organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2-Bis[3,5-bis­­(di­methyl­amino)­phen­yl]-1,1,1,3,3,3-hexa­methyl­tris­­ilane

aInstitute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
*Correspondence e-mail: mizu@boc.kuicr.kyoto-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 18 September 2020; accepted 23 September 2020; online 25 September 2020)

The title compound, C26H48N4Si3, was synthesized by the reaction of 2,2-di­chloro­tris­ilane with 3,5-bis­(di­methyl­amino)­phenyl­lithium. In the mol­ecule, the dihedral angle between the benzene rings is 57.57 (7)° and the Si—Si—Si bond angle is 110.08 (2)°. In the crystal, mol­ecules are linked via an SiC–H⋯π(ar­yl) inter­action, forming a chain along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Trisilane derivatives are often used as a precursor for divalent silicon compounds (silylenes) (Gaspar & West, 1998[Gaspar, P. P. & West, R. (1998). The Chemistry of Organic Silicon Compounds, Vol. 2, pp. 2463-2568. Chichester, UK: John Wiley & Sons, Ltd.]). Photoirradiation of a tris­ilane results in the elimination of a disilane derived from the silyl moieties of the both ends and the generation of a silylene from the central one. Silylenes are highly reactive and known to give the dimer, silicon–silicon double–bond compound (disilene) (West et al., 1981[West, R., Fink, M. J. & Michl, J. (1981). Science, 214, 1343-1344.]), or higher oligomers without trapping reagent. Herein, we describe the synthesis and structural characterization of a novel tris­ilane bearing two 3,5-bis­(di­methyl­amino)­phenyl substituents on the central silicon atom.

In the mol­ecule (Fig. 1[link]), the Si—Si bond lengths are 2.3488 (5) and 2.3465 (5) Å, which are close to the shortest bond lengths among those of the reported 2,2-diaryl-1,1,1,3,3,3-hexa­methyl­tris­ilanes (2.347–2.397 Å; Archibald et al., 1993[Archibald, R. S., van den Winkel, Y., Powell, D. R. & West, R. (1993). J. Organomet. Chem. 446, 67-72.]; Lange et al., 1991[Lange, L. D., Corey, J. Y. & Rath, N. P. (1991). Organometallics, 10, 3189-3196.]; Millevolte et al., 1997[Millevolte, A. J., van den Winkel, Y., Powell, D. R. & West, R. (1997). Organometallics, 16, 5375-5376.]; Pusztai et al., 2013[Pusztai, E., Toulokhonova, I. S., Temple, N., Albright, H., Zakai, U. I., Guo, S., Guzei, I. A., Hu, R. & West, R. (2013). Organometallics, 32, 2529-2535.]). The sums of the angles around the nitro­gen atoms (N1, N2, N3 and N4) are 353.8, 358.9, 344.6 and 350.5°, respectively, indicating that the geometries around the nitro­gen atoms on one aryl substituent with N3/N4 are more pyramidalized than those on the other with N1/N2. In the crystal, mol­ecules are linked by an SiC–H⋯π(ar­yl) inter­action (Fig. 2[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H4⋯Cgi 0.98 2.81 3.7869 (17) 172
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing displacement ellipsoids at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2]
Figure 2
A packing diagram of the title compound, emphasizing the inter­molecular SiC—H⋯π(ar­yl) inter­actions (light-blue dotted lines). [Symmetry code: (i) x, −y + [{1\over 2}], z + [{1\over 2}].]

Synthesis and crystallization

To a solution of 1-bromo-3,5-bis­(di­methyl­amino)­benzene (194.6 mg, 0.80 mmol) in Et2O (6.0 ml) was added t-BuLi (1.64 M in pentane, 1.07 ml, 1.76 mmol) at −78 °C, and the solution was stirred for 1 h at the same temperature. Then, 2,2-di­chloro-1,1,1,3,3,3-hexa­methyl­tris­ilane (104.2 mg, 0.42 mmol) in Et2O (4 ml) was added dropwise, and the reaction mixture was gradually warmed up to room temperature over 14 h. After quenching with a saturated aqueous solution of NH4Cl (10 ml), the water phase was extracted with Et2O (10 ml × 2). The combined organic phase was dried over Na2SO4 and evaporated in vacuo. Finally, recrystallization from the mixed solvents of hexa­ne/di­chloro­methane gave the title compound (101.3 mg, 0.21 mmol, 50%) as colorless crystals. 1H NMR (300 Hz, CDCl3) δ 6.40 (d, J = 1.2 Hz, 4H), 6.11 (t, J = 1.2 Hz, 2H), 2.90 (s, 24H), 0.19 (s, 18H); 13C NMR (75.5 Hz, CDCl3) δ 151.1 (CH), 136.7 (C), 110.9 (CH), 98.6 (C), 41.1 (NCH3), −0.012 (SiCH3).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H48N4Si3
Mr 500.95
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 20.6543 (3), 8.3650 (1), 17.5215 (3)
β (°) 97.371 (2)
V3) 3002.23 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.20 × 0.20 × 0.20
 
Data collection
Diffractometer Rigaku Saturn
Absorption correction Multi-scan (CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.977, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 33409, 5581, 4877
Rint 0.029
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.04
No. of reflections 5581
No. of parameters 312
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.18
Computer programs: CrystalClear (Rigaku, 1999[Rigaku (1999). Crystal Clear. Rigaku Corporation, Tokyo, Japan.]), CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Yadokari-XG (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218-224.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: Yadokari-XG (Kabuto et al., 2009) Mercury (Macrae et al., 2020); software used to prepare material for publication: Yadokari-XG.

2,2-Bis[3,5-bis(dimethylamino)phenyl]-1,1,1,3,3,3-hexamethyltrisilane top
Crystal data top
C26H48N4Si3F(000) = 1096
Mr = 500.95Dx = 1.108 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.6543 (3) ÅCell parameters from 24488 reflections
b = 8.3650 (1) Åθ = 1.8–30.3°
c = 17.5215 (3) ŵ = 0.18 mm1
β = 97.371 (2)°T = 103 K
V = 3002.23 (8) Å3Prism, colorless
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku Saturn
diffractometer
5581 independent reflections
Radiation source: fine-focus sealed X-ray tube4877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 2525
Absorption correction: multi-scan
(CrysAlisPro (Rigaku OD, 2018)
k = 1010
Tmin = 0.977, Tmax = 1.000l = 2121
33409 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.4907P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max = 0.001
312 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.30425 (2)0.26359 (5)0.40578 (2)0.01776 (11)
Si20.25081 (2)0.23923 (4)0.27966 (2)0.01378 (10)
Si30.20713 (2)0.01864 (5)0.26001 (2)0.01934 (11)
C10.32187 (9)0.4774 (2)0.43281 (10)0.0326 (4)
H10.3427820.5297810.3923320.049*
H20.3511050.4817170.4814600.049*
H30.2809430.5324300.4387850.049*
C20.25745 (8)0.1727 (2)0.47983 (9)0.0338 (4)
H40.2825930.1839460.5309130.051*
H50.2498610.0591140.4682900.051*
H60.2154490.2276150.4789730.051*
C30.38414 (7)0.1570 (2)0.40627 (9)0.0278 (4)
H70.4091420.1646270.4575970.042*
H80.4089760.2063990.3684410.042*
H90.3760580.0443270.3930310.042*
C40.17831 (7)0.37787 (16)0.26124 (8)0.0157 (3)
C50.15255 (7)0.42232 (16)0.18664 (8)0.0166 (3)
H100.1740970.3910310.1442640.020*
C60.09489 (7)0.51314 (16)0.17395 (8)0.0164 (3)
C70.06416 (7)0.55949 (17)0.23737 (8)0.0175 (3)
H110.0256740.6226750.2292630.021*
C80.08913 (7)0.51440 (17)0.31244 (8)0.0189 (3)
C90.14687 (7)0.42416 (17)0.32341 (8)0.0181 (3)
H120.1647800.3941900.3740400.022*
N10.06746 (6)0.55413 (15)0.09955 (7)0.0211 (3)
C100.10803 (8)0.5412 (2)0.03772 (8)0.0247 (3)
H130.1206100.4293390.0319230.037*
H140.1473350.6066610.0500880.037*
H150.0834610.5789690.0104780.037*
C110.01575 (7)0.6719 (2)0.08958 (9)0.0252 (3)
H160.0320460.7737930.1120600.038*
H170.0209400.6352140.1153650.038*
H180.0011150.6865600.0345790.038*
N20.05745 (7)0.55862 (18)0.37463 (7)0.0305 (3)
C120.00044 (7)0.65851 (19)0.36342 (9)0.0235 (3)
H190.0325130.6091270.3254530.035*
H200.0122420.7637040.3448170.035*
H210.0172870.6708370.4123570.035*
C130.08889 (8)0.5299 (2)0.45176 (8)0.0253 (3)
H220.1312070.5845520.4591690.038*
H230.0955110.4148210.4596390.038*
H240.0613050.5709970.4888740.038*
C140.31425 (7)0.28489 (17)0.21410 (8)0.0151 (3)
C150.35872 (7)0.16651 (17)0.19910 (8)0.0170 (3)
H250.3538270.0609580.2175320.020*
C160.41035 (7)0.20138 (17)0.15730 (8)0.0169 (3)
C170.41619 (7)0.35685 (17)0.12925 (8)0.0167 (3)
H260.4507540.3811260.1002360.020*
C180.37191 (7)0.47750 (17)0.14323 (8)0.0162 (3)
C190.32122 (7)0.43937 (17)0.18636 (8)0.0160 (3)
H270.2912030.5200640.1967950.019*
N30.45454 (6)0.07908 (15)0.14290 (7)0.0215 (3)
N40.37992 (6)0.63483 (15)0.11844 (7)0.0219 (3)
C200.47693 (9)0.0230 (2)0.20856 (10)0.0358 (4)
H280.4392190.0730860.2276260.054*
H290.5008140.0416080.2495420.054*
H300.5058010.1062020.1926020.054*
C210.50722 (8)0.1230 (2)0.09949 (11)0.0366 (4)
H310.5362080.1994360.1293050.055*
H320.4889740.1718890.0506080.055*
H330.5320240.0271430.0892720.055*
C220.43019 (8)0.6685 (2)0.07004 (10)0.0313 (4)
H340.4194450.6147020.0203320.047*
H350.4723260.6293620.0951980.047*
H360.4327630.7840680.0618670.047*
C230.32265 (9)0.7339 (2)0.10043 (12)0.0361 (4)
H370.2943430.7224890.1409080.054*
H380.2988350.7005360.0510070.054*
H390.3359410.8459200.0971520.054*
C240.18019 (8)0.0508 (2)0.15471 (10)0.0310 (4)
H400.1467090.0281270.1363800.047*
H410.1621040.1586970.1466420.047*
H420.2176870.0386640.1261370.047*
C250.13399 (8)0.0289 (2)0.31312 (10)0.0332 (4)
H430.1480270.0195670.3685310.050*
H440.1116340.1312580.3022920.050*
H450.1040910.0588910.2963050.050*
C260.26437 (9)0.18132 (19)0.29957 (11)0.0340 (4)
H460.2429570.2853330.2903450.051*
H470.2761910.1654810.3550260.051*
H480.3038620.1781200.2740090.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0165 (2)0.0216 (2)0.0150 (2)0.00027 (16)0.00150 (15)0.00142 (15)
Si20.01451 (19)0.01279 (19)0.0143 (2)0.00137 (14)0.00278 (15)0.00109 (14)
Si30.0186 (2)0.0153 (2)0.0246 (2)0.00180 (15)0.00459 (16)0.00247 (16)
C10.0323 (9)0.0292 (9)0.0344 (9)0.0007 (7)0.0026 (7)0.0108 (7)
C20.0262 (9)0.0523 (11)0.0230 (8)0.0001 (8)0.0038 (7)0.0145 (8)
C30.0216 (8)0.0364 (9)0.0241 (8)0.0064 (7)0.0022 (6)0.0008 (7)
C40.0161 (7)0.0121 (7)0.0191 (7)0.0007 (5)0.0024 (5)0.0003 (5)
C50.0185 (7)0.0161 (7)0.0161 (7)0.0002 (6)0.0055 (5)0.0011 (5)
C60.0174 (7)0.0141 (7)0.0174 (7)0.0013 (5)0.0017 (5)0.0016 (5)
C70.0161 (7)0.0160 (7)0.0205 (7)0.0026 (5)0.0031 (6)0.0010 (6)
C80.0213 (7)0.0179 (7)0.0184 (7)0.0018 (6)0.0058 (6)0.0005 (6)
C90.0215 (7)0.0187 (7)0.0142 (7)0.0025 (6)0.0022 (6)0.0020 (6)
N10.0211 (6)0.0263 (7)0.0160 (6)0.0063 (5)0.0023 (5)0.0031 (5)
C100.0269 (8)0.0313 (9)0.0160 (7)0.0049 (7)0.0036 (6)0.0021 (6)
C110.0208 (8)0.0324 (9)0.0221 (8)0.0058 (7)0.0017 (6)0.0082 (7)
N20.0318 (8)0.0440 (9)0.0167 (7)0.0209 (7)0.0063 (6)0.0012 (6)
C120.0197 (7)0.0287 (8)0.0234 (8)0.0037 (6)0.0076 (6)0.0035 (6)
C130.0286 (8)0.0308 (9)0.0174 (7)0.0046 (7)0.0065 (6)0.0015 (6)
C140.0162 (7)0.0170 (7)0.0120 (6)0.0003 (5)0.0009 (5)0.0009 (5)
C150.0205 (7)0.0139 (7)0.0168 (7)0.0003 (6)0.0029 (6)0.0012 (5)
C160.0165 (7)0.0186 (7)0.0151 (7)0.0019 (6)0.0001 (5)0.0027 (6)
C170.0147 (7)0.0210 (7)0.0145 (7)0.0017 (6)0.0026 (5)0.0009 (6)
C180.0179 (7)0.0160 (7)0.0143 (7)0.0020 (6)0.0000 (5)0.0009 (5)
C190.0167 (7)0.0150 (7)0.0162 (7)0.0017 (5)0.0020 (5)0.0013 (5)
N30.0209 (6)0.0216 (6)0.0235 (7)0.0063 (5)0.0081 (5)0.0010 (5)
N40.0241 (7)0.0167 (6)0.0263 (7)0.0010 (5)0.0091 (5)0.0041 (5)
C200.0400 (10)0.0374 (10)0.0298 (9)0.0231 (8)0.0042 (7)0.0039 (8)
C210.0317 (9)0.0311 (9)0.0515 (11)0.0105 (8)0.0228 (8)0.0035 (8)
C220.0336 (9)0.0212 (8)0.0424 (10)0.0047 (7)0.0176 (8)0.0052 (7)
C230.0356 (10)0.0219 (8)0.0543 (12)0.0070 (7)0.0190 (9)0.0157 (8)
C240.0274 (9)0.0335 (9)0.0315 (9)0.0003 (7)0.0012 (7)0.0130 (7)
C250.0278 (9)0.0335 (9)0.0405 (10)0.0119 (7)0.0129 (7)0.0069 (8)
C260.0376 (10)0.0169 (8)0.0474 (11)0.0013 (7)0.0056 (8)0.0039 (7)
Geometric parameters (Å, º) top
Si1—C11.8737 (17)C12—H200.9800
Si1—C31.8744 (16)C12—H210.9800
Si1—C21.8755 (16)C13—H220.9800
Si1—Si22.3488 (5)C13—H230.9800
Si2—C41.8887 (14)C13—H240.9800
Si2—C141.8890 (14)C14—C191.395 (2)
Si2—Si32.3465 (5)C14—C151.398 (2)
Si3—C251.8751 (17)C15—C161.400 (2)
Si3—C261.8762 (17)C15—H250.9500
Si3—C241.8767 (17)C16—C171.401 (2)
C1—H10.9800C16—N31.4151 (18)
C1—H20.9800C17—C181.404 (2)
C1—H30.9800C17—H260.9500
C2—H40.9800C18—N41.4023 (18)
C2—H50.9800C18—C191.404 (2)
C2—H60.9800C19—H270.9500
C3—H70.9800N3—C211.452 (2)
C3—H80.9800N3—C201.460 (2)
C3—H90.9800N4—C231.446 (2)
C4—C91.393 (2)N4—C221.4499 (19)
C4—C51.3971 (19)C20—H280.9800
C5—C61.406 (2)C20—H290.9800
C5—H100.9500C20—H300.9800
C6—N11.3959 (18)C21—H310.9800
C6—C71.403 (2)C21—H320.9800
C7—C81.402 (2)C21—H330.9800
C7—H110.9500C22—H340.9800
C8—N21.3911 (19)C22—H350.9800
C8—C91.404 (2)C22—H360.9800
C9—H120.9500C23—H370.9800
N1—C111.4473 (19)C23—H380.9800
N1—C101.4562 (19)C23—H390.9800
C10—H130.9800C24—H400.9800
C10—H140.9800C24—H410.9800
C10—H150.9800C24—H420.9800
C11—H160.9800C25—H430.9800
C11—H170.9800C25—H440.9800
C11—H180.9800C25—H450.9800
N2—C121.4365 (19)C26—H460.9800
N2—C131.4423 (19)C26—H470.9800
C12—H190.9800C26—H480.9800
C1—Si1—C3108.08 (8)N2—C12—H21109.5
C1—Si1—C2108.21 (9)H19—C12—H21109.5
C3—Si1—C2109.61 (8)H20—C12—H21109.5
C1—Si1—Si2111.92 (6)N2—C13—H22109.5
C3—Si1—Si2105.68 (5)N2—C13—H23109.5
C2—Si1—Si2113.20 (6)H22—C13—H23109.5
C4—Si2—C14111.62 (6)N2—C13—H24109.5
C4—Si2—Si3104.95 (4)H22—C13—H24109.5
C14—Si2—Si3112.35 (5)H23—C13—H24109.5
C4—Si2—Si1111.97 (5)C19—C14—C15119.40 (13)
C14—Si2—Si1106.00 (4)C19—C14—Si2120.66 (10)
Si3—Si2—Si1110.08 (2)C15—C14—Si2119.65 (10)
C25—Si3—C26107.05 (8)C14—C15—C16120.91 (13)
C25—Si3—C24108.98 (8)C14—C15—H25119.5
C26—Si3—C24110.64 (8)C16—C15—H25119.5
C25—Si3—Si2106.75 (6)C15—C16—C17118.86 (13)
C26—Si3—Si2113.60 (6)C15—C16—N3119.66 (13)
C24—Si3—Si2109.63 (6)C17—C16—N3121.47 (13)
Si1—C1—H1109.5C16—C17—C18121.24 (13)
Si1—C1—H2109.5C16—C17—H26119.4
H1—C1—H2109.5C18—C17—H26119.4
Si1—C1—H3109.5N4—C18—C19120.37 (13)
H1—C1—H3109.5N4—C18—C17121.00 (13)
H2—C1—H3109.5C19—C18—C17118.54 (13)
Si1—C2—H4109.5C14—C19—C18121.03 (13)
Si1—C2—H5109.5C14—C19—H27119.5
H4—C2—H5109.5C18—C19—H27119.5
Si1—C2—H6109.5C16—N3—C21117.02 (12)
H4—C2—H6109.5C16—N3—C20115.40 (12)
H5—C2—H6109.5C21—N3—C20112.20 (13)
Si1—C3—H7109.5C18—N4—C23118.68 (12)
Si1—C3—H8109.5C18—N4—C22119.02 (12)
H7—C3—H8109.5C23—N4—C22112.84 (13)
Si1—C3—H9109.5N3—C20—H28109.5
H7—C3—H9109.5N3—C20—H29109.5
H8—C3—H9109.5H28—C20—H29109.5
C9—C4—C5119.86 (13)N3—C20—H30109.5
C9—C4—Si2118.43 (10)H28—C20—H30109.5
C5—C4—Si2121.45 (11)H29—C20—H30109.5
C4—C5—C6120.33 (13)N3—C21—H31109.5
C4—C5—H10119.8N3—C21—H32109.5
C6—C5—H10119.8H31—C21—H32109.5
N1—C6—C7120.08 (13)N3—C21—H33109.5
N1—C6—C5120.96 (13)H31—C21—H33109.5
C7—C6—C5118.95 (13)H32—C21—H33109.5
C8—C7—C6121.30 (13)N4—C22—H34109.5
C8—C7—H11119.4N4—C22—H35109.5
C6—C7—H11119.4H34—C22—H35109.5
N2—C8—C7120.67 (13)N4—C22—H36109.5
N2—C8—C9120.83 (13)H34—C22—H36109.5
C7—C8—C9118.50 (13)H35—C22—H36109.5
C4—C9—C8121.05 (13)N4—C23—H37109.5
C4—C9—H12119.5N4—C23—H38109.5
C8—C9—H12119.5H37—C23—H38109.5
C6—N1—C11118.99 (12)N4—C23—H39109.5
C6—N1—C10118.25 (12)H37—C23—H39109.5
C11—N1—C10116.55 (12)H38—C23—H39109.5
N1—C10—H13109.5Si3—C24—H40109.5
N1—C10—H14109.5Si3—C24—H41109.5
H13—C10—H14109.5H40—C24—H41109.5
N1—C10—H15109.5Si3—C24—H42109.5
H13—C10—H15109.5H40—C24—H42109.5
H14—C10—H15109.5H41—C24—H42109.5
N1—C11—H16109.5Si3—C25—H43109.5
N1—C11—H17109.5Si3—C25—H44109.5
H16—C11—H17109.5H43—C25—H44109.5
N1—C11—H18109.5Si3—C25—H45109.5
H16—C11—H18109.5H43—C25—H45109.5
H17—C11—H18109.5H44—C25—H45109.5
C8—N2—C12120.48 (12)Si3—C26—H46109.5
C8—N2—C13119.29 (12)Si3—C26—H47109.5
C12—N2—C13119.17 (12)H46—C26—H47109.5
N2—C12—H19109.5Si3—C26—H48109.5
N2—C12—H20109.5H46—C26—H48109.5
H19—C12—H20109.5H47—C26—H48109.5
C14—Si2—C4—C9145.45 (11)C4—Si2—C14—C1928.69 (13)
Si3—Si2—C4—C992.60 (11)Si3—Si2—C14—C19146.27 (10)
Si1—Si2—C4—C926.80 (12)Si1—Si2—C14—C1993.46 (11)
C14—Si2—C4—C540.35 (13)C4—Si2—C14—C15157.41 (11)
Si3—Si2—C4—C581.60 (12)Si3—Si2—C14—C1539.83 (12)
Si1—Si2—C4—C5159.00 (10)Si1—Si2—C14—C1580.44 (11)
C9—C4—C5—C60.2 (2)C19—C14—C15—C160.6 (2)
Si2—C4—C5—C6173.90 (10)Si2—C14—C15—C16173.39 (10)
C4—C5—C6—N1177.96 (13)C14—C15—C16—C171.2 (2)
C4—C5—C6—C70.6 (2)C14—C15—C16—N3179.91 (12)
N1—C6—C7—C8177.34 (13)C15—C16—C17—C180.8 (2)
C5—C6—C7—C81.3 (2)N3—C16—C17—C18179.53 (12)
C6—C7—C8—N2178.75 (14)C16—C17—C18—N4176.69 (13)
C6—C7—C8—C91.4 (2)C16—C17—C18—C190.1 (2)
C5—C4—C9—C80.4 (2)C15—C14—C19—C180.4 (2)
Si2—C4—C9—C8173.87 (11)Si2—C14—C19—C18174.32 (10)
N2—C8—C9—C4179.17 (14)N4—C18—C19—C14177.34 (13)
C7—C8—C9—C41.0 (2)C17—C18—C19—C140.7 (2)
C7—C6—N1—C1113.1 (2)C15—C16—N3—C21179.75 (14)
C5—C6—N1—C11168.37 (13)C17—C16—N3—C211.6 (2)
C7—C6—N1—C10164.45 (13)C15—C16—N3—C2044.38 (19)
C5—C6—N1—C1017.0 (2)C17—C16—N3—C20136.94 (15)
C7—C8—N2—C123.3 (2)C19—C18—N4—C2332.2 (2)
C9—C8—N2—C12176.48 (14)C17—C18—N4—C23151.30 (15)
C7—C8—N2—C13171.42 (14)C19—C18—N4—C22176.24 (13)
C9—C8—N2—C138.4 (2)C17—C18—N4—C227.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C2—H4···Cgi0.982.813.7869 (17)172
Symmetry code: (i) x, y+1/2, z+1/2.
 

Funding information

This work was supported by KAKENHI (JP16H04110, JP18H01963, JP19H05528, JP19H05635, JP24109013, and JP25288021) and the Integrated Research Consortium on Chemical Science (IRCCS). KI gratefully acknowledges a Research Fellowship for Young Scientists (JP20J12946) from the Japan Society for the Promotion of Science (JSPS). This study was supported by the Joint Usage/Research Center [JURC, Institute for Chemical Research (ICR), Kyoto University] by providing access to a Bruker Avance III 600 NMR spectrometer. The authors are furthermore grateful for computation time, which was provided by the Super Computer System (ICR, Kyoto University).

References

First citationArchibald, R. S., van den Winkel, Y., Powell, D. R. & West, R. (1993). J. Organomet. Chem. 446, 67–72.  CSD CrossRef CAS Google Scholar
First citationGaspar, P. P. & West, R. (1998). The Chemistry of Organic Silicon Compounds, Vol. 2, pp. 2463–2568. Chichester, UK: John Wiley & Sons, Ltd.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Japan, 51, 218–224.  CrossRef Google Scholar
First citationLange, L. D., Corey, J. Y. & Rath, N. P. (1991). Organometallics, 10, 3189–3196.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMillevolte, A. J., van den Winkel, Y., Powell, D. R. & West, R. (1997). Organometallics, 16, 5375–5376.  CSD CrossRef CAS Google Scholar
First citationPusztai, E., Toulokhonova, I. S., Temple, N., Albright, H., Zakai, U. I., Guo, S., Guzei, I. A., Hu, R. & West, R. (2013). Organometallics, 32, 2529–2535.  CSD CrossRef CAS Google Scholar
First citationRigaku (1999). Crystal Clear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWest, R., Fink, M. J. & Michl, J. (1981). Science, 214, 1343–1344.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds