organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(3Z,5E)-2-Amino-4,6-bis­(pyridin-3-yl)hepta-1,3,5-triene-1,1,3-tricarbo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China
*Correspondence e-mail: 1422196851@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 August 2020; accepted 10 September 2020; online 15 September 2020)

In the title compound, C20H14N6, the dihedral angle between the pyridine rings is 37.98 (7)°. In the crystal, N—H⋯N hydrogen bonds link the mol­ecules into (10[\overline{2}]) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Nitro­gen-containing heterocyclic mol­ecular materials are widely used in optoelectronic materials (e.g., Gu et al., 2017[Gu, B. B., Wu, W. B., Xu, G. X., Feng, G. X., Yin, F., Chong, P. H. J., Qu, J. L., Yong, K. T. & Liu, B. (2017). Adv. Mater. 29, 1701076.]) because of their donor–acceptor conjugation systems and good photophysical properties. As part of our studies in this area, we now describe the synthesis and structure of the centrosymmetric title compound in which electron-withdrawing cyanide groups have been introduced into the conjugated system.

The crystal structure (Fig. 1[link]) shows that the dihedral angle between the pyridine ring planes is 37.98 (7)°. In the crystal, inversion dimers linked by pairs of N3—H3A⋯N6 hydrogen bonds (Table 1[link], Fig. 2[link]) generate R22(20) loops. The dimers are linked into (10[\overline{2}]) sheets by N3—H3B⋯N5 hydrogen bonds. It is noteworthy that both acceptor atoms are parts of the pyridine rings.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N6i 0.89 2.12 2.9903 (17) 168
N3—H3B⋯N5ii 0.88 2.10 2.9372 (16) 159
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Partial packing diagram of the title compound showing selected inter­molecular contacts.

Synthesis and crystallization

3-Acetyl­pyridine (12.0 g, 0.010 mol) and ammonium acetate (6.6 g, 0.01 mol) were dissolved in 200 ml of ethanol. Malono­nitrile (6.6 g, 0.01 mol), was added and the mixture was heated to 318 K. When the color of the solution changed from colorless to orange–red, 10 drops of glacial acetic acid were added to the system and 14 g (yield 83%) of yellow powder was recovered. Yellow block-shaped crystals suitable for X-ray analysis were obtained by recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H14N6
Mr 338.37
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.4636 (13), 9.8402 (15), 22.701 (3)
β (°) 105.917 (5)
V3) 1818.1 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.593, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 14113, 3912, 3314
Rint 0.043
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.114, 1.03
No. of reflections 3912
No. of parameters 236
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(3Z,5E)-2-Amino-4,6-bis(pyridin-3-yl)hepta-1,3,5-triene-1,1,3-tricarbonitrile top
Crystal data top
C20H14N6F(000) = 704
Mr = 338.37Dx = 1.236 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.4636 (13) ÅCell parameters from 7944 reflections
b = 9.8402 (15) Åθ = 2.3–27.2°
c = 22.701 (3) ŵ = 0.08 mm1
β = 105.917 (5)°T = 296 K
V = 1818.1 (5) Å3Block, yellow
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3314 reflections with I > 2σ(I)
ω scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.5°, θmin = 1.9°
Tmin = 0.593, Tmax = 0.746h = 1110
14113 measured reflectionsk = 1212
3912 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.4095P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3912 reflectionsΔρmax = 0.24 e Å3
236 parametersΔρmin = 0.18 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The C-bound H atoms were geometrically placed (C—H = 0.93–0.96 Å) and refined as riding atoms. The N-bound H atoms were located in difference maps and refined as riding atoms in their as-found relative positions.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56958 (17)0.53555 (15)0.42295 (5)0.0603 (4)
N20.94585 (16)0.23652 (13)0.49739 (6)0.0549 (3)
N30.79713 (13)0.65640 (10)0.57511 (5)0.0390 (2)
H3A0.7417120.7077300.5441860.047*
H3B0.8141120.6878800.6125860.047*
N41.21602 (16)0.64094 (15)0.67229 (7)0.0643 (4)
N51.19544 (15)0.19840 (13)0.79606 (5)0.0520 (3)
N60.35370 (14)0.13699 (12)0.52035 (6)0.0500 (3)
C10.67660 (15)0.50431 (13)0.46360 (5)0.0388 (3)
C20.80838 (14)0.46093 (12)0.51396 (5)0.0325 (2)
C30.88674 (15)0.33700 (13)0.50564 (5)0.0375 (3)
C40.85396 (13)0.53460 (11)0.56833 (5)0.0313 (2)
C50.97970 (14)0.47672 (12)0.62215 (5)0.0337 (3)
C61.11384 (15)0.56647 (14)0.64999 (6)0.0410 (3)
C70.96757 (14)0.35134 (12)0.64586 (5)0.0343 (3)
C81.10641 (15)0.29486 (13)0.69512 (5)0.0369 (3)
C91.26451 (16)0.28301 (16)0.68862 (6)0.0492 (3)
H91.2885380.3128620.6531710.059*
C101.38551 (18)0.22577 (18)0.73606 (7)0.0580 (4)
H101.4919320.2153630.7327280.070*
C111.34588 (19)0.18459 (16)0.78815 (6)0.0556 (4)
H111.4276180.1451650.8194730.067*
C121.07878 (16)0.25103 (14)0.74965 (6)0.0432 (3)
H120.9731000.2587890.7540470.052*
C130.81217 (14)0.27732 (13)0.62629 (5)0.0366 (3)
H130.7183380.3311660.6154380.044*
C140.78551 (15)0.14270 (13)0.62173 (6)0.0410 (3)
C150.9134 (2)0.03265 (16)0.63531 (9)0.0667 (5)
H15A1.0194360.0716460.6384980.100*
H15B0.8883210.0331820.6028600.100*
H15C0.9143370.0108410.6732560.100*
C160.61170 (16)0.09860 (13)0.59646 (6)0.0415 (3)
C170.53955 (19)0.00536 (16)0.62118 (7)0.0566 (4)
H170.6011590.0544560.6546360.068*
C180.3753 (2)0.03560 (16)0.59575 (8)0.0622 (4)
H180.3251330.1049690.6118670.075*
C190.28733 (18)0.03862 (15)0.54626 (8)0.0557 (4)
H190.1762900.0193110.5300790.067*
C200.51241 (16)0.16395 (14)0.54536 (6)0.0440 (3)
H200.5601610.2314780.5272560.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0603 (8)0.0704 (9)0.0382 (6)0.0141 (7)0.0065 (6)0.0033 (6)
N20.0563 (7)0.0427 (7)0.0675 (8)0.0025 (6)0.0203 (6)0.0034 (6)
N30.0455 (6)0.0360 (5)0.0295 (5)0.0030 (4)0.0003 (4)0.0003 (4)
N40.0456 (7)0.0640 (9)0.0725 (9)0.0165 (6)0.0019 (6)0.0138 (7)
N50.0559 (7)0.0589 (7)0.0328 (5)0.0047 (6)0.0018 (5)0.0094 (5)
N60.0394 (6)0.0452 (6)0.0561 (7)0.0040 (5)0.0027 (5)0.0045 (5)
C10.0417 (7)0.0415 (7)0.0301 (6)0.0004 (5)0.0047 (5)0.0034 (5)
C20.0317 (6)0.0340 (6)0.0290 (5)0.0029 (5)0.0038 (4)0.0014 (4)
C30.0359 (6)0.0386 (7)0.0367 (6)0.0054 (5)0.0076 (5)0.0005 (5)
C40.0294 (5)0.0324 (6)0.0294 (5)0.0051 (4)0.0033 (4)0.0038 (4)
C50.0287 (6)0.0379 (6)0.0297 (5)0.0033 (5)0.0002 (4)0.0001 (4)
C60.0346 (6)0.0438 (7)0.0390 (6)0.0025 (5)0.0008 (5)0.0001 (5)
C70.0319 (6)0.0384 (6)0.0287 (5)0.0009 (5)0.0020 (4)0.0035 (5)
C80.0340 (6)0.0392 (6)0.0316 (6)0.0002 (5)0.0008 (5)0.0038 (5)
C90.0396 (7)0.0625 (9)0.0423 (7)0.0063 (6)0.0059 (6)0.0091 (6)
C100.0381 (7)0.0731 (10)0.0559 (9)0.0140 (7)0.0014 (6)0.0050 (7)
C110.0521 (8)0.0585 (9)0.0422 (7)0.0135 (7)0.0105 (6)0.0059 (6)
C120.0404 (7)0.0509 (8)0.0337 (6)0.0014 (6)0.0025 (5)0.0062 (5)
C130.0317 (6)0.0393 (6)0.0343 (6)0.0004 (5)0.0015 (5)0.0092 (5)
C140.0362 (6)0.0399 (7)0.0412 (6)0.0013 (5)0.0007 (5)0.0100 (5)
C150.0485 (9)0.0434 (8)0.0924 (12)0.0043 (7)0.0072 (8)0.0069 (8)
C160.0387 (7)0.0349 (6)0.0461 (7)0.0031 (5)0.0036 (5)0.0055 (5)
C170.0525 (8)0.0470 (8)0.0626 (9)0.0076 (7)0.0026 (7)0.0190 (7)
C180.0535 (9)0.0503 (9)0.0794 (11)0.0157 (7)0.0123 (8)0.0137 (8)
C190.0400 (7)0.0483 (8)0.0722 (10)0.0092 (6)0.0043 (7)0.0005 (7)
C200.0396 (7)0.0400 (7)0.0466 (7)0.0050 (5)0.0018 (5)0.0064 (6)
Geometric parameters (Å, º) top
N1—C11.1438 (16)C9—C101.3859 (19)
N2—C31.1465 (17)C10—H100.9300
N3—H3A0.8873C10—C111.376 (2)
N3—H3B0.8795C11—H110.9300
N3—C41.3161 (15)C12—H120.9300
N4—C61.1407 (18)C13—H130.9300
N5—C111.341 (2)C13—C141.3430 (18)
N5—C121.3352 (16)C14—C151.502 (2)
N6—C191.3341 (19)C14—C161.4894 (18)
N6—C201.3337 (17)C15—H15A0.9600
C1—C21.4261 (16)C15—H15B0.9600
C2—C31.4253 (17)C15—H15C0.9600
C2—C41.3915 (16)C16—C171.3865 (19)
C4—C51.4956 (15)C16—C201.3895 (18)
C5—C61.4403 (17)C17—H170.9300
C5—C71.3611 (17)C17—C181.384 (2)
C7—C81.4898 (15)C18—H180.9300
C7—C131.4619 (16)C18—C191.375 (2)
C8—C91.3908 (18)C19—H190.9300
C8—C121.3898 (17)C20—H200.9300
C9—H90.9300
H3A—N3—H3B118.4C10—C11—H11118.3
C4—N3—H3A123.8N5—C12—C8123.68 (13)
C4—N3—H3B117.8N5—C12—H12118.2
C12—N5—C11117.23 (12)C8—C12—H12118.2
C20—N6—C19116.96 (12)C7—C13—H13115.4
N1—C1—C2178.16 (15)C14—C13—C7129.28 (12)
C3—C2—C1116.10 (10)C14—C13—H13115.4
C4—C2—C1121.38 (11)C13—C14—C15126.78 (12)
C4—C2—C3122.50 (10)C13—C14—C16116.38 (11)
N2—C3—C2177.90 (14)C16—C14—C15116.69 (12)
N3—C4—C2123.83 (10)C14—C15—H15A109.5
N3—C4—C5116.89 (10)C14—C15—H15B109.5
C2—C4—C5119.23 (10)C14—C15—H15C109.5
C6—C5—C4115.06 (10)H15A—C15—H15B109.5
C7—C5—C4123.66 (10)H15A—C15—H15C109.5
C7—C5—C6121.21 (10)H15B—C15—H15C109.5
N4—C6—C5177.52 (15)C17—C16—C14123.86 (12)
C5—C7—C8120.36 (10)C17—C16—C20116.53 (12)
C5—C7—C13119.38 (10)C20—C16—C14119.61 (11)
C13—C7—C8120.07 (10)C16—C17—H17120.2
C9—C8—C7122.37 (11)C18—C17—C16119.57 (13)
C12—C8—C7119.57 (11)C18—C17—H17120.2
C12—C8—C9118.05 (11)C17—C18—H18120.5
C8—C9—H9120.7C19—C18—C17118.91 (14)
C10—C9—C8118.62 (13)C19—C18—H18120.5
C10—C9—H9120.7N6—C19—C18123.14 (13)
C9—C10—H10120.5N6—C19—H19118.4
C11—C10—C9119.03 (14)C18—C19—H19118.4
C11—C10—H10120.5N6—C20—C16124.84 (12)
N5—C11—C10123.35 (12)N6—C20—H20117.6
N5—C11—H11118.3C16—C20—H20117.6
N3—C4—C5—C648.83 (14)C8—C9—C10—C110.9 (2)
N3—C4—C5—C7128.18 (13)C9—C8—C12—N50.1 (2)
C1—C2—C4—N39.54 (18)C9—C10—C11—N50.9 (3)
C1—C2—C4—C5173.02 (11)C11—N5—C12—C81.8 (2)
C2—C4—C5—C6128.78 (12)C12—N5—C11—C102.2 (2)
C2—C4—C5—C754.20 (16)C12—C8—C9—C101.3 (2)
C3—C2—C4—N3172.02 (11)C13—C7—C8—C9129.94 (14)
C3—C2—C4—C55.42 (17)C13—C7—C8—C1249.56 (17)
C4—C5—C7—C8173.26 (11)C13—C14—C16—C17135.69 (15)
C4—C5—C7—C1311.86 (18)C13—C14—C16—C2043.89 (18)
C5—C7—C8—C955.22 (18)C14—C16—C17—C18177.62 (15)
C5—C7—C8—C12125.28 (13)C14—C16—C20—N6177.12 (14)
C5—C7—C13—C14149.68 (13)C15—C14—C16—C1748.4 (2)
C6—C5—C7—C89.90 (18)C15—C14—C16—C20132.01 (15)
C6—C5—C7—C13164.97 (11)C16—C17—C18—C190.1 (3)
C7—C8—C9—C10178.20 (13)C17—C16—C20—N62.5 (2)
C7—C8—C12—N5179.59 (13)C17—C18—C19—N61.6 (3)
C7—C13—C14—C150.9 (2)C19—N6—C20—C160.9 (2)
C7—C13—C14—C16176.34 (11)C20—N6—C19—C181.2 (2)
C8—C7—C13—C1435.42 (19)C20—C16—C17—C182.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···N6i0.892.122.9903 (17)168
N3—H3B···N5ii0.882.102.9372 (16)159
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1/2, z+3/2.
 

Funding information

Funding for this research was provided by: Natural Science Foundation of Anhui Province (grant No. 2008085QB52); Anhui University (grant No. S020118002/073).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, B. B., Wu, W. B., Xu, G. X., Feng, G. X., Yin, F., Chong, P. H. J., Qu, J. L., Yong, K. T. & Liu, B. (2017). Adv. Mater. 29, 1701076.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds