organic compounds
2,6-Diamino-4-chloropyrimidine–succinic acid (2/1)
aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India, bDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: rajakannan@unom.ac.in
In the title 2:1 4H5ClN4·C4H6O4 the complete succinic acid molecule is generated by a crystallographic centre of symmetry. In the crystal, pairwise O—H⋯N and N—H⋯O hydrogen bonds link the pyrimidine and succinic acid molecules, generating R22(8) loops. The pyrimidine molecules are linked by pairwise N—H⋯N hydrogen bonds, again generating R22(8) loops. Collectively, the hydrogen bonds link the components into corrugated (100) sheets. The Hirshfeld surface is presented.
2CKeywords: crystal structure; co-crystal; Hirshfeld surface analysis..
CCDC reference: 2003667
Structure description
Some aminopyrimidine derivatives are used as antifolate drugs (Hunt et al., 1980). The crystal structures of various aminopyrimidine derivatives (Schwalbe & Williams, 1982; Edison et al., 2014; Thanigaimani et al., 2012) have been reported. In the present study, the synthesis and structure of the title 2:1 are described.
The complete succinic acid molecule is generated by a crystallographic centre of symmetry (Fig. 1), with key torsion angles O1—C5—C6—C6i = −2.5 (3)° and O2—C5—C6—C6i = 178.28 (18)° [symmetry code: (i) 2 − x, 3 − y, 1 − z].
In the crystal, pairwise O2—H2⋯N2 and N4—H4A··O1 hydrogen bonds (for symmetry codes, see Table 1) link the pyrimidine and succinic acid molecules, generating R22(8) loops. The mean planes of the succinic acid and linked pyrimidine molecules are close to parallel [dihedral angle = 8.67 (6)°]. The pyrimidine molecules are linked by pairwise N3—H3A⋯N1i hydrogen bonds, again generating R22(8) loops. An N4—H4B⋯O1ii hydrogen bond also links the pyrimidine and succinic acid species. Collectively, the hydrogen bonds link the components into corrugated (100) sheets (Fig. 2).
The Hirshfeld surface (Turner et al., 2017) of the pyrimidine–succinic acid grouping is shown in Fig. 3, where red spots represent short intermolecular contacts associated with the various hydrogen bonds. The most significant contact percentages arising from two-dimensional fingerprint plots are: H⋯H = 32.5%, O⋯H/H⋯O = 19.7%, N⋯H/H⋯N = 13.6%, Cl⋯H/H⋯Cl = 7.9%, H⋯C/C⋯H = 5.5% and O⋯C/C⋯O = 4.8%. Other contact types contribute a negligible amount.
Synthesis and crystallization
A 10 ml methanolic solution (hot) of 2,6-diamino-4-chloropyrimidine (32 mg) and a 10 ml aqueous solution (hot) of succinic acid (29 mg) were mixed and heated for 10 min and then cooled to room temperature. Colourless blocks grew over the course of a few days as the solvents evaporated.
Refinement
Crystal data, data collection and structure .
details are summarized in Table 2
|
Structural data
CCDC reference: 2003667
https://doi.org/10.1107/S2414314620012390/hb4365sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620012390/hb4365Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620012390/hb4365Isup3.cml
Data collection: APEX2 (Bruker, 2009); cell
APEX2 and SAINT (Bruker, 2009); data reduction: SAINT and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: PLATON (Spek, 2020).2C4H5ClN4·C4H6O4 | F(000) = 420 |
Mr = 407.23 | Dx = 1.534 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.2096 (14) Å | Cell parameters from 3778 reflections |
b = 4.9765 (5) Å | θ = 2.6–29.9° |
c = 13.5673 (14) Å | µ = 0.41 mm−1 |
β = 98.603 (2)° | T = 296 K |
V = 881.85 (16) Å3 | Plate, colourless |
Z = 2 | 0.72 × 0.34 × 0.13 mm |
Bruker SMART APEXII CCD diffractometer | 2102 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.032 |
ω and φ scan | θmax = 30.2°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −18→18 |
Tmin = 0.631, Tmax = 0.746 | k = −7→7 |
15031 measured reflections | l = −18→19 |
2599 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3195P] where P = (Fo2 + 2Fc2)/3 |
2599 reflections | (Δ/σ)max = 0.001 |
118 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.44 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. The hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å, N—H = 0.86) Å, O—H =0.82 Å) and were refined using a riding model with Uiso(H) = 1.2 Ueq(carrier). |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.58724 (4) | 0.10526 (9) | 0.74117 (4) | 0.06071 (19) | |
N2 | 0.74496 (9) | 0.7549 (3) | 0.60431 (9) | 0.0345 (3) | |
O2 | 0.81782 (9) | 1.1416 (3) | 0.50401 (9) | 0.0504 (3) | |
H2 | 0.803150 | 1.017333 | 0.538975 | 0.076* | |
O1 | 0.96386 (9) | 1.1222 (3) | 0.60813 (9) | 0.0523 (3) | |
N1 | 0.60385 (10) | 0.4544 (3) | 0.60332 (10) | 0.0400 (3) | |
C5 | 0.90949 (11) | 1.2237 (3) | 0.53630 (11) | 0.0367 (3) | |
C2 | 0.74276 (13) | 0.4470 (3) | 0.73964 (12) | 0.0420 (4) | |
H2A | 0.771513 | 0.374017 | 0.800544 | 0.050* | |
C4 | 0.65260 (11) | 0.6548 (3) | 0.56340 (11) | 0.0358 (3) | |
C6 | 0.94673 (11) | 1.4522 (3) | 0.47896 (12) | 0.0391 (3) | |
H6A | 0.899454 | 1.601474 | 0.478469 | 0.047* | |
H6B | 0.946393 | 1.395885 | 0.410457 | 0.047* | |
N4 | 0.88038 (11) | 0.7585 (3) | 0.73071 (11) | 0.0514 (4) | |
H4A | 0.906878 | 0.884453 | 0.699449 | 0.062* | |
H4B | 0.912066 | 0.700416 | 0.786646 | 0.062* | |
C1 | 0.65147 (12) | 0.3614 (3) | 0.68959 (12) | 0.0392 (3) | |
C3 | 0.79074 (11) | 0.6540 (3) | 0.69271 (11) | 0.0364 (3) | |
N3 | 0.60778 (11) | 0.7630 (3) | 0.47853 (11) | 0.0532 (4) | |
H3A | 0.549166 | 0.704581 | 0.450636 | 0.064* | |
H3B | 0.637362 | 0.891492 | 0.451444 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0568 (3) | 0.0454 (3) | 0.0867 (4) | 0.00090 (19) | 0.0328 (3) | 0.0224 (2) |
N2 | 0.0290 (6) | 0.0381 (6) | 0.0350 (6) | −0.0071 (5) | 0.0006 (4) | 0.0029 (5) |
O2 | 0.0348 (6) | 0.0595 (8) | 0.0529 (7) | −0.0178 (5) | −0.0068 (5) | 0.0173 (6) |
O1 | 0.0417 (6) | 0.0602 (8) | 0.0495 (7) | −0.0200 (6) | −0.0111 (5) | 0.0144 (6) |
N1 | 0.0340 (6) | 0.0392 (7) | 0.0473 (7) | −0.0080 (5) | 0.0078 (5) | 0.0021 (5) |
C5 | 0.0322 (7) | 0.0381 (7) | 0.0390 (7) | −0.0070 (6) | 0.0028 (5) | −0.0001 (6) |
C2 | 0.0424 (8) | 0.0426 (8) | 0.0415 (8) | 0.0049 (6) | 0.0077 (6) | 0.0102 (6) |
C4 | 0.0304 (6) | 0.0397 (7) | 0.0366 (7) | −0.0074 (6) | 0.0028 (5) | −0.0005 (6) |
C6 | 0.0324 (7) | 0.0383 (8) | 0.0456 (8) | −0.0076 (6) | 0.0026 (6) | 0.0048 (6) |
N4 | 0.0412 (7) | 0.0614 (10) | 0.0462 (8) | −0.0086 (7) | −0.0113 (6) | 0.0121 (7) |
C1 | 0.0379 (7) | 0.0333 (7) | 0.0495 (8) | 0.0011 (6) | 0.0170 (6) | 0.0052 (6) |
C3 | 0.0336 (7) | 0.0379 (7) | 0.0372 (7) | 0.0017 (6) | 0.0030 (5) | 0.0007 (6) |
N3 | 0.0432 (7) | 0.0651 (10) | 0.0460 (8) | −0.0230 (7) | −0.0102 (6) | 0.0136 (7) |
Cl1—C1 | 1.7356 (16) | C2—H2A | 0.9300 |
N2—C3 | 1.3561 (18) | C4—N3 | 1.327 (2) |
N2—C4 | 1.3572 (18) | C6—C6i | 1.514 (3) |
O2—C5 | 1.2911 (17) | C6—H6A | 0.9700 |
O2—H2 | 0.8200 | C6—H6B | 0.9700 |
O1—C5 | 1.2294 (19) | N4—C3 | 1.325 (2) |
N1—C1 | 1.327 (2) | N4—H4A | 0.8600 |
N1—C4 | 1.3443 (19) | N4—H4B | 0.8600 |
C5—C6 | 1.501 (2) | N3—H3A | 0.8600 |
C2—C1 | 1.361 (2) | N3—H3B | 0.8600 |
C2—C3 | 1.410 (2) | ||
C3—N2—C4 | 118.71 (13) | C5—C6—H6B | 108.8 |
C5—O2—H2 | 109.5 | C6i—C6—H6B | 108.8 |
C1—N1—C4 | 114.95 (13) | H6A—C6—H6B | 107.7 |
O1—C5—O2 | 123.08 (14) | C3—N4—H4A | 120.0 |
O1—C5—C6 | 121.62 (13) | C3—N4—H4B | 120.0 |
O2—C5—C6 | 115.30 (13) | H4A—N4—H4B | 120.0 |
C1—C2—C3 | 115.32 (14) | N1—C1—C2 | 126.81 (14) |
C1—C2—H2A | 122.3 | N1—C1—Cl1 | 114.59 (12) |
C3—C2—H2A | 122.3 | C2—C1—Cl1 | 118.61 (13) |
N3—C4—N1 | 118.16 (13) | N4—C3—N2 | 116.94 (14) |
N3—C4—N2 | 117.58 (14) | N4—C3—C2 | 123.14 (14) |
N1—C4—N2 | 124.26 (14) | N2—C3—C2 | 119.91 (14) |
C5—C6—C6i | 113.62 (16) | C4—N3—H3A | 120.0 |
C5—C6—H6A | 108.8 | C4—N3—H3B | 120.0 |
C6i—C6—H6A | 108.8 | H3A—N3—H3B | 120.0 |
C1—N1—C4—N3 | −178.01 (15) | C4—N1—C1—Cl1 | 179.33 (11) |
C1—N1—C4—N2 | 1.9 (2) | C3—C2—C1—N1 | −0.8 (3) |
C3—N2—C4—N3 | 177.81 (15) | C3—C2—C1—Cl1 | 179.50 (12) |
C3—N2—C4—N1 | −2.1 (2) | C4—N2—C3—N4 | −179.40 (14) |
O1—C5—C6—C6i | −2.5 (3) | C4—N2—C3—C2 | 0.7 (2) |
O2—C5—C6—C6i | 178.28 (18) | C1—C2—C3—N4 | −179.27 (16) |
C4—N1—C1—C2 | −0.4 (2) | C1—C2—C3—N2 | 0.6 (2) |
Symmetry code: (i) −x+2, −y+3, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N2 | 0.82 | 1.81 | 2.622 (2) | 169 |
N3—H3A···N1ii | 0.86 | 2.19 | 3.048 (2) | 173 |
N4—H4A···O1 | 0.86 | 1.94 | 2.794 (2) | 169 |
N4—H4B···O1iii | 0.86 | 2.04 | 2.8510 (19) | 156 |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+2, y−1/2, −z+3/2. |
Funding information
MH thanks the University Grants Commission (UGC) for a start-up research fellowship [No. F. 30–350/2017(BSR)].
References
Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Edison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857–o858. CSD CrossRef IUCr Journals Google Scholar
Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536. CSD CrossRef CAS Web of Science Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3442–o3443. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., Mackinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.