[ (IUCr) Chlorido­(4′-chloro-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)(tri­fluoro­methane­sulfonato-κO)zinc(II) aceto­nitrile monosolvate

metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Chlorido­(4′-chloro-2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)(tri­fluoro­methane­sulfonato-κO)zinc(II) aceto­nitrile monosolvate

aDepartment of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio TX 78209, USA, and bDepartment of Chemistry, The University of Texas at San Antonio, San Antonio TX 78249, USA
*Correspondence e-mail: adrian@uiwtx.edu

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 September 2020; accepted 21 September 2020; online 30 September 2020)

In the title complex, [Zn(CF3O3S)Cl(C15H10ClN3)]·CH3CN, the zinc(II) core is fivefold coordinated by one chloride, one tri­fluoro­methane­sulfonate O atom and three terpyridine N atoms in a slightly distorted square-pyramidal geometry. The structure provides a distinct example amongst other zinc(II) 4-chloro­terpyridine complexes because of the unusual planarity of the coordinated chloride, the short length of the Zn—N bond opposite to the chloride ligand [1.9572 (15) Å], and the presence of an elongated Zn—O bond [2.3911 (14) Å] in the coordinated tri­fluoro­methane­sulfonate ion. A molecule of acetonitrile is also found in the asymmetric unit of the title complex.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Substituted terpyridines such as 4′-chloro-2,2′:6′,2′′-terpyridine continue to be recognized as useful chelating ligands for many transition-metal ions, including platinum(II) (Qin et al., 2019[Qin, Q. P., Wang, Z. F., Wang, S. L., Luo, D. M., Zou, B. Q., Yao, P. F., Tan, M. X. & Liang, H. (2019). Eur. J. Med. Chem. 170, 195-202.]), copper(II) (Choroba et al., 2019[Choroba, K., Machura, B., Kula, S., Raposo, L. R., Fernandes, A. R., Kruszynski, R., Erfurt, K., Shul'pina, L. S., Kozlov, Y. N. & Shul'pin, G. B. (2019). Dalton Trans. 48, 12656-12673.]), cadmium(II) (Li et al., 2020[Li, J., Liu, R., Jiang, J., Liang, X., Huang, G., Yang, D., Chen, H., Pan, L. & Ma, Z. (2020). J. Inorg. Biochem. 210, 111165.]), and zinc(II) (Li et al., 2019[Li, J., Liu, R., Jiang, J., Liang, X., Huang, L., Huang, G., Chen, H., Pan, L. & Ma, Z. (2019). Molecules, 24, 4519-4545.]). Metal complexes containing zinc(II) and substituted terpyridines as chelating ligand have been shown to have promising anti­tumor activity (Liang et al., 2019[Liang, X., Jiang, J., Xue, X., Huang, L., Ding, X., Nong, D., Chen, H., Pan, L. & Ma, Z. (2019). Dalton Trans. 48, 10488-10504.]). Our research group inter­est currently lies in the synthesis of novel terpyridine–metal complexes with potential anti­tumor activity; as part of our research in this area, herein we describe the synthesis and structure of the title zinc(II) complex.

The asymmetric unit only contains the title compound, with four symmetry-related entities inside each unit cell. The zinc(II) ion shows a distorted square–pryramidal coordination environment defined by a tridentate 4-chloro­terpyridine ligand, a chloride, and an oxygen-coordinated tri­fluoro­methane­sulfonate (Fig. 1[link]). The angle N2—Zn1—Cl2 of 168.69 (5)° is considerably closer to a planar geometry than the reported value (125.6°) in the only comparable zinc(II) 4-chloro­terpyridine structure currently available in the CSD (version 5.41 with update August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; refcode HIVPOS; Huang & Qian, 2008[Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.]). Another remarkable feature of the structure is that while Zn1—N3 and Zn1—N1 bond lengths [2.0403 (17) and 2.0468 (17) Å, respectively] are well within the values observed in others zinc(II) 4-chloro terpyridine complexes (Huang & Qian, 2008[Huang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64-76.]; Dutta et al., 2019[Dutta, B., Das, D., Datta, J., Chandra, A., Jana, S., Sinha, C., Ray, P. P. & Mir, M. H. (2019). Inorg. Chem. Front. 6, 1245-1252.]; You et al., 2009[You, W., Huang, W., Fan, Y. & Yao, C. (2009). J. Coord. Chem. 62, 2125-2137.]), the Zn1—N2 bond length, across the chloride, is shorter [1.9572 (15) Å] and not comparable. The structure also features a coordinated tri­fluoro­methane­sulfonate anion that includes an elongated Zn—O bond of 2.3911 (14) Å (Gosiewska et al., 2006[Gosiewska, S., Cornelissen, J. J., Lutz, M., Spek, A. L., van Koten, G. & Klein Gebbink, R. J. (2006). Inorg. Chem. 45, 4214-4227.]). All relevant bonds and angles are presented in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Zn1—Cl2 2.2206 (6) Zn1—N2 1.9572 (15)
Zn1—O1 2.3911 (14) Zn1—N1 2.0468 (17)
Zn1—N3 2.0403 (17)    
       
Cl2—Zn1—O1 98.13 (4) N1—Zn1—Cl2 99.19 (5)
N2—Zn1—Cl2 168.69 (5) N1—Zn1—O1 92.17 (6)
N2—Zn1—O1 93.18 (6) N3—Zn1—Cl2 99.67 (5)
N2—Zn1—N1 79.97 (7) N3—Zn1—O1 93.68 (6)
N2—Zn1—N3 79.84 (6) N3—Zn1—N1 159.24 (6)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level; H atoms are omitted for clarity.

The packing diagram reveals stacking of the asymmetric unit in columns along the b axis. These columns form an alternating pattern with the Cl1 atoms facing away from each other while the tri­fluoro­methane­sulfonate ions and aceto­nitrile mol­ecules occupying the space between the stacked zinc(II) 4-chloro­terpyridine units. Adjacent columns also alternate directions in the crystal lattice (Fig. 2[link]).

[Figure 2]
Figure 2
Perspective view of the packing structure of the title complex along the a axis.

Synthesis and crystallization

4′-Chloro-2,2′:6′,2′′-terpyridine (0.200 g, 0.747 mmol) was suspended in 30 ml of aceto­nitrile and stirred for 10 min. ZnCl2 (0.102 g, 0.747 mmol) was added to the suspension and heated under stirring at 323 K for 1 h. AgOTf (0.384 g, 1.49 mmol) was added to the mixture and stirred without heating for 30 min. After the removal of AgCl by filtration using a 0.45 µm PTFE syringe filter, the resulting clear solution was used to grow crystals by vapor diffusion with diethyl ether at 278 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Zn(CF3O3S)Cl(C15H10ClN3)]·C2H3N
Mr 558.65
Crystal system, space group Monoclinic, P21/n
Temperature (K) 98
a, b, c (Å) 7.6550 (14), 15.329 (3), 18.486 (4)
β (°) 92.088 (7)
V3) 2167.8 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.53
Crystal size (mm) 0.5 × 0.23 × 0.13
 
Data collection
Diffractometer Rigaku Saturn724
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.287, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 15157, 4424, 4053
Rint 0.028
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.05
No. of reflections 4424
No. of parameters 290
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.46
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: OLEX2 (Dolomanov et al., 2009); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Chlorido(4'-chloro-2,2':6',2''-terpyridine-κ3N,N',N'')(trifluoromethanesulfonato-κO)zinc(II) acetonitrile monosolvate top
Crystal data top
[Zn(CF3O3S)Cl(C15H10ClN3)]·C2H3NF(000) = 1120
Mr = 558.65Dx = 1.712 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 7.6550 (14) ÅCell parameters from 10648 reflections
b = 15.329 (3) Åθ = 3.0–27.4°
c = 18.486 (4) ŵ = 1.53 mm1
β = 92.088 (7)°T = 98 K
V = 2167.8 (8) Å3Chunk, blue
Z = 40.5 × 0.23 × 0.13 mm
Data collection top
Rigaku Saturn724
diffractometer
4424 independent reflections
Radiation source: Sealed Tube4053 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.028
Detector resolution: 28.5714 pixels mm-1θmax = 26.4°, θmin = 3.0°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1919
Tmin = 0.287, Tmax = 1.000l = 2322
15157 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.040P)2 + 1.6585P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4424 reflectionsΔρmax = 0.48 e Å3
290 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.57879 (3)0.10461 (2)0.54368 (2)0.01503 (8)
Cl20.77504 (6)0.00527 (3)0.57903 (3)0.01862 (11)
S10.66102 (6)0.27610 (3)0.66109 (3)0.01438 (11)
Cl10.06371 (6)0.33529 (3)0.41880 (3)0.02027 (12)
F30.96127 (16)0.36209 (9)0.66388 (8)0.0307 (3)
F20.75796 (19)0.41967 (9)0.59444 (8)0.0354 (3)
O10.71851 (17)0.22976 (9)0.59695 (8)0.0176 (3)
F10.7465 (2)0.43216 (10)0.71074 (9)0.0462 (4)
O30.48031 (18)0.30461 (10)0.65635 (9)0.0249 (3)
N20.38097 (19)0.17251 (10)0.50413 (9)0.0119 (3)
N10.4111 (2)0.09391 (10)0.62698 (9)0.0137 (3)
N30.66449 (19)0.13089 (10)0.44275 (9)0.0132 (3)
O20.7203 (2)0.23764 (11)0.72904 (9)0.0312 (4)
C60.2382 (2)0.18139 (12)0.54416 (10)0.0127 (4)
C110.5531 (2)0.18136 (12)0.40107 (11)0.0135 (4)
C100.3898 (2)0.20620 (12)0.43760 (10)0.0125 (4)
N40.4601 (3)0.42556 (13)0.40405 (11)0.0290 (4)
C50.2542 (2)0.13511 (12)0.61493 (11)0.0129 (4)
C70.0949 (2)0.23059 (12)0.51838 (11)0.0147 (4)
H70.00470.23690.54520.018*
C150.8157 (2)0.10331 (12)0.41444 (11)0.0163 (4)
H150.89130.06860.44250.020*
C80.1082 (2)0.26963 (12)0.45068 (11)0.0144 (4)
C10.4419 (2)0.05299 (12)0.69072 (11)0.0177 (4)
H10.54900.02560.69940.021*
C40.1227 (2)0.13329 (12)0.66510 (11)0.0167 (4)
H40.01550.16010.65520.020*
C90.2528 (2)0.25749 (12)0.40792 (10)0.0143 (4)
H90.25820.28210.36210.017*
C120.5901 (2)0.20541 (13)0.33050 (11)0.0170 (4)
H120.51200.23940.30300.020*
C140.8612 (2)0.12554 (13)0.34456 (11)0.0183 (4)
H140.96610.10620.32640.022*
C30.1562 (3)0.09007 (13)0.73072 (12)0.0204 (4)
H30.07100.08780.76530.024*
C20.3178 (3)0.05051 (13)0.74399 (11)0.0204 (4)
H20.34270.02270.78790.024*
C170.3767 (3)0.48293 (14)0.42493 (12)0.0227 (4)
C130.7479 (3)0.17715 (13)0.30196 (11)0.0191 (4)
H130.77650.19260.25520.023*
C160.7872 (3)0.37808 (14)0.65711 (12)0.0224 (4)
C180.2688 (3)0.55655 (15)0.45103 (14)0.0304 (5)
H18A0.29410.60700.42170.046*
H18B0.14740.54180.44800.046*
H18C0.29440.56900.50040.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01194 (12)0.01654 (12)0.01657 (13)0.00242 (8)0.00006 (9)0.00003 (9)
Cl20.0152 (2)0.0169 (2)0.0236 (3)0.00591 (16)0.00090 (18)0.00110 (18)
S10.0125 (2)0.0189 (2)0.0118 (2)0.00271 (16)0.00134 (17)0.00214 (18)
Cl10.0152 (2)0.0225 (2)0.0228 (3)0.00850 (17)0.00349 (18)0.00070 (19)
F30.0176 (6)0.0366 (7)0.0377 (8)0.0105 (5)0.0020 (5)0.0001 (6)
F20.0393 (8)0.0246 (6)0.0420 (9)0.0027 (6)0.0007 (7)0.0113 (6)
O10.0132 (6)0.0204 (7)0.0196 (7)0.0014 (5)0.0044 (5)0.0056 (6)
F10.0517 (9)0.0371 (8)0.0507 (10)0.0152 (7)0.0157 (8)0.0296 (8)
O30.0139 (7)0.0297 (8)0.0315 (9)0.0014 (6)0.0075 (6)0.0083 (7)
N20.0093 (7)0.0134 (7)0.0128 (8)0.0009 (5)0.0005 (6)0.0020 (6)
N10.0120 (7)0.0142 (7)0.0149 (8)0.0011 (6)0.0003 (6)0.0004 (6)
N30.0105 (7)0.0160 (7)0.0131 (8)0.0005 (6)0.0006 (6)0.0029 (6)
O20.0346 (9)0.0410 (9)0.0174 (8)0.0117 (7)0.0057 (7)0.0080 (7)
C60.0100 (8)0.0147 (8)0.0135 (9)0.0009 (7)0.0003 (7)0.0031 (7)
C110.0107 (8)0.0143 (8)0.0155 (9)0.0009 (7)0.0004 (7)0.0036 (7)
C100.0104 (8)0.0137 (8)0.0133 (9)0.0005 (7)0.0005 (7)0.0022 (7)
N40.0269 (10)0.0310 (10)0.0293 (11)0.0007 (8)0.0027 (8)0.0062 (9)
C50.0122 (8)0.0123 (8)0.0141 (9)0.0018 (7)0.0015 (7)0.0015 (7)
C70.0102 (8)0.0176 (9)0.0164 (10)0.0006 (7)0.0010 (7)0.0039 (8)
C150.0111 (8)0.0166 (9)0.0212 (10)0.0019 (7)0.0004 (7)0.0041 (8)
C80.0104 (8)0.0147 (8)0.0177 (10)0.0021 (7)0.0035 (7)0.0028 (7)
C10.0173 (9)0.0169 (9)0.0186 (10)0.0015 (7)0.0027 (8)0.0014 (8)
C40.0142 (9)0.0177 (9)0.0182 (10)0.0001 (7)0.0030 (7)0.0019 (8)
C90.0139 (8)0.0160 (9)0.0127 (9)0.0004 (7)0.0022 (7)0.0006 (7)
C120.0155 (9)0.0198 (9)0.0156 (10)0.0006 (7)0.0011 (7)0.0003 (8)
C140.0123 (9)0.0222 (10)0.0207 (11)0.0011 (7)0.0047 (8)0.0065 (8)
C30.0232 (10)0.0200 (9)0.0183 (11)0.0015 (8)0.0066 (8)0.0013 (8)
C20.0275 (10)0.0200 (9)0.0134 (10)0.0001 (8)0.0011 (8)0.0031 (8)
C170.0219 (10)0.0262 (11)0.0203 (11)0.0057 (9)0.0044 (8)0.0005 (9)
C130.0181 (9)0.0247 (10)0.0147 (10)0.0025 (8)0.0037 (8)0.0033 (8)
C160.0220 (10)0.0210 (10)0.0242 (12)0.0037 (8)0.0023 (9)0.0062 (9)
C180.0314 (12)0.0291 (12)0.0309 (13)0.0062 (9)0.0034 (10)0.0023 (10)
Geometric parameters (Å, º) top
Zn1—Cl22.2206 (6)N4—C171.145 (3)
Zn1—O12.3911 (14)C5—C41.394 (3)
Zn1—N32.0403 (17)C7—H70.9300
Zn1—N21.9572 (15)C7—C81.394 (3)
Zn1—N12.0468 (17)C15—H150.9300
S1—O11.4636 (14)C15—C141.393 (3)
S1—O31.4503 (15)C8—C91.396 (3)
S1—O21.4455 (16)C1—H10.9300
S1—C161.840 (2)C1—C21.394 (3)
Cl1—C81.7420 (18)C4—H40.9300
F3—C161.357 (2)C4—C31.398 (3)
F2—C161.334 (3)C9—H90.9300
F1—C161.338 (3)C12—H120.9300
N2—C61.349 (2)C12—C131.404 (3)
N2—C101.338 (2)C14—H140.9300
N1—C51.368 (2)C14—C131.396 (3)
N1—C11.348 (3)C3—H30.9300
N3—C111.368 (2)C3—C21.391 (3)
N3—C151.356 (2)C2—H20.9300
C6—C51.489 (3)C17—C181.470 (3)
C6—C71.400 (3)C13—H130.9300
C11—C101.491 (3)C18—H18A0.9600
C11—C121.395 (3)C18—H18B0.9600
C10—C91.406 (3)C18—H18C0.9600
Cl2—Zn1—O198.13 (4)N3—C15—C14121.86 (18)
N2—Zn1—Cl2168.69 (5)C14—C15—H15119.1
N2—Zn1—O193.18 (6)C7—C8—Cl1118.23 (14)
N2—Zn1—N179.97 (7)C7—C8—C9122.42 (17)
N2—Zn1—N379.84 (6)C9—C8—Cl1119.36 (15)
N1—Zn1—Cl299.19 (5)N1—C1—H1119.0
N1—Zn1—O192.17 (6)N1—C1—C2121.91 (18)
N3—Zn1—Cl299.67 (5)C2—C1—H1119.0
N3—Zn1—O193.68 (6)C5—C4—H4120.9
N3—Zn1—N1159.24 (6)C5—C4—C3118.23 (18)
O1—S1—C16101.90 (9)C3—C4—H4120.9
O3—S1—O1114.30 (9)C10—C9—H9121.7
O3—S1—C16104.02 (10)C8—C9—C10116.70 (18)
O2—S1—O1114.32 (10)C8—C9—H9121.7
O2—S1—O3116.35 (10)C11—C12—H12120.8
O2—S1—C16103.45 (10)C11—C12—C13118.47 (18)
S1—O1—Zn1125.44 (8)C13—C12—H12120.8
C6—N2—Zn1118.69 (13)C15—C14—H14120.3
C10—N2—Zn1118.96 (12)C15—C14—C13119.38 (18)
C10—N2—C6122.32 (16)C13—C14—H14120.3
C5—N1—Zn1114.29 (13)C4—C3—H3120.2
C1—N1—Zn1126.91 (13)C2—C3—C4119.56 (19)
C1—N1—C5118.78 (17)C2—C3—H3120.2
C11—N3—Zn1114.34 (12)C1—C2—H2120.4
C15—N3—Zn1126.80 (13)C3—C2—C1119.22 (19)
C15—N3—C11118.86 (17)C3—C2—H2120.4
N2—C6—C5113.06 (16)N4—C17—C18179.4 (3)
N2—C6—C7120.53 (18)C12—C13—H13120.4
C7—C6—C5126.41 (17)C14—C13—C12119.24 (19)
N3—C11—C10113.87 (17)C14—C13—H13120.4
N3—C11—C12122.19 (17)F3—C16—S1110.98 (14)
C12—C11—C10123.93 (17)F2—C16—S1111.67 (14)
N2—C10—C11112.90 (16)F2—C16—F3107.43 (17)
N2—C10—C9120.82 (17)F2—C16—F1108.14 (18)
C9—C10—C11126.26 (18)F1—C16—S1111.11 (15)
N1—C5—C6113.98 (16)F1—C16—F3107.33 (17)
N1—C5—C4122.25 (18)C17—C18—H18A109.5
C4—C5—C6123.78 (17)C17—C18—H18B109.5
C6—C7—H7121.5C17—C18—H18C109.5
C8—C7—C6117.06 (17)H18A—C18—H18B109.5
C8—C7—H7121.5H18A—C18—H18C109.5
N3—C15—H15119.1H18B—C18—H18C109.5
Zn1—N2—C6—C50.7 (2)O2—S1—C16—F355.57 (17)
Zn1—N2—C6—C7178.98 (13)O2—S1—C16—F2175.40 (15)
Zn1—N2—C10—C113.2 (2)O2—S1—C16—F163.78 (18)
Zn1—N2—C10—C9178.17 (13)C6—N2—C10—C11174.71 (16)
Zn1—N1—C5—C61.36 (19)C6—N2—C10—C93.9 (3)
Zn1—N1—C5—C4178.72 (14)C6—C5—C4—C3177.78 (17)
Zn1—N1—C1—C2179.44 (14)C6—C7—C8—Cl1177.17 (13)
Zn1—N3—C11—C100.70 (19)C6—C7—C8—C93.2 (3)
Zn1—N3—C11—C12179.68 (14)C11—N3—C15—C140.6 (3)
Zn1—N3—C15—C14179.87 (14)C11—C10—C9—C8177.31 (17)
Cl1—C8—C9—C10177.93 (13)C11—C12—C13—C140.6 (3)
O1—S1—C16—F363.33 (16)C10—N2—C6—C5177.25 (16)
O1—S1—C16—F256.51 (16)C10—N2—C6—C73.1 (3)
O1—S1—C16—F1177.33 (16)C10—C11—C12—C13179.40 (17)
O3—S1—O1—Zn154.32 (13)C5—N1—C1—C20.9 (3)
O3—S1—C16—F3177.58 (14)C5—C6—C7—C8179.16 (17)
O3—S1—C16—F262.58 (17)C5—C4—C3—C20.0 (3)
O3—S1—C16—F158.24 (18)C7—C6—C5—N1178.30 (17)
N2—C6—C5—N11.3 (2)C7—C6—C5—C41.6 (3)
N2—C6—C5—C4178.75 (17)C7—C8—C9—C102.4 (3)
N2—C6—C7—C80.4 (3)C15—N3—C11—C10178.92 (15)
N2—C10—C9—C81.1 (3)C15—N3—C11—C120.1 (3)
N1—C5—C4—C32.1 (3)C15—C14—C13—C120.1 (3)
N1—C1—C2—C31.1 (3)C1—N1—C5—C6177.34 (16)
N3—C11—C10—N21.5 (2)C1—N1—C5—C42.6 (3)
N3—C11—C10—C9179.96 (17)C4—C3—C2—C11.5 (3)
N3—C11—C12—C130.5 (3)C12—C11—C10—N2177.45 (17)
N3—C15—C14—C130.5 (3)C12—C11—C10—C91.1 (3)
O2—S1—O1—Zn183.30 (11)C16—S1—O1—Zn1165.84 (10)
 

Acknowledgements

We are thankful for the support of the University of the Incarnate Word Department of Chemistry and Biochemistry and the X-ray Diffraction Laboratory at The University of Texas at San Antonio.

Funding information

Funding for this research was provided by: The Welch Foundation (grant No. BN0032).

References

First citationChoroba, K., Machura, B., Kula, S., Raposo, L. R., Fernandes, A. R., Kruszynski, R., Erfurt, K., Shul'pina, L. S., Kozlov, Y. N. & Shul'pin, G. B. (2019). Dalton Trans. 48, 12656–12673.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDutta, B., Das, D., Datta, J., Chandra, A., Jana, S., Sinha, C., Ray, P. P. & Mir, M. H. (2019). Inorg. Chem. Front. 6, 1245–1252.  CrossRef CAS Google Scholar
First citationGosiewska, S., Cornelissen, J. J., Lutz, M., Spek, A. L., van Koten, G. & Klein Gebbink, R. J. (2006). Inorg. Chem. 45, 4214–4227.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuang, W. & Qian, H. (2008). J. Mol. Struct. 874, 64–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J., Liu, R., Jiang, J., Liang, X., Huang, G., Yang, D., Chen, H., Pan, L. & Ma, Z. (2020). J. Inorg. Biochem. 210, 111165.  CrossRef PubMed Google Scholar
First citationLi, J., Liu, R., Jiang, J., Liang, X., Huang, L., Huang, G., Chen, H., Pan, L. & Ma, Z. (2019). Molecules, 24, 4519–4545.  CrossRef CAS Google Scholar
First citationLiang, X., Jiang, J., Xue, X., Huang, L., Ding, X., Nong, D., Chen, H., Pan, L. & Ma, Z. (2019). Dalton Trans. 48, 10488–10504.  CrossRef CAS PubMed Google Scholar
First citationQin, Q. P., Wang, Z. F., Wang, S. L., Luo, D. M., Zou, B. Q., Yao, P. F., Tan, M. X. & Liang, H. (2019). Eur. J. Med. Chem. 170, 195–202.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYou, W., Huang, W., Fan, Y. & Yao, C. (2009). J. Coord. Chem. 62, 2125–2137.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds