metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis[tris­­(pyridin-2-yl)amine]­iron(II) tris­­(di­cyano­methyl­­idene)methane­diide

CROSSMARK_Color_square_no_text.svg

aDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, bLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, cOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Atakum-Samsun, Turkey, dChemistry Department, Faculty of Science, Hadhramout University, Mukalla, Hadhramout, Yemen, and eSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: fat_setifi@yahoo.fr

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 10 September 2020; accepted 20 September 2020; online 25 September 2020)

In the title compound, [Fe{(C5H4N)3N}2][C{C(CN)2}3], both ions lie across centres of inversion, with the anion being statistically disordered over two sets of atomic sites having equal occupancy. The cation and anion have approximate [\overline{3}] and 32 symmetry, respectively, and the Fe—N bond lengths indicate low-spin FeII. A combination of two-centre C—H⋯N and three-centre C—H⋯(N)2 hydrogen bonds link the ions into complex sheets. Several low-occupancy water mol­ecules are present, whose H atoms could not be located: accordingly, the reflection data were subjected to the SQUEEZE procedure [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As a consequence of their ability to link metal ions in a variety of different ways, polynitrile anions, either functioning alone or in combination with neutral co-ligands, provide opportunities for the generation of mol­ecular architectures with varying dimensions and topologies (Miyazaki et al., 2003[Miyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195-1196.]; Benmansour et al., 2007[Benmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186-194.], 2008[Benmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255-262.], 2012[Benmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359-2365.]; Atmani et al., 2008[Atmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921-924.]; Yuste et al., 2009[Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287-1294.]). The presence of other potential donor groups such as those derived from –OH, –SH or –NH2, together with their rigidity and electronic delocalization, mean that polynitrile anions can also lead to new bis­table materials (Benmansour et al., 2010[Benmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468-1478.]; Setifi et al., 2009[Setifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269-1271.], 2014[Setifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97-104.]; Pittala et al., 2017[Pittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017). Chem. Commun. 53, 8356-8359.]). As a part of our continuing study of the structural and magnetic properties of iron(II) complexes containing both polynitrile and polypyridyl units (Setifi et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.], 2017[Setifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149-154.], 2018a[Setifi, Z., Corfield, P. W. R., Setifi, F., Morgenstern, B., Hegetschweiler, K. & Kaddouri, Y. (2018a). Acta Cryst. E74, 1227-1230.],b[Setifi, Z., Geiger, D., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018b). J. Mol. Struct. 1173, 697-706.]), we report here the mol­ecular and supra­molecular structure of a new compound based on tri(2-pyrid­yl)amine (tpa) as ligand and the tris­(di­cyano­methyl­ene)methane­diide dianion (tcpd2−) as the counter-ion.

The structure consists of a [Fe((C5H4N)3N)2]2+ cation containing six-coordinate Fe in an octa­hedral coordination environment and a [C(C(CN)2)3]2− anion (Fig. 1[link]). In addition, there are also partial-occupancy water mol­ecules present, but these could not be structurally characterized in a satisfactory manner. The cation lies across a centre of inversion (½, ½, ½) with the unique ligand coordinated in a tripodal fashion, such that the point symmetry of the cation approximates very closely to S6 ([\overline{3}]). The Fe—N distances lie in the range 1.981 (3)–1.997 (3) Å. This is typical for six-coordinate low-spin FeII complexes, whereas Fe—N distances in analogous high-spin FeII complexes are typically observed at around 2.15 Å (Orpen et al., 1989[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-S83.]). The trigonal anion is disordered across another centre of inversion (½, 1, 0). The geometry at the central atom C4 is exactly planar, but the three independent C(CN)2 groups are twisted out of this plane, making dihedral angles with it of 26.2 (9), 27.7 (13) and 29.3 (9)°, so that the point symmetry of the anion approximates very closely to D3 (32). The anion is chiral, but the inversion symmetry confirms that equal numbers of the two enanti­omeric conformations are present.

[Figure 1]
Figure 1
The structure of the two ionic components, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The anion is disordered across a centre of inversion and the atoms marked `a′ or `b′ are at the symmetry positions (1 − x, 1 − y, 1 − z) and (1 − x, 2 − y, −z), respectively.

Within the selected asymmetric unit, the cation is linked to both orientations of the disordered anion by one two-centre C—H⋯N hydrogen bond and one three-centre C—H⋯(N)2 hydrogen bond (Table 1[link]), forming an ion pair. An additional further three-centre system links these ion pairs into complex sheets lying parallel to (100) (Fig. 2[link]): within this sheet, each anion site is occupied by one of the two possible orientations of the anion, and these orientations are distributed at random throughout the structure such that equal numbers of the two exist in the crystal as a whole.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C25—H25⋯N412 0.93 2.52 3.404 (16) 159
C26—H26⋯N421 0.93 2.31 3.23 (3) 170
C26—H26⋯N432i 0.93 2.54 3.47 (3) 173
C36—H36⋯N412ii 0.93 2.48 3.352 (17) 157
C36—H36⋯N431iii 0.93 2.50 3.39 (2) 160
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y-1, z; (iii) -x+1, -y+1, -z.
[Figure 2]
Figure 2
Part of the crystal structure showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, H atoms not involved in the motif shown have been omitted. Each anion site is occupied by one of the two possible orientations of the anion, distributed at random.

Synthesis and crystallization

The title compound was synthesized solvothermally under autogenous pressure using a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), tri(2-pyrid­yl)amine (31 mg, 0.1 mmol) and dipotassium tris­(dicycano­methyl­ene)methane­diide (28 mg, 0.1 mmol) in water-ethanol (3:1 v/v, 20 ml). The mixture was sealed in a Teflon-lined autoclave and held at 423 K for 3 d, and then cooled to ambient temperature at a rate of 10 K per hour (yield 45%). Red needles of the title complex suitable for single-crystal X-ray diffraction were selected directly from the synthesized product.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Because of the extensive overlapping of the atomic sites in the disordered anion, it was found necessary to restrain the bonded C—C and C—N distances in the anion to values of 1.42 (2) and 1.16 (2) Å, respectively, while the 1,3 non-bonded C⋯N distances were restrained to 2.58 (4) Å. Conventional refinement then indicated the presence of several low-occupancy water mol­ecules, whose H atoms could not be located: accordingly, the reflection data were subjected to the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), which indicated a void volume of 149 Å3 centred at the origin, and a total of 11 electrons per unit cell in addition to those of the ionic components.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C15H12N4)2](C10N6)
Mr 756.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.8291 (8), 10.0499 (8), 11.0308 (9)
α, β, γ (°) 98.825 (7), 90.900 (7), 117.747 (6)
V3) 948.18 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.45
Crystal size (mm) 0.39 × 0.12 × 0.11
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.899, 0.952
No. of measured, independent and observed [I > 2σ(I)] reflections 9558, 3955, 2609
Rint 0.103
(sin θ/λ)max−1) 0.629
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.164, 0.96
No. of reflections 3955
No. of parameters 319
No. of restraints 21
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.01, −0.25
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXS86 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2020).

Bis[tris(pyridin-2-yl)amine]iron(II) tris(dicyanomethylidene)methanediide top
Crystal data top
[Fe(C15H12N4)2](C10N6)Z = 1
Mr = 756.58F(000) = 388
Triclinic, P1Dx = 1.325 Mg m3
a = 9.8291 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.0499 (8) ÅCell parameters from 4139 reflections
c = 11.0308 (9) Åθ = 1.9–27.1°
α = 98.825 (7)°µ = 0.45 mm1
β = 90.900 (7)°T = 296 K
γ = 117.747 (6)°Needle, red
V = 948.18 (14) Å30.39 × 0.12 × 0.11 mm
Data collection top
STOE IPDS 2
diffractometer
3955 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2609 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.103
rotation method scansθmax = 26.6°, θmin = 1.9°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 1212
Tmin = 0.899, Tmax = 0.952k = 1212
9558 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
3955 reflectionsΔρmax = 1.01 e Å3
319 parametersΔρmin = 0.25 e Å3
21 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.50000.50000.50000.0477 (2)
N10.6353 (4)0.6637 (3)0.7523 (3)0.0559 (7)
N110.3931 (4)0.4694 (4)0.6537 (3)0.0543 (7)
C120.4770 (5)0.5581 (4)0.7590 (3)0.0547 (9)
C130.4143 (6)0.5505 (5)0.8704 (4)0.0666 (11)
H130.47510.61350.94220.080*
C140.2641 (6)0.4510 (6)0.8747 (4)0.0801 (13)
H140.21970.44680.94870.096*
C150.1770 (5)0.3547 (6)0.7664 (4)0.0752 (12)
H150.07430.28260.76710.090*
C160.2460 (5)0.3686 (5)0.6582 (4)0.0648 (10)
H160.18780.30530.58550.078*
N210.5931 (3)0.7238 (3)0.5604 (3)0.0541 (7)
C220.6498 (4)0.7761 (4)0.6797 (3)0.0542 (8)
C230.7155 (5)0.9278 (4)0.7338 (4)0.0641 (10)
H230.75320.95930.81670.077*
C240.7241 (5)1.0313 (5)0.6631 (4)0.0716 (11)
H240.76711.13470.69720.086*
C250.6677 (5)0.9800 (5)0.5398 (4)0.0686 (11)
H250.67311.04890.49020.082*
C260.6037 (5)0.8267 (5)0.4910 (4)0.0608 (9)
H260.56690.79340.40790.073*
N310.6765 (3)0.5035 (3)0.5924 (3)0.0513 (7)
C320.7226 (4)0.5871 (4)0.7074 (3)0.0512 (8)
C330.8442 (5)0.6016 (5)0.7805 (4)0.0635 (10)
H330.87230.66180.85880.076*
C340.9249 (5)0.5253 (5)0.7360 (4)0.0685 (11)
H341.00800.53230.78320.082*
C350.8768 (5)0.4382 (5)0.6184 (4)0.0644 (10)
H350.92790.38500.58580.077*
C360.7564 (4)0.4297 (4)0.5503 (4)0.0578 (9)
H360.72740.37080.47150.069*
C40.50001.00000.00000.0528 (12)
C410.6447 (8)1.1099 (8)0.0634 (6)0.0546 (17)0.5
C420.4036 (9)0.8718 (8)0.0533 (6)0.0577 (19)0.5
C430.4494 (9)1.0165 (9)0.1150 (6)0.0536 (17)0.5
C4110.768 (3)1.194 (3)0.001 (3)0.081 (9)0.5
N4110.867 (2)1.287 (2)0.042 (2)0.093 (6)0.5
C4120.673 (2)1.129 (2)0.1959 (11)0.053 (4)0.5
N4120.704 (3)1.168 (2)0.3007 (12)0.078 (4)0.5
C4210.462 (4)0.816 (3)0.142 (3)0.057 (5)0.5
N4210.508 (3)0.755 (2)0.198 (3)0.088 (7)0.5
C4220.2396 (13)0.790 (3)0.024 (2)0.054 (5)0.5
N4220.1088 (13)0.7435 (18)0.0259 (19)0.073 (3)0.5
C4310.353 (3)0.888 (3)0.204 (2)0.100 (10)0.5
N4310.267 (4)0.791 (3)0.2778 (18)0.095 (6)0.5
C4320.499 (4)1.164 (3)0.145 (3)0.074 (10)0.5
N4320.545 (3)1.275 (3)0.184 (3)0.086 (6)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0555 (5)0.0561 (5)0.0382 (4)0.0336 (4)0.0043 (3)0.0028 (3)
N10.070 (2)0.0617 (18)0.0440 (16)0.0404 (17)0.0011 (14)0.0008 (14)
N110.0626 (19)0.0666 (19)0.0452 (16)0.0405 (17)0.0106 (14)0.0082 (14)
C120.071 (2)0.062 (2)0.0450 (19)0.043 (2)0.0107 (16)0.0086 (17)
C130.089 (3)0.081 (3)0.048 (2)0.054 (3)0.016 (2)0.0118 (19)
C140.103 (4)0.100 (3)0.066 (3)0.066 (3)0.038 (3)0.033 (3)
C150.072 (3)0.091 (3)0.079 (3)0.047 (3)0.027 (2)0.030 (3)
C160.065 (3)0.077 (3)0.060 (2)0.039 (2)0.0115 (19)0.014 (2)
N210.0614 (19)0.0607 (18)0.0473 (16)0.0364 (16)0.0050 (13)0.0050 (14)
C220.061 (2)0.061 (2)0.0462 (19)0.0361 (18)0.0027 (16)0.0019 (17)
C230.073 (3)0.061 (2)0.059 (2)0.037 (2)0.0034 (19)0.0055 (19)
C240.079 (3)0.061 (2)0.075 (3)0.038 (2)0.005 (2)0.001 (2)
C250.080 (3)0.064 (2)0.070 (3)0.040 (2)0.009 (2)0.016 (2)
C260.066 (2)0.067 (2)0.057 (2)0.037 (2)0.0058 (18)0.0144 (19)
N310.0567 (17)0.0574 (17)0.0448 (15)0.0334 (15)0.0038 (12)0.0022 (13)
C320.056 (2)0.057 (2)0.0467 (19)0.0323 (17)0.0010 (15)0.0046 (16)
C330.070 (3)0.069 (2)0.053 (2)0.036 (2)0.0039 (18)0.0051 (19)
C340.060 (2)0.078 (3)0.072 (3)0.037 (2)0.0026 (19)0.015 (2)
C350.063 (2)0.076 (3)0.069 (3)0.045 (2)0.0118 (19)0.013 (2)
C360.065 (2)0.065 (2)0.053 (2)0.040 (2)0.0092 (17)0.0065 (18)
C40.062 (3)0.060 (3)0.043 (3)0.036 (3)0.006 (2)0.001 (2)
C410.056 (4)0.060 (4)0.047 (4)0.028 (4)0.003 (4)0.005 (4)
C420.080 (6)0.064 (5)0.038 (4)0.043 (4)0.002 (3)0.001 (3)
C430.059 (4)0.060 (5)0.042 (4)0.030 (4)0.001 (3)0.004 (4)
C4110.119 (19)0.065 (13)0.058 (10)0.046 (11)0.005 (8)0.001 (8)
N4110.124 (15)0.088 (9)0.099 (9)0.073 (10)0.023 (8)0.029 (6)
C4120.054 (7)0.057 (7)0.033 (6)0.023 (5)0.006 (5)0.022 (5)
N4120.094 (12)0.084 (11)0.034 (5)0.026 (8)0.007 (7)0.000 (6)
C4210.071 (13)0.069 (11)0.050 (8)0.045 (9)0.013 (7)0.022 (7)
N4210.15 (2)0.071 (8)0.059 (7)0.065 (12)0.008 (11)0.010 (8)
C4220.044 (7)0.042 (6)0.064 (10)0.007 (6)0.025 (7)0.020 (6)
N4220.052 (6)0.066 (8)0.092 (8)0.022 (6)0.018 (5)0.013 (6)
C4310.078 (13)0.117 (18)0.12 (2)0.052 (12)0.016 (11)0.050 (15)
N4310.099 (11)0.085 (12)0.072 (12)0.022 (9)0.006 (9)0.010 (8)
C4320.078 (16)0.085 (12)0.053 (9)0.033 (9)0.019 (9)0.009 (9)
N4320.097 (12)0.094 (12)0.061 (10)0.038 (9)0.007 (8)0.019 (9)
Geometric parameters (Å, º) top
Fe1—N31i1.981 (3)N31—C321.349 (4)
Fe1—N311.981 (3)N31—C361.353 (4)
Fe1—N21i1.986 (3)C32—C331.368 (5)
Fe1—N211.986 (3)C33—C341.386 (6)
Fe1—N11i1.997 (3)C33—H330.9300
Fe1—N111.997 (3)C34—C351.386 (6)
N1—C121.430 (5)C34—H340.9300
N1—C221.438 (5)C35—C361.353 (5)
N1—C321.444 (4)C35—H350.9300
N11—C161.331 (5)C36—H360.9300
N11—C121.339 (5)C4—C41ii1.414 (7)
C12—C131.380 (5)C4—C411.414 (7)
C13—C141.350 (7)C4—C431.416 (7)
C13—H130.9300C4—C43ii1.416 (7)
C14—C151.392 (7)C4—C421.420 (7)
C14—H140.9300C4—C42ii1.420 (7)
C15—C161.376 (6)C41—C4111.395 (15)
C15—H150.9300C41—C4121.450 (14)
C16—H160.9300C42—C4221.431 (14)
N21—C261.346 (5)C42—C4211.435 (16)
N21—C221.346 (4)C43—C4311.402 (16)
C22—C231.374 (5)C43—C4321.426 (16)
C23—C241.367 (6)C411—N4111.147 (17)
C23—H230.9300C412—N4121.150 (15)
C24—C251.385 (6)C421—N4211.149 (16)
C24—H240.9300C422—N4221.147 (14)
C25—C261.375 (6)C431—N4311.138 (17)
C25—H250.9300C432—N4321.147 (17)
C26—H260.9300
N31i—Fe1—N31180.00 (17)C431ii—C41—C422ii135.0 (14)
N31i—Fe1—N21i88.18 (12)C4—C42—C43ii59.7 (4)
N31—Fe1—N21i91.82 (11)C4—C42—C422122.3 (11)
N31i—Fe1—N2191.82 (12)C43ii—C42—C422159.3 (13)
N31—Fe1—N2188.18 (12)C4—C42—C41ii59.5 (4)
N21i—Fe1—N21180.00 (10)C43ii—C42—C41ii119.1 (7)
N31i—Fe1—N11i87.54 (12)C422—C42—C41ii67.0 (10)
N31—Fe1—N11i92.46 (12)C4—C42—C421122.9 (14)
N21i—Fe1—N11i87.97 (12)C43ii—C42—C42166.9 (12)
N21—Fe1—N11i92.03 (12)C422—C42—C421114.8 (17)
N31i—Fe1—N1192.46 (12)C41ii—C42—C421159.9 (16)
N31—Fe1—N1187.55 (12)C4—C42—C411ii110.2 (10)
N21i—Fe1—N1192.03 (12)C43ii—C42—C411ii157.1 (15)
N21—Fe1—N1187.97 (12)C41ii—C42—C411ii55.5 (9)
N11i—Fe1—N11180.00 (18)C421—C42—C411ii126.9 (16)
C12—N1—C22111.5 (3)C4—C42—C432ii111.2 (11)
C12—N1—C32112.0 (3)C43ii—C42—C432ii56.5 (9)
C22—N1—C32111.1 (3)C422—C42—C432ii126.6 (15)
C16—N11—C12118.5 (3)C41ii—C42—C432ii155.9 (16)
C16—N11—Fe1124.8 (3)C411ii—C42—C432ii138.6 (14)
C12—N11—Fe1116.8 (3)C41ii—C43—C43167.3 (15)
N11—C12—C13121.9 (4)C41ii—C43—C460.5 (4)
N11—C12—N1117.5 (3)C431—C43—C4121.2 (14)
C13—C12—N1120.6 (4)C41ii—C43—C432155.1 (18)
C14—C13—C12119.7 (4)C431—C43—C432118 (2)
C14—C13—H13120.2C4—C43—C432120.7 (15)
C12—C13—H13120.2C41ii—C43—C42ii120.4 (6)
C13—C14—C15118.9 (4)C431—C43—C42ii153.4 (14)
C13—C14—H14120.5C4—C43—C42ii59.9 (4)
C15—C14—H14120.5C432—C43—C42ii66.9 (13)
C16—C15—C14118.6 (4)C41ii—C43—C412ii59.6 (8)
C16—C15—H15120.7C4—C43—C412ii116.2 (9)
C14—C15—H15120.7C432—C43—C412ii122.8 (16)
N11—C16—C15122.4 (4)C42ii—C43—C412ii159.8 (10)
N11—C16—H16118.8C41ii—C43—C421ii162.5 (15)
C15—C16—H16118.8C431—C43—C421ii124.0 (17)
C26—N21—C22117.7 (3)C4—C43—C421ii113.7 (11)
C26—N21—Fe1124.9 (3)C42ii—C43—C421ii56.8 (10)
C22—N21—Fe1117.4 (2)C412ii—C43—C421ii130.0 (13)
N21—C22—C23123.4 (3)C422ii—C411—N422ii83 (4)
N21—C22—N1116.6 (3)C422ii—C411—N41159 (4)
C23—C22—N1119.9 (3)C422ii—C411—C41117 (6)
C24—C23—C22118.5 (4)N422ii—C411—C41159 (3)
C24—C23—H23120.7N411—C411—C41167 (4)
C22—C23—H23120.7C422ii—C411—C42ii62 (5)
C23—C24—C25118.9 (4)N422ii—C411—C42ii142 (3)
C23—C24—H24120.5N411—C411—C42ii121 (3)
C25—C24—H24120.5C41—C411—C42ii57.7 (9)
C26—C25—C24119.8 (4)N422ii—N411—C422ii91 (3)
C26—C25—H25120.1N422ii—N411—C41176 (3)
C24—C25—H25120.1C431ii—C412—N431ii101 (6)
N21—C26—C25121.6 (4)C431ii—C412—N41279 (7)
N21—C26—H26119.2C431ii—C412—C41108 (7)
C25—C26—H26119.2N431ii—C412—C41145 (2)
C32—N31—C36116.5 (3)N412—C412—C41169 (2)
C32—N31—Fe1117.7 (2)C431ii—C412—C43ii59 (5)
C36—N31—Fe1125.8 (2)N431ii—C412—C43ii158 (2)
N31—C32—C33123.8 (3)N412—C412—C43ii134 (2)
N31—C32—N1116.2 (3)C41—C412—C43ii55.9 (5)
C33—C32—N1120.0 (3)N431ii—N412—C431ii79 (4)
C32—C33—C34119.0 (4)N431ii—N412—C41267 (3)
C32—C33—H33120.5C432ii—C421—N432ii96 (5)
C34—C33—H33120.5C432ii—C421—N42173 (5)
C35—C34—C33117.3 (4)C432ii—C421—C42108 (6)
C35—C34—H34121.3N432ii—C421—C42151 (3)
C33—C34—H34121.3N421—C421—C42169 (4)
C36—C35—C34120.8 (3)C432ii—C421—C43ii58 (5)
C36—C35—H35119.6N432ii—C421—C43ii152 (3)
C34—C35—H35119.6N421—C421—C43ii128 (3)
C35—C36—N31122.6 (4)C42—C421—C43ii56.3 (7)
C35—C36—H36118.7N432ii—N421—C432ii84 (4)
N31—C36—H36118.7N432ii—N421—C42167 (4)
C41ii—C4—C41180.0 (5)C411ii—C422—N411ii104 (6)
C41ii—C4—C4358.9 (5)C411ii—C422—N42280 (5)
C41—C4—C43121.1 (5)C411ii—C422—C42106 (5)
C41ii—C4—C43ii121.1 (5)N411ii—C422—C42150 (3)
C41—C4—C43ii58.9 (5)N422—C422—C42164 (3)
C43—C4—C43ii180.0 (7)C411ii—C422—C41ii52 (4)
C41ii—C4—C4260.7 (4)N411ii—C422—C41ii153 (3)
C41—C4—C42119.3 (4)N422—C422—C41ii131 (2)
C43—C4—C42119.6 (4)C42—C422—C41ii56.5 (5)
C43ii—C4—C4260.4 (4)N411ii—N422—C411ii78 (3)
C41ii—C4—C42ii119.3 (4)N411ii—N422—C42262 (3)
C41—C4—C42ii60.7 (4)C412ii—C431—N412ii88 (6)
C43—C4—C42ii60.4 (4)C412ii—C431—N43167 (5)
C43ii—C4—C42ii119.6 (4)C412ii—C431—C43112 (6)
C42—C4—C42ii180.0N412ii—C431—C43152 (3)
C43ii—C41—C411154.6 (16)N431—C431—C43174 (4)
C43ii—C41—C460.6 (4)C412ii—C431—C41ii63 (7)
C411—C41—C4120.8 (14)N412ii—C431—C41ii150 (3)
C43ii—C41—C42ii120.5 (7)N431—C431—C41ii126 (3)
C411—C41—C42ii66.8 (14)C43—C431—C41ii56.1 (9)
C4—C41—C42ii59.9 (4)N412ii—N431—C412ii87 (4)
C43ii—C41—C41264.6 (9)N412ii—N431—C43176 (4)
C411—C41—C412118.0 (16)C421ii—C432—N421ii90 (5)
C4—C41—C412120.9 (10)C421ii—C432—N43267 (5)
C42ii—C41—C412159.6 (10)C421ii—C432—C43111 (6)
C43ii—C41—C431ii56.7 (10)N421ii—C432—C43154 (3)
C411—C41—C431ii127.1 (17)N432—C432—C43170 (4)
C4—C41—C431ii111.9 (11)C421ii—C432—C42ii60 (6)
C42ii—C41—C431ii156.5 (12)N421ii—C432—C42ii149 (3)
C43ii—C41—C422ii160.3 (12)N432—C432—C42ii125 (3)
C4—C41—C422ii112.9 (9)C43—C432—C42ii56.6 (8)
C42ii—C41—C422ii56.5 (8)N421ii—N432—C421ii88 (4)
C412—C41—C422ii126.1 (13)N421ii—N432—C43272 (4)
C16—N11—C12—C131.7 (5)C412—C41—C411—C42ii158.0 (11)
Fe1—N11—C12—C13178.1 (3)C431ii—C41—C411—C42ii158.0 (16)
C16—N11—C12—N1178.9 (3)C422ii—C41—C411—C42ii19 (12)
Fe1—N11—C12—N11.3 (4)C422ii—C411—N411—N422ii154 (12)
C22—N1—C12—N1163.6 (4)C41—C411—N411—N422ii128 (13)
C32—N1—C12—N1161.7 (4)C42ii—C411—N411—N422ii150 (5)
C22—N1—C12—C13115.8 (4)N422ii—C411—N411—C422ii154 (12)
C32—N1—C12—C13118.9 (3)C41—C411—N411—C422ii78 (17)
N11—C12—C13—C140.1 (6)C42ii—C411—N411—C422ii4 (9)
N1—C12—C13—C14179.4 (3)C43ii—C41—C412—C431ii28 (11)
C12—C13—C14—C152.0 (6)C411—C41—C412—C431ii180 (11)
C13—C14—C15—C162.3 (6)C4—C41—C412—C431ii5 (11)
C12—N11—C16—C151.3 (5)C42ii—C41—C412—C431ii81 (11)
Fe1—N11—C16—C15178.4 (3)C422ii—C41—C412—C431ii171 (10)
C14—C15—C16—N110.7 (6)C43ii—C41—C412—N431ii171 (5)
C26—N21—C22—C230.9 (5)C411—C41—C412—N431ii38 (5)
Fe1—N21—C22—C23179.2 (3)C4—C41—C412—N431ii147 (4)
C26—N21—C22—N1179.3 (3)C42ii—C41—C412—N431ii61 (6)
Fe1—N21—C22—N10.8 (4)C431ii—C41—C412—N431ii142 (13)
C12—N1—C22—N2162.2 (4)C422ii—C41—C412—N431ii29 (5)
C32—N1—C22—N2163.6 (4)C43ii—C41—C412—N412156 (15)
C12—N1—C22—C23116.3 (4)C411—C41—C412—N41252 (15)
C32—N1—C22—C23118.0 (4)C4—C41—C412—N412133 (14)
N21—C22—C23—C240.1 (6)C42ii—C41—C412—N41247 (16)
N1—C22—C23—C24178.4 (4)C431ii—C41—C412—N412128 (23)
C22—C23—C24—C250.5 (6)C422ii—C41—C412—N41243 (15)
C23—C24—C25—C260.3 (7)C411—C41—C412—C43ii151.7 (19)
C22—N21—C26—C251.1 (5)C4—C41—C412—C43ii23.3 (9)
Fe1—N21—C26—C25179.0 (3)C42ii—C41—C412—C43ii109 (3)
C24—C25—C26—N210.5 (6)C431ii—C41—C412—C43ii28 (11)
C36—N31—C32—C330.8 (5)C422ii—C41—C412—C43ii160.6 (15)
Fe1—N31—C32—C33178.8 (3)C431ii—C412—N412—N431ii150 (13)
C36—N31—C32—N1179.1 (3)C41—C412—N412—N431ii20 (21)
Fe1—N31—C32—N11.2 (4)C43ii—C412—N412—N431ii172 (7)
C12—N1—C32—N3161.7 (4)N431ii—C412—N412—C431ii150 (13)
C22—N1—C32—N3163.8 (4)C41—C412—N412—C431ii130 (22)
C12—N1—C32—C33118.3 (4)C43ii—C412—N412—C431ii22 (9)
C22—N1—C32—C33116.2 (4)C4—C42—C421—C432ii6 (15)
N31—C32—C33—C340.9 (6)C43ii—C42—C421—C432ii27 (13)
N1—C32—C33—C34179.1 (4)C422—C42—C421—C432ii176 (13)
C32—C33—C34—C350.2 (6)C41ii—C42—C421—C432ii85 (13)
C33—C34—C35—C360.4 (6)C411ii—C42—C421—C432ii174 (13)
C34—C35—C36—N310.4 (6)C4—C42—C421—N432ii150 (7)
C32—N31—C36—C350.2 (5)C43ii—C42—C421—N432ii171 (9)
Fe1—N31—C36—C35179.5 (3)C422—C42—C421—N432ii31 (9)
C43—C4—C41—C43ii179.999 (2)C41ii—C42—C421—N432ii59 (11)
C42—C4—C41—C43ii0.5 (6)C411ii—C42—C421—N432ii30 (9)
C42ii—C4—C41—C43ii179.5 (6)C432ii—C42—C421—N432ii144 (21)
C43—C4—C41—C41129.3 (19)C4—C42—C421—N42196 (17)
C43ii—C4—C41—C411150.7 (19)C43ii—C42—C421—N421118 (18)
C42—C4—C41—C411151.1 (18)C432ii—C42—C421—N42191 (26)
C42ii—C4—C41—C41128.9 (18)C4—C42—C421—C43ii21.5 (16)
C43—C4—C41—C42ii0.5 (6)C422—C42—C421—C43ii157.4 (14)
C43ii—C4—C41—C42ii179.5 (6)C41ii—C42—C421—C43ii112 (4)
C42—C4—C41—C42ii179.999 (2)C411ii—C42—C421—C43ii158.7 (18)
C43—C4—C41—C412155.8 (10)C432ii—C42—C421—C43ii27 (13)
C43ii—C4—C41—C41224.2 (10)C432ii—C421—N421—N432ii166 (16)
C42—C4—C41—C41223.7 (11)C42—C421—N421—N432ii72 (21)
C42ii—C4—C41—C412156.3 (11)C43ii—C421—N421—N432ii177 (8)
C43—C4—C41—C431ii154.9 (12)N432ii—C421—N421—C432ii166 (16)
C43ii—C4—C41—C431ii25.1 (12)C43ii—C421—N421—C432ii17 (10)
C42—C4—C41—C431ii24.6 (13)C4—C42—C422—C411ii6 (12)
C42ii—C4—C41—C431ii155.4 (13)C43ii—C42—C422—C411ii95 (11)
C43—C4—C41—C422ii20.8 (13)C41ii—C42—C422—C411ii17 (11)
C43ii—C4—C41—C422ii159.2 (13)C421—C42—C422—C411ii175 (11)
C42—C4—C41—C422ii159.7 (12)C432ii—C42—C422—C411ii174 (11)
C42ii—C4—C41—C422ii20.3 (12)C4—C42—C422—N411ii167 (5)
C41ii—C4—C42—C43ii179.5 (6)C43ii—C42—C422—N411ii78 (7)
C41—C4—C42—C43ii0.5 (6)C41ii—C42—C422—N411ii170 (6)
C43—C4—C42—C43ii180.001 (2)C421—C42—C422—N411ii12 (6)
C41ii—C4—C42—C42224.7 (14)C411ii—C42—C422—N411ii173 (16)
C41—C4—C42—C422155.3 (14)C432ii—C42—C422—N411ii13 (7)
C43—C4—C42—C42224.2 (15)C4—C42—C422—N422102 (9)
C43ii—C4—C42—C422155.8 (15)C43ii—C42—C422—N42214 (12)
C41—C4—C42—C41ii179.999 (2)C41ii—C42—C422—N422125 (9)
C43—C4—C42—C41ii0.5 (6)C421—C42—C422—N42277 (9)
C43ii—C4—C42—C41ii179.5 (6)C411ii—C42—C422—N422109 (17)
C41ii—C4—C42—C421156.5 (19)C432ii—C42—C422—N42278 (9)
C41—C4—C42—C42123.5 (19)C4—C42—C422—C41ii23.0 (13)
C43—C4—C42—C421157.0 (18)C43ii—C42—C422—C41ii112 (3)
C43ii—C4—C42—C42123.0 (18)C421—C42—C422—C41ii158.1 (17)
C41ii—C4—C42—C411ii23.3 (14)C411ii—C42—C422—C41ii17 (11)
C41—C4—C42—C411ii156.7 (14)C432ii—C42—C422—C41ii157 (2)
C43—C4—C42—C411ii22.8 (15)C411ii—C422—N422—N411ii155 (12)
C43ii—C4—C42—C411ii157.2 (15)C42—C422—N422—N411ii93 (10)
C41ii—C4—C42—C432ii155.3 (17)C41ii—C422—N422—N411ii152 (5)
C41—C4—C42—C432ii24.7 (17)N411ii—C422—N422—C411ii155 (12)
C43—C4—C42—C432ii155.8 (16)C42—C422—N422—C411ii112 (16)
C43ii—C4—C42—C432ii24.2 (16)C41ii—C422—N422—C411ii3 (8)
C41—C4—C43—C41ii180.001 (3)C41ii—C43—C431—C412ii30 (12)
C42—C4—C43—C41ii0.5 (6)C4—C43—C431—C412ii58 (13)
C42ii—C4—C43—C41ii179.5 (6)C432—C43—C431—C412ii123 (12)
C41ii—C4—C43—C43130.5 (16)C42ii—C43—C431—C412ii142 (11)
C41—C4—C43—C431149.5 (16)C421ii—C43—C431—C412ii135 (12)
C42—C4—C43—C43130.9 (16)C41ii—C43—C431—N412ii166 (7)
C42ii—C4—C43—C431149.1 (16)C4—C43—C431—N412ii166 (6)
C41ii—C4—C43—C432151 (2)C432—C43—C431—N412ii13 (7)
C41—C4—C43—C43229 (2)C42ii—C43—C431—N412ii81 (7)
C42—C4—C43—C432150.6 (19)C412ii—C43—C431—N412ii136 (16)
C42ii—C4—C43—C43229.4 (19)C421ii—C43—C431—N412ii1 (7)
C41ii—C4—C43—C42ii179.5 (6)C4—C43—C431—C41ii28.6 (13)
C41—C4—C43—C42ii0.5 (6)C432—C43—C431—C41ii153 (2)
C42—C4—C43—C42ii180.001 (3)C42ii—C43—C431—C41ii113 (3)
C41ii—C4—C43—C412ii22.0 (9)C412ii—C43—C431—C41ii30 (12)
C41—C4—C43—C412ii158.0 (9)C421ii—C43—C431—C41ii164.6 (18)
C42—C4—C43—C412ii22.5 (11)C412ii—C431—N431—N412ii149 (13)
C42ii—C4—C43—C412ii157.5 (11)C41ii—C431—N431—N412ii172 (7)
C41ii—C4—C43—C421ii161.5 (16)N412ii—C431—N431—C412ii149 (13)
C41—C4—C43—C421ii18.5 (16)C41ii—C431—N431—C412ii23 (9)
C42—C4—C43—C421ii161.0 (15)C41ii—C43—C432—C421ii141 (12)
C42ii—C4—C43—C421ii19.0 (15)C431—C43—C432—C421ii123 (14)
C43ii—C41—C411—C422ii131 (11)C4—C43—C432—C421ii55 (15)
C4—C41—C411—C422ii46 (13)C42ii—C43—C432—C421ii28 (14)
C42ii—C41—C411—C422ii19 (12)C412ii—C43—C432—C421ii132 (14)
C412—C41—C411—C422ii139 (12)C41ii—C43—C432—N421ii77 (11)
C431ii—C41—C411—C422ii139 (12)C431—C43—C432—N421ii19 (10)
C43ii—C41—C411—N422ii57 (11)C4—C43—C432—N421ii162 (8)
C4—C41—C411—N422ii142 (9)C42ii—C43—C432—N421ii170 (10)
C42ii—C41—C411—N422ii169 (10)C412ii—C43—C432—N421ii10 (10)
C412—C41—C411—N422ii33 (10)C421ii—C43—C432—N421ii142 (22)
C431ii—C41—C411—N422ii33 (11)C41ii—C43—C432—C42ii113 (3)
C422ii—C41—C411—N422ii172 (22)C431—C43—C432—C42ii151.0 (16)
C43ii—C41—C411—N411157 (12)C4—C43—C432—C42ii27.5 (17)
C4—C41—C411—N411117 (13)C412ii—C43—C432—C42ii159.9 (12)
C42ii—C41—C411—N41190 (14)C421ii—C43—C432—C42ii28 (14)
C412—C41—C411—N41168 (14)C421ii—C432—N432—N421ii166 (16)
C431ii—C41—C411—N41168 (14)C42ii—C432—N432—N421ii176 (7)
C422ii—C41—C411—N41171 (17)N421ii—C432—N432—C421ii166 (16)
C43ii—C41—C411—C42ii113 (3)C42ii—C432—N432—C421ii18 (10)
C4—C41—C411—C42ii27.0 (16)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C25—H25···N4120.932.523.404 (16)159
C26—H26···N4210.932.313.23 (3)170
C26—H26···N432ii0.932.543.47 (3)173
C36—H36···N412iii0.932.483.352 (17)157
C36—H36···N431iv0.932.503.39 (2)160
Symmetry codes: (ii) x+1, y+2, z; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Funding information

FS gratefully acknowledges the Algerian MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique), as well as the Université Ferhat Abbas Sétif 1 for financial support.

References

First citationAtmani, C., Setifi, F., Benmansour, S., Triki, S., Marchivie, M., Salaün, J.-Y. & Gómez-García, C. J. (2008). Inorg. Chem. Commun. 11, 921–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Atmani, C., Setifi, F., Triki, S., Marchivie, M. & Gómez-García, C. J. (2010). Coord. Chem. Rev. 254, 1468–1478.  Web of Science CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Gómez-García, C. J., Triki, S., Coronado, E. & Salaün, J. (2008). J. Mol. Struct. 890, 255–262.  Web of Science CSD CrossRef CAS Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S. & Gómez-García, C. J. (2012). Inorg. Chem. 51, 2359–2365.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBenmansour, S., Setifi, F., Triki, S., Salaün, J.-Y., Vandevelde, F., Sala-Pala, J., Gómez-García, C. J. & Roisnel, T. (2007). Eur. J. Inorg. Chem. pp. 186–194.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiyazaki, A., Okabe, K., Enoki, T., Setifi, F., Golhen, S., Ouahab, L., Toita, T. & Yamada, J. (2003). Synth. Met. 137, 1195–1196.  Web of Science CrossRef CAS Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–S83.  CrossRef Web of Science Google Scholar
First citationPittala, N., Thétiot, F., Charles, C., Triki, S., Boukheddaden, K., Chastanet, G. & Marchivie, M. (2017). Chem. Commun. 53, 8356–8359.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Benmansour, S., Marchivie, M., Dupouy, G., Triki, S., Sala-Pala, J., Salaün, J.-Y., Gómez-García, C. J., Pillet, S., Lecomte, C. & Ruiz, E. (2009). Inorg. Chem. 48, 1269–1271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSetifi, F., Konieczny, P., Glidewell, C., Arefian, M., Pelka, R., Setifi, Z. & Mirzaei, M. (2017). J. Mol. Struct. 1149, 149–154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, F., Milin, E., Charles, C., Thétiot, F., Triki, S. & Gómez-García, C. J. (2014). Inorg. Chem. 53, 97–104.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSetifi, Z., Corfield, P. W. R., Setifi, F., Morgenstern, B., Hegetschweiler, K. & Kaddouri, Y. (2018a). Acta Cryst. E74, 1227–1230.  CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, Z., Geiger, D., Jelsch, C., Maris, T., Glidewell, C., Mirzaei, M., Arefian, M. & Setifi, F. (2018b). J. Mol. Struct. 1173, 697–706.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds