organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,6-Di­amino-4-chloro­pyrimidine–succinic acid (2/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India, bDepartment of Chemistry, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India, and cSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: rajakannan@unom.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 September 2020; accepted 8 September 2020; online 15 September 2020)

In the title 2:1 co-crystal, 2C4H5ClN4·C4H6O4 the complete succinic acid mol­ecule is generated by a crystallographic centre of symmetry. In the crystal, pairwise O—H⋯N and N—H⋯O hydrogen bonds link the pyrimidine and succinic acid mol­ecules, generating R22(8) loops. The pyrimidine mol­ecules are linked by pairwise N—H⋯N hydrogen bonds, again generating R22(8) loops. Collectively, the hydrogen bonds link the components into corrugated (100) sheets. The Hirshfeld surface is presented.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some amino­pyrimidine derivatives are used as anti­folate drugs (Hunt et al., 1980[Hunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533-536.]). The crystal structures of various amino­pyrimidine derivatives (Schwalbe & Williams, 1982[Schwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840-1843.]; Edison et al., 2014[Edison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857-o858.]; Thanigaimani et al., 2012[Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3442-o3443.]) have been reported. In the present study, the synthesis and structure of the title 2:1 co-crystal are described.

The complete succinic acid mol­ecule is generated by a crystallographic centre of symmetry (Fig. 1[link]), with key torsion angles O1—C5—C6—C6i = −2.5 (3)° and O2—C5—C6—C6i = 178.28 (18)° [symmetry code: (i) 2 − x, 3 − y, 1 − z].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids and hydrogen bonds indicated by dashed lines. Symmetry code: (i) 2 − x, 3 − y, 1 − z.

In the crystal, pairwise O2—H2⋯N2 and N4—H4A··O1 hydrogen bonds (for symmetry codes, see Table 1[link]) link the pyrimidine and succinic acid mol­ecules, generating R22(8) loops. The mean planes of the succinic acid and linked pyrimidine mol­ecules are close to parallel [dihedral angle = 8.67 (6)°]. The pyrimidine mol­ecules are linked by pairwise N3—H3A⋯N1i hydrogen bonds, again generating R22(8) loops. An N4—H4B⋯O1ii hydrogen bond also links the pyrimidine and succinic acid species. Collectively, the hydrogen bonds link the components into corrugated (100) sheets (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N2 0.82 1.81 2.622 (2) 169
N3—H3A⋯N1i 0.86 2.19 3.048 (2) 173
N4—H4A⋯O1 0.86 1.94 2.794 (2) 169
N4—H4B⋯O1ii 0.86 2.04 2.8510 (19) 156
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing hydrogen bonds as dashed lines.

The Hirshfeld surface (Turner et al., 2017[Turner, M. J., Mackinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia.]) of the pyrimidine–succinic acid grouping is shown in Fig. 3[link], where red spots represent short inter­molecular contacts associated with the various hydrogen bonds. The most significant contact percentages arising from two-dimensional fingerprint plots are: H⋯H = 32.5%, O⋯H/H⋯O = 19.7%, N⋯H/H⋯N = 13.6%, Cl⋯H/H⋯Cl = 7.9%, H⋯C/C⋯H = 5.5% and O⋯C/C⋯O = 4.8%. Other contact types contribute a negligible amount.

[Figure 3]
Figure 3
The Hirshfeld surface mapped over dnorm for the title compound.

Synthesis and crystallization

A 10 ml methano­lic solution (hot) of 2,6-di­amino-4-chloro­pyrimidine (32 mg) and a 10 ml aqueous solution (hot) of succinic acid (29 mg) were mixed and heated for 10 min and then cooled to room temperature. Colourless blocks grew over the course of a few days as the solvents evaporated.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula 2C4H5ClN4·C4H6O4
Mr 407.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 13.2096 (14), 4.9765 (5), 13.5673 (14)
β (°) 98.603 (2)
V3) 881.85 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.41
Crystal size (mm) 0.72 × 0.34 × 0.13
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.631, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 15031, 2599, 2102
Rint 0.032
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.128, 1.04
No. of reflections 2599
No. of parameters 118
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.44
Computer programs: APEX2, SAINT and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT (Bruker, 2009); data reduction: SAINT and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: PLATON (Spek, 2020).

2,6-Diamino-4-chloropyrimidine–succinic acid (2/1) top
Crystal data top
2C4H5ClN4·C4H6O4F(000) = 420
Mr = 407.23Dx = 1.534 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.2096 (14) ÅCell parameters from 3778 reflections
b = 4.9765 (5) Åθ = 2.6–29.9°
c = 13.5673 (14) ŵ = 0.41 mm1
β = 98.603 (2)°T = 296 K
V = 881.85 (16) Å3Plate, colourless
Z = 20.72 × 0.34 × 0.13 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2102 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
ω and φ scanθmax = 30.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.631, Tmax = 0.746k = 77
15031 measured reflectionsl = 1819
2599 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3195P]
where P = (Fo2 + 2Fc2)/3
2599 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were positioned geometrically (C—H = 0.93–0.97 Å, N—H = 0.86) Å, O—H =0.82 Å) and were refined using a riding model with Uiso(H) = 1.2 Ueq(carrier).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.58724 (4)0.10526 (9)0.74117 (4)0.06071 (19)
N20.74496 (9)0.7549 (3)0.60431 (9)0.0345 (3)
O20.81782 (9)1.1416 (3)0.50401 (9)0.0504 (3)
H20.8031501.0173330.5389750.076*
O10.96386 (9)1.1222 (3)0.60813 (9)0.0523 (3)
N10.60385 (10)0.4544 (3)0.60332 (10)0.0400 (3)
C50.90949 (11)1.2237 (3)0.53630 (11)0.0367 (3)
C20.74276 (13)0.4470 (3)0.73964 (12)0.0420 (4)
H2A0.7715130.3740170.8005440.050*
C40.65260 (11)0.6548 (3)0.56340 (11)0.0358 (3)
C60.94673 (11)1.4522 (3)0.47896 (12)0.0391 (3)
H6A0.8994541.6014740.4784690.047*
H6B0.9463931.3958850.4104570.047*
N40.88038 (11)0.7585 (3)0.73071 (11)0.0514 (4)
H4A0.9068780.8844530.6994490.062*
H4B0.9120660.7004160.7866460.062*
C10.65147 (12)0.3614 (3)0.68959 (12)0.0392 (3)
C30.79074 (11)0.6540 (3)0.69271 (11)0.0364 (3)
N30.60778 (11)0.7630 (3)0.47853 (11)0.0532 (4)
H3A0.5491660.7045810.4506360.064*
H3B0.6373620.8914920.4514440.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0568 (3)0.0454 (3)0.0867 (4)0.00090 (19)0.0328 (3)0.0224 (2)
N20.0290 (6)0.0381 (6)0.0350 (6)0.0071 (5)0.0006 (4)0.0029 (5)
O20.0348 (6)0.0595 (8)0.0529 (7)0.0178 (5)0.0068 (5)0.0173 (6)
O10.0417 (6)0.0602 (8)0.0495 (7)0.0200 (6)0.0111 (5)0.0144 (6)
N10.0340 (6)0.0392 (7)0.0473 (7)0.0080 (5)0.0078 (5)0.0021 (5)
C50.0322 (7)0.0381 (7)0.0390 (7)0.0070 (6)0.0028 (5)0.0001 (6)
C20.0424 (8)0.0426 (8)0.0415 (8)0.0049 (6)0.0077 (6)0.0102 (6)
C40.0304 (6)0.0397 (7)0.0366 (7)0.0074 (6)0.0028 (5)0.0005 (6)
C60.0324 (7)0.0383 (8)0.0456 (8)0.0076 (6)0.0026 (6)0.0048 (6)
N40.0412 (7)0.0614 (10)0.0462 (8)0.0086 (7)0.0113 (6)0.0121 (7)
C10.0379 (7)0.0333 (7)0.0495 (8)0.0011 (6)0.0170 (6)0.0052 (6)
C30.0336 (7)0.0379 (7)0.0372 (7)0.0017 (6)0.0030 (5)0.0007 (6)
N30.0432 (7)0.0651 (10)0.0460 (8)0.0230 (7)0.0102 (6)0.0136 (7)
Geometric parameters (Å, º) top
Cl1—C11.7356 (16)C2—H2A0.9300
N2—C31.3561 (18)C4—N31.327 (2)
N2—C41.3572 (18)C6—C6i1.514 (3)
O2—C51.2911 (17)C6—H6A0.9700
O2—H20.8200C6—H6B0.9700
O1—C51.2294 (19)N4—C31.325 (2)
N1—C11.327 (2)N4—H4A0.8600
N1—C41.3443 (19)N4—H4B0.8600
C5—C61.501 (2)N3—H3A0.8600
C2—C11.361 (2)N3—H3B0.8600
C2—C31.410 (2)
C3—N2—C4118.71 (13)C5—C6—H6B108.8
C5—O2—H2109.5C6i—C6—H6B108.8
C1—N1—C4114.95 (13)H6A—C6—H6B107.7
O1—C5—O2123.08 (14)C3—N4—H4A120.0
O1—C5—C6121.62 (13)C3—N4—H4B120.0
O2—C5—C6115.30 (13)H4A—N4—H4B120.0
C1—C2—C3115.32 (14)N1—C1—C2126.81 (14)
C1—C2—H2A122.3N1—C1—Cl1114.59 (12)
C3—C2—H2A122.3C2—C1—Cl1118.61 (13)
N3—C4—N1118.16 (13)N4—C3—N2116.94 (14)
N3—C4—N2117.58 (14)N4—C3—C2123.14 (14)
N1—C4—N2124.26 (14)N2—C3—C2119.91 (14)
C5—C6—C6i113.62 (16)C4—N3—H3A120.0
C5—C6—H6A108.8C4—N3—H3B120.0
C6i—C6—H6A108.8H3A—N3—H3B120.0
C1—N1—C4—N3178.01 (15)C4—N1—C1—Cl1179.33 (11)
C1—N1—C4—N21.9 (2)C3—C2—C1—N10.8 (3)
C3—N2—C4—N3177.81 (15)C3—C2—C1—Cl1179.50 (12)
C3—N2—C4—N12.1 (2)C4—N2—C3—N4179.40 (14)
O1—C5—C6—C6i2.5 (3)C4—N2—C3—C20.7 (2)
O2—C5—C6—C6i178.28 (18)C1—C2—C3—N4179.27 (16)
C4—N1—C1—C20.4 (2)C1—C2—C3—N20.6 (2)
Symmetry code: (i) x+2, y+3, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N20.821.812.622 (2)169
N3—H3A···N1ii0.862.193.048 (2)173
N4—H4A···O10.861.942.794 (2)169
N4—H4B···O1iii0.862.042.8510 (19)156
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+2, y1/2, z+3/2.
 

Funding information

MH thanks the University Grants Commission (UGC) for a start-up research fellowship [No. F. 30–350/2017(BSR)].

References

First citationBruker (2009). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdison, B., Balasubramani, K., Thanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2014). Acta Cryst. E70, o857–o858.  CSD CrossRef IUCr Journals Google Scholar
First citationHunt, W. E., Schwalbe, C. H., Bird, K. & Mallinson, P. D. (1980). J. Biochem. 187, 533–536.  CSD CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSchwalbe, C. H. & Williams, G. J. B. (1982). Acta Cryst. B38, 1840–1843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Khalib, N. C., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o3442–o3443.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mackinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds