metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

trans-Di­aqua­bis­­(N,N,N′-tri­methyl­ethylenedi­amine)­nickel(II) dichloride

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Fairfield Univerity, 1073 North Benson Road, Fairfield, CT 06824, USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435, USA
*Correspondence e-mail: jmiecznikowski@fairfield.edu, jjasinski@keene.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 3 August 2020; accepted 27 August 2020; online 8 September 2020)

In the title salt, [Ni(C5H12N2)2(H2O)2]Cl2, the asymmetric unit is comprised of half of the complex cation and a chloride ion with the NiII atom of the cation situated about a twofold rotation axis. The six-coordinate NiII atom of the cation is connected to four N atoms from two methyl-substituted ethyelenedi­amine ligands and two water mol­ecules in a slightly distorted octa­hedral environment. The five-membered chelate ring is in a slight envelope conformation. The crystal packing features O—H⋯Cl and N—H⋯Cl inter­molecular inter­actions with the Cl ion forming weak bifurcated hydrogen bonds with nearby water mol­ecules and N—H inter­actions, leading to a three-dimensional supra­molecular network structure.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Previously, a tris-ethyl­enedi­amine­nickel(II) complex has been reported (Swink & Atoji, 1960[Swink, L. N. & Atoji, M. (1960). Acta Cryst. 13, 639-643.]). Since then, such tris-ethyl­enedi­amine complexes have been reported for nearly all of the first row transition metals as well: scandium(III) (Wagner & Melson, 1973[Wagner, M. R. & Melson, G. A. (1973). J. Inorg. Nucl. Chem. 35, 869-873.]), titanium(II) (McDonald et al., 1968[McDonald, G. D., Thompson, M. & Larsen, E. M. (1968). Inorg. Chem. 7, 648-655.]), vanadium(II) (Daniels et al., 1995[Daniels, L. M., Murillo, C. M. & Rodríguez, K. G. (1995). Inorg. Chim. Acta, 229, 27-32.]), and vanadium(III) (Clark & Greenfield, 1967[Clark, R. J. H. & Greenfield, M. L. (1967). J. Chem. Soc. A, pp. 409-414.]), chromium(III) (Whuler et al., 1975[Whuler, A., Brouty, C., Spinat, P. & Herpin, P. (1975). Acta Cryst. B31, 2069-2076.]), iron(II) (Girard et al., 1998[Girard, M. R., Li, J. & Proserpio, D. M. (1998). Main Group Met. Chem. 21, 231-236.]), iron(III) (Renovitch & Baker, 1968[Renovitch, G. A. & Baker, W. A. Jr (1968). J. Am. Chem. Soc. 90, 3585-3587.]), cobalt(III) (Nakatsu, 1962[Nakatsu, K. (1962). Bull. Chem. Soc. Jpn, 35, 832-839.]), copper(II) (Cullen & Lingafelter, 1970[Cullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858-1864.]) and zinc(II) (Emsley et al., 1989[Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1989). Inorg. Chim. Acta, 165, 191-195.]). Substituted tris-ethyl­enedi­amine complexes with methyl groups instead of hydrogen atoms bonded to the nitro­gen atoms have not been reported, to the best of our knowledge. In this communication, we report the preparation, spectroscopic characterization and single-crystal structure analysis of a nickel(II) complex that contains an N,N,N'-tri­methyl­endi­amine ligand.

In the title salt, the asymmetric unit is comprised of half of the cationic complex and a chloride ion with the NiII atom of the cation situated about a twofold rotation axis (Fig. 1[link]). The chelate ring (Fig. 2[link]) is in a slight envelope conformation on C1 with puckering parameters Q2 = 0.476 (2)° and φ2 = 79.8 (2)°. The six-coordinate NiII atom of the cation is connected to four N atoms from two methyl-substituted ethelenedi­amine ligands and two water mol­ecules in a slightly distorted octa­hedral environment, with the two substituted ethyl­enedi­amine ligands and two water mol­ecules each coordinating trans to each other. The Ni—N bond lengths of 2.1906 (18) and 2.1245 (18) Å compare well to those of 2.120 (13) Å in the literature (Swink & Atoji, 1960[Swink, L. N. & Atoji, M. (1960). Acta Cryst. 13, 639-643.]); the Ni—O bond of 2.1189 (15) Å is the shortest of the metal–ligand bonds.

[Figure 1]
Figure 1
A view of [Ni(C5H16N4O2]2+2Cl, showing its structure generated from two asymmetric units containing half of the cation complex and a chloride ion situated about a twofold rotation axis on the NiII ion. The green dotted lines represent hydrogen bonds.
[Figure 2]
Figure 2
The mol­ecular structure of the asymmetric unit of [Ni(C5H16N4O2]2+2Cl, showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level.

The crystal packing features O—H⋯Cl and N—H⋯Cl inter­molecular inter­actions with the Cl ions forming weak bifurcated hydrogen bonds with nearby water mol­ecules and N—H inter­actions from the en moieties (Fig. 3[link], Table 1[link]). Chains then form along [010], [001] and [100], generating a three-dimensional supra­molecular network structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 1.00 2.31 3.296 (2) 169
O1—H1A⋯Cl1ii 0.75 (3) 2.36 (3) 3.1065 (16) 172 (4)
O1—H1B⋯Cl1 0.85 (4) 2.24 (5) 3.0836 (19) 172 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}].
[Figure 3]
Figure 3
A partial packing diagram of the title compound viewed along the c axis showing the O—H⋯Cl and N—H⋯Cl inter­molecular inter­actions (dashed lines) with the Cl ion, forming weak bifurcated hydrogen bonds.

Synthesis and crystallization

N,N,N′-Tri­methyl­ethylenedi­amine (0.47 g, 0.0046 mol) was added to 10 ml of 95%vol ethanol in a round-bottom flask. To this solution, 0.32 g (0.0013 mol) of NiCl2·6H2O were added. The reaction mixture became green in color. The reaction contents were then refluxed for 18 h. After the reaction time, the solvent was removed under reduced pressure. The product was then re-dissolved in aceto­nitrile and then the aceto­nitrile was removed under reduced pressure in order to determine the yield of the product. (0.41 g, 82%). Single crystals of the product were obtained by dissolving the product in aceto­nitrile and then allowing a diethyl ether vapor to slowly diffuse into the aceto­nitrile solution which contained the product. Analysis calculated for [C10H32N4NiO2]Cl2: C: 32.46; H: 8.72; N: 15.14. Found: C: 32.29; H: 8.59; N: 14.96. UV–Visible data: λ (nm), ( (M−1cm−1) (2.4 mM in MeCN) 390.00 (24); 228.00 (1600); 222.00 (1700).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C5H12N2)2(H2O)2]Cl2
Mr 370.00
Crystal system, space group Orthorhombic, Fdd2
Temperature (K) 173
a, b, c (Å) 24.7168 (8), 16.6156 (5), 8.3805 (3)
V3) 3441.75 (19)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.44
Crystal size (mm) 0.38 × 0.22 × 0.12
 
Data collection
Diffractometer Rigaku Oxford Diffraction Gemini Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA.])
Tmin, Tmax 0.718, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3481, 1940, 1866
Rint 0.018
(sin θ/λ)max−1) 0.758
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.03
No. of reflections 1940
No. of parameters 98
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.28
Absolute structure Classical Flack method (Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) preferred over Parsons because s.u. lower
Absolute structure parameter 0.011 (14)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

trans-Diaquabis(N,N,N'-trimethylethylenediamine)nickel(II) dichloride top
Crystal data top
[Ni(C5H12N2)2(H2O)2]Cl2Dx = 1.428 Mg m3
Mr = 370.00Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 1975 reflections
a = 24.7168 (8) Åθ = 4.5–32.7°
b = 16.6156 (5) ŵ = 1.44 mm1
c = 8.3805 (3) ÅT = 173 K
V = 3441.75 (19) Å3Plate, clear light blue
Z = 80.38 × 0.22 × 0.12 mm
F(000) = 1584
Data collection top
Rigaku Oxford Diffraction Gemini Eos
diffractometer
1940 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0416 pixels mm-1θmax = 32.6°, θmin = 3.7°
ω scansh = 3622
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1323
Tmin = 0.718, Tmax = 1.000l = 125
3481 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.45 e Å3
1940 reflectionsΔρmin = 0.28 e Å3
98 parametersAbsolute structure: Classical Flack method (Flack, 1983) preferred over Parsons because s.u. lower
1 restraintAbsolute structure parameter: 0.011 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All of the H atoms were placed in their calculated positions and then refined with lengths of 0.99 Å (CH); 0.98 Å (CH3) using a riding model with Uiso(H) = 1.2Ueq(CH, NH) or 1.5Ueq(CH3) of the parent atom. The idealized methyl group was refined as a rotating group. O-bound H atoms were located from a difference Fourier map and were refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.2500000.7500000.50037 (3)0.01242 (9)
O10.32782 (6)0.69655 (9)0.4955 (2)0.0176 (3)
N10.21604 (8)0.66367 (11)0.6707 (2)0.0168 (3)
N20.22374 (8)0.66391 (11)0.3297 (2)0.0178 (4)
H20.1900940.6864650.2807890.021*
C10.17897 (9)0.61499 (13)0.5691 (3)0.0220 (4)
H1C0.1462660.6468880.5435590.026*
H1D0.1674610.5662930.6281120.026*
C20.20698 (10)0.59057 (13)0.4165 (3)0.0218 (4)
H2A0.2390700.5571860.4413240.026*
H2B0.1820770.5583690.3495690.026*
C30.25933 (11)0.64123 (16)0.1951 (3)0.0259 (5)
H3A0.2736710.6899840.1446760.039*
H3B0.2385420.6103250.1166190.039*
H3C0.2893690.6083590.2348500.039*
C40.18262 (11)0.69845 (14)0.8001 (3)0.0247 (4)
H4A0.2060730.7261920.8766810.037*
H4B0.1628910.6552980.8545700.037*
H4C0.1567860.7368790.7546740.037*
C50.25562 (9)0.60896 (13)0.7464 (3)0.0216 (4)
H5A0.2743960.5779590.6637060.032*
H5B0.2366890.5720700.8185020.032*
H5C0.2820200.6405960.8070140.032*
Cl10.39455 (2)0.76479 (3)0.21560 (8)0.02448 (13)
H1A0.3323 (12)0.6516 (18)0.495 (5)0.026 (7)*
H1B0.3469 (19)0.720 (2)0.424 (5)0.049 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01210 (15)0.01247 (14)0.01270 (14)0.00142 (12)0.0000.000
O10.0163 (6)0.0152 (6)0.0213 (7)0.0030 (5)0.0004 (7)0.0003 (6)
N10.0184 (9)0.0149 (7)0.0172 (8)0.0004 (6)0.0018 (7)0.0014 (6)
N20.0180 (9)0.0181 (8)0.0173 (8)0.0037 (7)0.0023 (7)0.0020 (7)
C10.0193 (10)0.0191 (9)0.0274 (10)0.0050 (8)0.0010 (9)0.0010 (9)
C20.0223 (10)0.0162 (8)0.0270 (11)0.0012 (8)0.0050 (9)0.0036 (8)
C30.0315 (12)0.0275 (11)0.0187 (10)0.0038 (10)0.0005 (10)0.0054 (9)
C40.0287 (12)0.0233 (10)0.0220 (9)0.0038 (9)0.0081 (9)0.0024 (8)
C50.0237 (10)0.0191 (9)0.0219 (10)0.0026 (7)0.0004 (10)0.0064 (9)
Cl10.0205 (2)0.0189 (2)0.0340 (3)0.00289 (18)0.0101 (2)0.0041 (2)
Geometric parameters (Å, º) top
Ni1—O1i2.1189 (15)C1—H1C0.9900
Ni1—O12.1189 (15)C1—H1D0.9900
Ni1—N1i2.1906 (18)C1—C21.509 (3)
Ni1—N12.1906 (18)C2—H2A0.9900
Ni1—N22.1245 (18)C2—H2B0.9900
Ni1—N2i2.1245 (18)C3—H3A0.9800
O1—H1A0.75 (3)C3—H3B0.9800
O1—H1B0.85 (4)C3—H3C0.9800
N1—C11.489 (3)C4—H4A0.9800
N1—C41.481 (3)C4—H4B0.9800
N1—C51.478 (3)C4—H4C0.9800
N2—H21.0000C5—H5A0.9800
N2—C21.479 (3)C5—H5B0.9800
N2—C31.479 (3)C5—H5C0.9800
O1i—Ni1—O1177.80 (10)N1—C1—H1C109.6
O1—Ni1—N194.93 (7)N1—C1—H1D109.6
O1i—Ni1—N1i94.93 (7)N1—C1—C2110.35 (18)
O1i—Ni1—N186.51 (7)H1C—C1—H1D108.1
O1—Ni1—N1i86.51 (7)C2—C1—H1C109.6
O1i—Ni1—N289.54 (7)C2—C1—H1D109.6
O1i—Ni1—N2i88.98 (7)N2—C2—C1108.91 (16)
O1—Ni1—N2i89.54 (7)N2—C2—H2A109.9
O1—Ni1—N288.98 (7)N2—C2—H2B109.9
N1i—Ni1—N198.69 (10)C1—C2—H2A109.9
N2—Ni1—N1i175.26 (8)C1—C2—H2B109.9
N2—Ni1—N183.15 (7)H2A—C2—H2B108.3
N2i—Ni1—N1175.26 (8)N2—C3—H3A109.5
N2i—Ni1—N1i83.15 (7)N2—C3—H3B109.5
N2—Ni1—N2i95.36 (11)N2—C3—H3C109.5
Ni1—O1—H1A123 (2)H3A—C3—H3B109.5
Ni1—O1—H1B109 (3)H3A—C3—H3C109.5
H1A—O1—H1B111 (4)H3B—C3—H3C109.5
C1—N1—Ni1102.65 (14)N1—C4—H4A109.5
C4—N1—Ni1115.81 (13)N1—C4—H4B109.5
C4—N1—C1106.69 (19)N1—C4—H4C109.5
C5—N1—Ni1115.38 (14)H4A—C4—H4B109.5
C5—N1—C1108.56 (17)H4A—C4—H4C109.5
C5—N1—C4107.15 (18)H4B—C4—H4C109.5
Ni1—N2—H2106.1N1—C5—H5A109.5
C2—N2—Ni1108.00 (13)N1—C5—H5B109.5
C2—N2—H2106.1N1—C5—H5C109.5
C2—N2—C3109.40 (18)H5A—C5—H5B109.5
C3—N2—Ni1120.21 (16)H5A—C5—H5C109.5
C3—N2—H2106.1H5B—C5—H5C109.5
Ni1—N1—C1—C246.67 (19)C3—N2—C2—C1170.25 (19)
Ni1—N2—C2—C137.8 (2)C4—N1—C1—C2168.89 (17)
N1—C1—C2—N259.4 (2)C5—N1—C1—C275.9 (2)
Symmetry code: (i) x+1/2, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i1.002.313.296 (2)169
O1—H1A···Cl1ii0.75 (3)2.36 (3)3.1065 (16)172 (4)
O1—H1B···Cl10.85 (4)2.24 (5)3.0836 (19)172 (4)
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+3/4, y1/4, z+1/4.
 

Funding information

JRM acknowledges support from The Science Institute of the College of Arts and Sciences at Fairfield University for this work. Jerry P. Jasinski expresses thanks to the National Science Foundation Major Research Instrumentation Program (grant No. CHE-1039027) for funds to purchase an X-ray diffractometer. ANS and NRB acknowledge financial support from the Klimas Fund to support their summer research at Fairfield University.

References

First citationClark, R. J. H. & Greenfield, M. L. (1967). J. Chem. Soc. A, pp. 409–414.  CrossRef Web of Science Google Scholar
First citationCullen, D. L. & Lingafelter, E. C. (1970). Inorg. Chem. 9, 1858–1864.  CSD CrossRef CAS Web of Science Google Scholar
First citationDaniels, L. M., Murillo, C. M. & Rodríguez, K. G. (1995). Inorg. Chim. Acta, 229, 27–32.  CSD CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1989). Inorg. Chim. Acta, 165, 191–195.  CSD CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGirard, M. R., Li, J. & Proserpio, D. M. (1998). Main Group Met. Chem. 21, 231–236.  CrossRef CAS Google Scholar
First citationMcDonald, G. D., Thompson, M. & Larsen, E. M. (1968). Inorg. Chem. 7, 648–655.  CrossRef CAS Web of Science Google Scholar
First citationNakatsu, K. (1962). Bull. Chem. Soc. Jpn, 35, 832–839.  CSD CrossRef CAS Web of Science Google Scholar
First citationRenovitch, G. A. & Baker, W. A. Jr (1968). J. Am. Chem. Soc. 90, 3585–3587.  CrossRef CAS Web of Science Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwink, L. N. & Atoji, M. (1960). Acta Cryst. 13, 639–643.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWagner, M. R. & Melson, G. A. (1973). J. Inorg. Nucl. Chem. 35, 869–873.  CrossRef CAS Web of Science Google Scholar
First citationWhuler, A., Brouty, C., Spinat, P. & Herpin, P. (1975). Acta Cryst. B31, 2069–2076.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds