0073 (14)
C100.0251 (17)0.0256 (17)0.0253 (17)0.0045 (14)0.0063 (13)0.0019 (14)
C160.0259 (18)0.046 (2)0.0278 (18)0.0002 (16)0.0027 (14)0.0137 (17)
C520.0163 (16)0.046 (2)0.0220 (17)0.0009 (15)0.0013 (13)0.0053 (16)
C470.0267 (19)0.046 (2)0.034 (2)0.0009 (17)0.0079 (15)0.0026 (17)
C70.0209 (16)0.0224 (17)0.0249 (16)0.0044 (13)0.0075 (13)0.0022 (13)
C250.038 (2)0.0196 (18)0.039 (2)0.0009 (15)0.0068 (17)0.0000 (15)
C90.0272 (18)0.031 (2)0.0299 (18)0.0001 (15)0.0024 (14)0.0080 (15)
C120.0238 (17)0.0259 (18)0.0302 (18)0.0001 (14)0.0027 (14)0.0033 (15)
C30.0173 (16)0.0211 (17)0.039 (2)0.0014 (13)0.0054 (14)0.0002 (15)
C220.0245 (17)0.0196 (16)0.0295 (17)0.0024 (13)0.0078 (13)0.0026 (14)
C300.0288 (19)0.029 (2)0.052 (2)0.0015 (16)0.0183 (17)0.0027 (18)
C350.0224 (17)0.0265 (18)0.0296 (18)0.0018 (14)0.0099 (14)0.0003 (14)
C440.0270 (19)0.059 (3)0.035 (2)0.0132 (18)0.0044 (16)0.0151 (19)
C570.0128 (15)0.0266 (18)0.0243 (17)0.0007 (13)0.0017 (12)0.0029 (14)
C140.0216 (16)0.0226 (17)0.0256 (17)0.0020 (13)0.0051 (13)0.0057 (14)
C370.035 (2)0.039 (2)0.0240 (18)0.0037 (17)0.0035 (15)0.0061 (16)
C210.0181 (16)0.0254 (17)0.0280 (17)0.0019 (13)0.0086 (13)0.0017 (14)
C110.0181 (16)0.0250 (18)0.0363 (19)0.0000 (13)0.0089 (14)0.0007 (15)
C130.0289 (19)0.0284 (19)0.040 (2)0.0021 (15)0.0118 (16)0.0084 (16)
C240.0261 (17)0.0286 (19)0.0294 (18)0.0009 (15)0.0071 (14)0.0024 (15)
C150.0219 (17)0.0334 (19)0.0266 (17)0.0012 (14)0.0095 (13)0.0066 (15)
C270.037 (2)0.0273 (19)0.040 (2)0.0048 (16)0.0055 (17)0.0051 (17)
C190.0241 (18)0.042 (2)0.0326 (19)0.0046 (16)0.0052 (15)0.0028 (17)
C170.0240 (18)0.034 (2)0.038 (2)0.0064 (15)0.0113 (15)0.0152 (17)
C400.0285 (19)0.0262 (19)0.049 (2)0.0065 (16)0.0002 (17)0.0035 (17)
C450.0255 (18)0.034 (2)0.041 (2)0.0063 (16)0.0047 (15)0.0042 (17)
C230.0234 (17)0.0245 (18)0.0276 (17)0.0010 (14)0.0014 (13)0.0006 (14)
C460.0238 (19)0.057 (3)0.040 (2)0.0041 (18)0.0115 (16)0.008 (2)
C430.0272 (19)0.062 (3)0.031 (2)0.0157 (19)0.0108 (16)0.0126 (19)
C200.027 (2)0.053 (3)0.050 (2)0.0137 (18)0.0124 (17)0.023 (2)
C410.052 (3)0.037 (2)0.038 (2)0.0079 (19)0.0030 (19)0.0016 (18)
C260.036 (2)0.0274 (19)0.0283 (18)0.0040 (15)0.0015 (15)0.0041 (15)
C180.0268 (19)0.041 (2)0.042 (2)0.0074 (16)0.0121 (16)0.0013 (18)
C390.039 (2)0.028 (2)0.049 (2)0.0021 (17)0.0030 (18)0.0074 (18)
C310.0299 (19)0.034 (2)0.0311 (19)0.0033 (16)0.0013 (15)0.0105 (16)
C380.035 (2)0.033 (2)0.0301 (19)0.0071 (16)0.0070 (15)0.0001 (16)
C480.0242 (19)0.050 (3)0.058 (3)0.0117 (18)0.0101 (18)0.008 (2)
C330.050 (3)0.044 (3)0.128 (5)0.023 (2)0.054 (3)0.044 (3)
C340.039 (2)0.041 (2)0.047 (2)0.0045 (18)0.0052 (19)0.019 (2)
C320.071 (4)0.043 (3)0.123 (5)0.026 (3)0.051 (4)0.050 (3)
Geometric parameters (Å, º) top
Os2—Os12.7398 (2)C52—H52B0.9900
Os2—P22.3964 (9)C47—H470.9500
Os2—O8i2.124 (2)C47—C461.401 (5)
Os2—O62.119 (2)C7—C121.398 (5)
Os2—C41.850 (3)C25—H250.9500
Os2—C31.848 (4)C25—C241.391 (5)
Os1—P12.4028 (9)C25—C261.377 (5)
Os1—O52.114 (2)C9—H90.9500
Os1—O7i2.136 (2)C12—H120.9500
Os1—C11.852 (4)C12—C111.381 (5)
Os1—C21.858 (4)C22—H220.9500
P2—C281.846 (3)C22—C211.386 (5)
P2—C421.821 (3)C22—C231.382 (5)
P2—C351.825 (4)C30—H300.9500
P1—C71.840 (3)C30—C311.353 (5)
P1—C141.815 (3)C35—C401.396 (5)
P1—C211.832 (4)C44—H440.9500
O5—C51.261 (4)C44—C451.383 (6)
O7—Os1i2.136 (2)C44—C431.385 (5)
O7—C61.268 (4)C57—H57A0.9900
O8—Os2i2.124 (2)C57—H57B0.9900
O8—C61.265 (4)C14—C151.395 (5)
O6—C51.261 (4)C14—C191.399 (5)
O4—C41.150 (4)C37—H370.9500
O3—C31.164 (4)C37—C381.389 (6)
O2—C21.152 (4)C21—C261.393 (5)
O1—C11.155 (5)C11—H110.9500
C6—C561.518 (4)C13—H13A0.9800
C49—C501.539 (4)C13—H13B0.9800
C49—C541.530 (5)C13—H13C0.9800
C49—C581.545 (4)C24—C271.503 (5)
C49—C51.525 (4)C24—C231.396 (5)
C51—H511.0000C15—H150.9500
C51—C501.532 (4)C27—H27A0.9800
C51—C551.524 (5)C27—H27B0.9800
C51—C521.531 (5)C27—H27C0.9800
C50—H50A0.9900C19—H190.9500
C50—H50B0.9900C19—C181.390 (5)
C28—C291.371 (5)C17—C201.506 (5)
C28—C331.371 (5)C17—C181.389 (6)
C54—H54A0.9900C40—H400.9500
C54—H54B0.9900C40—C391.382 (6)
C54—C531.536 (5)C45—C461.393 (6)
C58—H58A0.9900C45—C481.513 (5)
C58—H58B0.9900C23—H230.9500
C58—C561.543 (4)C46—H460.9500
C8—H80.9500C43—H430.9500
C8—C71.389 (5)C20—H20A0.9800
C8—C91.390 (5)C20—H20B0.9800
C56—C551.546 (4)C20—H20C0.9800
C56—C571.537 (5)C41—H41A0.9800
C53—H531.0000C41—H41B0.9800
C53—C521.530 (5)C41—H41C0.9800
C53—C571.532 (4)C41—C381.513 (5)
C36—H360.9500C26—H260.9500
C36—C351.392 (5)C18—H180.9500
C36—C371.387 (5)C39—H390.9500
C29—H290.9500C39—C381.391 (6)
C29—C301.386 (5)C31—C341.501 (5)
C42—C471.386 (5)C31—C321.384 (7)
C42—C431.389 (5)C48—H48A0.9800
C55—H55A0.9900C48—H48B0.9800
C55—H55B0.9900C48—H48C0.9800
C10—C91.395 (5)C33—H330.9500
C10—C111.385 (5)C33—C321.389 (7)
C10—C131.507 (5)C34—H34A0.9800
C16—H160.9500C34—H34B0.9800
C16—C151.389 (5)C34—H34C0.9800
C16—C171.394 (5)C32—H320.9500
C52—H52A0.9900
P2—Os2—Os1170.60 (2)C42—C47—H47119.7
O8i—Os2—Os182.86 (6)C42—C47—C46120.5 (4)
O8i—Os2—P291.84 (6)C46—C47—H47119.7
O6—Os2—Os182.76 (6)C8—C7—P1123.7 (3)
O6—Os2—P288.83 (7)C8—C7—C12118.0 (3)
O6—Os2—O8i81.95 (9)C12—C7—P1118.0 (3)
C4—Os2—Os191.75 (10)C24—C25—H25119.4
C4—Os2—P296.40 (10)C26—C25—H25119.4
C4—Os2—O8i94.28 (12)C26—C25—C24121.3 (3)
C4—Os2—O6173.67 (11)C8—C9—C10121.2 (3)
C3—Os2—Os193.86 (11)C8—C9—H9119.4
C3—Os2—P290.67 (11)C10—C9—H9119.4
C3—Os2—O8i173.78 (12)C7—C12—H12119.6
C3—Os2—O692.41 (12)C11—C12—C7120.8 (3)
C3—Os2—C491.09 (15)C11—C12—H12119.6
P1—Os1—Os2170.20 (2)O3—C3—Os2178.8 (3)
O5—Os1—Os282.59 (6)C21—C22—H22119.7
O5—Os1—P188.23 (6)C23—C22—H22119.7
O5—Os1—O7i81.97 (9)C23—C22—C21120.7 (3)
O7i—Os1—Os282.46 (6)C29—C30—H30119.1
O7i—Os1—P192.92 (6)C31—C30—C29121.8 (3)
C1—Os1—Os292.49 (11)C31—C30—H30119.1
C1—Os1—P191.92 (11)C36—C35—P2119.6 (3)
C1—Os1—O596.48 (14)C36—C35—C40117.7 (3)
C1—Os1—O7i174.86 (12)C40—C35—P2122.2 (3)
C1—Os1—C290.83 (17)C45—C44—H44119.6
C2—Os1—Os294.00 (11)C45—C44—C43120.9 (4)
C2—Os1—P194.68 (11)C43—C44—H44119.6
C2—Os1—O5172.05 (13)C56—C57—H57A109.7
C2—Os1—O7i90.49 (13)C56—C57—H57B109.7
C28—P2—Os2113.79 (12)C53—C57—C56109.7 (3)
C42—P2—Os2113.16 (12)C53—C57—H57A109.7
C42—P2—C28103.44 (15)C53—C57—H57B109.7
C42—P2—C35106.27 (16)H57A—C57—H57B108.2
C35—P2—Os2118.98 (12)C15—C14—P1120.1 (3)
C35—P2—C2899.30 (16)C15—C14—C19118.4 (3)
C7—P1—Os1112.26 (11)C19—C14—P1121.2 (3)
C14—P1—Os1114.78 (11)C36—C37—H37119.4
C14—P1—C7104.90 (15)C36—C37—C38121.2 (4)
C14—P1—C21104.75 (15)C38—C37—H37119.4
C21—P1—Os1119.79 (11)C22—C21—P1121.0 (3)
C21—P1—C798.22 (15)C22—C21—C26118.2 (3)
C5—O5—Os1122.2 (2)C26—C21—P1120.4 (3)
C6—O7—Os1i123.3 (2)C10—C11—H11119.2
C6—O8—Os2i123.9 (2)C12—C11—C10121.7 (3)
C5—O6—Os2123.0 (2)C12—C11—H11119.2
O7—C6—C56118.0 (3)C10—C13—H13A109.5
O8—C6—O7124.2 (3)C10—C13—H13B109.5
O8—C6—C56117.7 (3)C10—C13—H13C109.5
C50—C49—C58108.9 (3)H13A—C13—H13B109.5
C54—C49—C50110.1 (3)H13A—C13—H13C109.5
C54—C49—C58109.3 (3)H13B—C13—H13C109.5
C5—C49—C50111.2 (3)C25—C24—C27121.0 (3)
C5—C49—C54111.4 (3)C25—C24—C23117.4 (3)
C5—C49—C58105.9 (2)C23—C24—C27121.6 (3)
C50—C51—H51109.2C16—C15—C14120.5 (3)
C55—C51—H51109.2C16—C15—H15119.8
C55—C51—C50109.3 (3)C14—C15—H15119.8
C55—C51—C52109.7 (3)C24—C27—H27A109.5
C52—C51—H51109.2C24—C27—H27B109.5
C52—C51—C50110.2 (3)C24—C27—H27C109.5
C49—C50—H50A109.9H27A—C27—H27B109.5
C49—C50—H50B109.9H27A—C27—H27C109.5
C51—C50—C49109.0 (3)H27B—C27—H27C109.5
C51—C50—H50A109.9C14—C19—H19119.7
C51—C50—H50B109.9C18—C19—C14120.6 (4)
H50A—C50—H50B108.3C18—C19—H19119.7
C29—C28—P2119.8 (3)C16—C17—C20120.5 (4)
C33—C28—P2123.4 (3)C18—C17—C16118.3 (3)
C33—C28—C29116.6 (3)C18—C17—C20121.2 (3)
C49—C54—H54A109.7C35—C40—H40119.4
C49—C54—H54B109.7C39—C40—C35121.3 (4)
C49—C54—C53109.7 (3)C39—C40—H40119.4
H54A—C54—H54B108.2C44—C45—C46118.3 (3)
C53—C54—H54A109.7C44—C45—C48120.5 (4)
C53—C54—H54B109.7C46—C45—C48121.2 (4)
O4—C4—Os2178.9 (3)C22—C23—C24121.4 (3)
C49—C58—H58A109.7C22—C23—H23119.3
C49—C58—H58B109.7C24—C23—H23119.3
H58A—C58—H58B108.2C47—C46—H46119.6
C56—C58—C49109.6 (2)C45—C46—C47120.7 (4)
C56—C58—H58A109.7C45—C46—H46119.6
C56—C58—H58B109.7C42—C43—H43119.3
C7—C8—H8119.6C44—C43—C42121.3 (3)
C7—C8—C9120.7 (3)C44—C43—H43119.3
C9—C8—H8119.6C17—C20—H20A109.5
O1—C1—Os1178.5 (4)C17—C20—H20B109.5
C6—C56—C58109.5 (2)C17—C20—H20C109.5
C6—C56—C55108.8 (3)H20A—C20—H20B109.5
C6—C56—C57111.3 (3)H20A—C20—H20C109.5
C58—C56—C55108.1 (3)H20B—C20—H20C109.5
C57—C56—C58109.2 (3)H41A—C41—H41B109.5
C57—C56—C55109.9 (3)H41A—C41—H41C109.5
C54—C53—H53109.5H41B—C41—H41C109.5
C52—C53—C54109.7 (3)C38—C41—H41A109.5
C52—C53—H53109.5C38—C41—H41B109.5
C52—C53—C57109.7 (3)C38—C41—H41C109.5
C57—C53—C54109.0 (3)C25—C26—C21121.0 (3)
C57—C53—H53109.5C25—C26—H26119.5
O5—C5—O6125.6 (3)C21—C26—H26119.5
O5—C5—C49117.5 (3)C19—C18—H18119.5
O6—C5—C49116.8 (3)C17—C18—C19121.0 (3)
C35—C36—H36119.5C17—C18—H18119.5
C37—C36—H36119.5C40—C39—H39119.5
C37—C36—C35120.9 (3)C40—C39—C38120.9 (4)
O2—C2—Os1177.1 (3)C38—C39—H39119.5
C28—C29—H29119.0C30—C31—C34120.5 (4)
C28—C29—C30122.0 (3)C30—C31—C32116.8 (4)
C30—C29—H29119.0C32—C31—C34122.7 (4)
C47—C42—P2122.9 (3)C37—C38—C41120.6 (4)
C47—C42—C43118.2 (3)C37—C38—C39118.0 (4)
C43—C42—P2118.6 (3)C39—C38—C41121.4 (4)
C51—C55—C56109.8 (3)C45—C48—H48A109.5
C51—C55—H55A109.7C45—C48—H48B109.5
C51—C55—H55B109.7C45—C48—H48C109.5
C56—C55—H55A109.7H48A—C48—H48B109.5
C56—C55—H55B109.7H48A—C48—H48C109.5
H55A—C55—H55B108.2H48B—C48—H48C109.5
C9—C10—C13121.2 (3)C28—C33—H33119.4
C11—C10—C9117.5 (3)C28—C33—C32121.2 (4)
C11—C10—C13121.2 (3)C32—C33—H33119.4
C15—C16—H16119.4C31—C34—H34A109.5
C15—C16—C17121.2 (4)C31—C34—H34B109.5
C17—C16—H16119.4C31—C34—H34C109.5
C51—C52—H52A109.8H34A—C34—H34B109.5
C51—C52—H52B109.8H34A—C34—H34C109.5
C53—C52—C51109.6 (3)H34B—C34—H34C109.5
C53—C52—H52A109.8C31—C32—C33121.5 (4)
C53—C52—H52B109.8C31—C32—H32119.2
H52A—C52—H52B108.2C33—C32—H32119.2
Os2—P2—C28—C2930.9 (3)C29—C28—C33—C321.5 (9)
Os2—P2—C28—C33154.6 (4)C29—C30—C31—C34179.6 (4)
Os2—P2—C42—C47100.1 (3)C29—C30—C31—C321.1 (7)
Os2—P2—C42—C4372.8 (3)C42—P2—C28—C29154.1 (3)
Os2—P2—C35—C3617.1 (3)C42—P2—C28—C3331.4 (5)
Os2—P2—C35—C40171.8 (3)C42—P2—C35—C36146.1 (3)
Os2i—O8—C6—O75.1 (4)C42—P2—C35—C4042.7 (3)
Os2i—O8—C6—C56174.87 (19)C42—C47—C46—C450.8 (7)
Os2—O6—C5—O51.4 (4)C55—C51—C50—C4961.3 (4)
Os2—O6—C5—C49175.01 (19)C55—C51—C52—C5360.5 (3)
Os1—P1—C7—C8140.9 (3)C55—C56—C57—C5358.2 (3)
Os1—P1—C7—C1245.3 (3)C16—C17—C18—C191.6 (6)
Os1—P1—C14—C1571.3 (3)C52—C51—C50—C4959.4 (3)
Os1—P1—C14—C19102.8 (3)C52—C51—C55—C5659.4 (3)
Os1—P1—C21—C221.6 (3)C52—C53—C57—C5659.3 (3)
Os1—P1—C21—C26173.8 (2)C47—C42—C43—C442.9 (6)
Os1—O5—C5—O618.7 (4)C7—P1—C14—C1552.4 (3)
Os1—O5—C5—C49157.7 (2)C7—P1—C14—C19133.6 (3)
Os1i—O7—C6—O812.3 (4)C7—P1—C21—C22120.0 (3)
Os1i—O7—C6—C56167.69 (19)C7—P1—C21—C2652.2 (3)
P2—C28—C29—C30174.7 (3)C7—C8—C9—C101.1 (6)
P2—C28—C33—C32173.2 (6)C7—C12—C11—C100.3 (6)
P2—C42—C47—C46176.2 (3)C25—C24—C23—C223.3 (5)
P2—C42—C43—C44176.2 (4)C9—C8—C7—P1174.2 (3)
P2—C35—C40—C39169.5 (3)C9—C8—C7—C120.5 (5)
P1—C7—C12—C11174.2 (3)C9—C10—C11—C120.9 (5)
P1—C14—C15—C16177.0 (3)C22—C21—C26—C252.6 (5)
P1—C14—C19—C18175.6 (3)C30—C31—C32—C332.5 (10)
P1—C21—C26—C25169.9 (3)C35—P2—C28—C2996.6 (3)
O7—C6—C56—C5876.0 (3)C35—P2—C28—C3377.9 (5)
O7—C6—C56—C5542.0 (4)C35—P2—C42—C4732.3 (4)
O7—C6—C56—C57163.3 (3)C35—P2—C42—C43154.8 (3)
O8—C6—C56—C58104.0 (3)C35—C36—C37—C380.9 (6)
O8—C6—C56—C55138.0 (3)C35—C40—C39—C380.4 (6)
O8—C6—C56—C5716.7 (4)C44—C45—C46—C472.0 (7)
C6—C56—C55—C51179.4 (3)C57—C56—C55—C5158.4 (3)
C6—C56—C57—C53178.8 (3)C57—C53—C52—C5160.3 (4)
C49—C54—C53—C5259.3 (3)C14—P1—C7—C815.7 (3)
C49—C54—C53—C5760.9 (4)C14—P1—C7—C12170.6 (3)
C49—C58—C56—C6178.6 (3)C14—P1—C21—C22132.1 (3)
C49—C58—C56—C5560.2 (3)C14—P1—C21—C2655.7 (3)
C49—C58—C56—C5759.3 (3)C14—C19—C18—C170.8 (6)
C50—C49—C54—C5359.3 (3)C37—C36—C35—P2169.1 (3)
C50—C49—C58—C5660.8 (3)C37—C36—C35—C402.4 (5)
C50—C49—C5—O5143.5 (3)C21—P1—C7—C892.1 (3)
C50—C49—C5—O639.9 (4)C21—P1—C7—C1281.7 (3)
C50—C51—C55—C5661.6 (4)C21—P1—C14—C15155.3 (3)
C50—C51—C52—C5360.0 (4)C21—P1—C14—C1930.7 (3)
C28—P2—C42—C47136.3 (3)C21—C22—C23—C240.4 (5)
C28—P2—C42—C4350.8 (4)C11—C10—C9—C81.3 (5)
C28—P2—C35—C36106.9 (3)C13—C10—C9—C8177.9 (4)
C28—P2—C35—C4064.3 (3)C13—C10—C11—C12178.3 (3)
C28—C29—C30—C310.0 (7)C24—C25—C26—C210.3 (6)
C28—C33—C32—C312.7 (12)C15—C16—C17—C20178.6 (4)
C54—C49—C50—C5159.1 (3)C15—C16—C17—C180.2 (6)
C54—C49—C58—C5659.5 (3)C15—C14—C19—C181.4 (6)
C54—C49—C5—O520.2 (4)C27—C24—C23—C22174.5 (3)
C54—C49—C5—O6163.1 (3)C19—C14—C15—C162.8 (5)
C54—C53—C52—C5159.4 (4)C17—C16—C15—C142.0 (6)
C54—C53—C57—C5660.8 (3)C40—C39—C38—C372.0 (6)
C58—C49—C50—C5160.6 (3)C40—C39—C38—C41176.6 (4)
C58—C49—C54—C5360.2 (3)C45—C44—C43—C420.1 (7)
C58—C49—C5—O598.4 (3)C23—C22—C21—P1169.9 (3)
C58—C49—C5—O678.2 (3)C23—C22—C21—C262.5 (5)
C58—C56—C55—C5160.6 (3)C43—C42—C47—C463.2 (6)
C58—C56—C57—C5360.2 (3)C43—C44—C45—C462.4 (7)
C8—C7—C12—C110.1 (5)C43—C44—C45—C48178.7 (4)
C5—C49—C50—C51176.9 (3)C20—C17—C18—C19180.0 (4)
C5—C49—C54—C53176.8 (3)C26—C25—C24—C27174.6 (4)
C5—C49—C58—C56179.5 (3)C26—C25—C24—C233.2 (5)
C36—C35—C40—C391.8 (6)C48—C45—C46—C47179.1 (4)
C36—C37—C38—C41177.3 (4)C33—C28—C29—C300.1 (7)
C36—C37—C38—C391.4 (6)C34—C31—C32—C33179.1 (6)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We are thankful for the support of the Abilene Christian University Scholars Lab.

Funding information

Funding for this research was provided by: Welch Foundation (grant No. R-0021).

References

First citationAuzias, M., Therrien, B. & Süss-Fink, G. (2007). Inorg. Chem. Commun. 10, 1420–1424.  Web of Science CSD CrossRef CAS Google Scholar
First citationBianchi, M., Frediani, P., Nardelli, M. & Pelizzi, G. (1981). Acta Cryst. A37, C236–C237.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFikes, A. G., Gwini, N., Yoon, S. H., Nesterov, V. N. & Powell, G. L. (2014). J. Organomet. Chem. 772–773, 188–191.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGwini, N., Marolf, D. M., Yoon, S. H., Fikes, A. G., Dugan, A. C., Powell, G. L., Lynch, V. M., Nesterov, V. N. & McCandless, G. T. (2017). J. Organomet. Chem. 849–850, 324–331.  Web of Science CSD CrossRef CAS Google Scholar
First citationKöberl, M., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Dalton Trans. 40, 6834–6859.  Web of Science PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiu, K.-B., Lee, H.-C. & Lee, G.-H. (2010). Cryst. Growth Des. 10, 2083–2089.  Web of Science CSD CrossRef CAS Google Scholar
First citationShiu, K.-B., Lee, H.-C., Lee, G.-H., Ko, B.-T., Wang, Y. & Lin, C.-C. (2003). Angew. Chem. Int. Ed. 42, 2999–3001.  Web of Science CSD CrossRef CAS Google Scholar
First citationShiu, K.-B., Lee, H.-C., Lee, G.-H. & Wang, Y. (2002). Organometallics, 21, 4013–4016.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSüss-Fink, G., Wolfender, J.-L., Neuman, F. & Stoeckli-Evans, H. (1990). Angew. Chem. Int. Ed. Engl. 29, 429–431.  Google Scholar
First citationTherrien, B. & Süss-Fink, G. (2009). Coord. Chem. Rev. 253, 2639–2664.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds