organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2-Meth­­oxy­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 August 2020; accepted 1 September 2020; online 8 September 2020)

In the title compound, C20H16O3, the 2-meth­oxy­phenyl ring is tilted by 50.67 (3)° with respect to the naphthyl ring system. The central pyran ring has an envelope conformation with the C atom bearing the pendant ring system as the flap. The meth­oxy group attached to the benzene ring is slightly twisted [C—C—O—C = −15.2 (1)°] from the ring. In the crystal, weak C—HO inter­actions link the mol­ecules into C(7) chains propagating along [101].

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavanones are widely used as health-care products because they are found at high concentrations in natural sources (Lichota et al., 2019[Lichota, A., Gwozdzinski, L. & Gwozdzinski, K. (2019). Eur. J. Med. Chem. 176, 68-91.]). Flavanones possess a chromane ring as a common structural feature, but they show a broad spectrum of biological activities depending on the placement of the hydroxyl or meth­oxy group substituents at different positions of the flavanone skeleton (Lee et al., 2016[Lee, Y., Kim, B., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, H. (2016). Bioorg. Chem. 68, 166-176.]; Singh et al., 2014[Singh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206-239.]). Compounds in which the phenyl group in the chromane ring system is replaced by a naphthyl ring system have shown versatile biological activities and physiochemical properties (Kumar et al., 2017[Kumar, D., Sharma, P., Singh, H., Nepali, K., Gupta, G. K., Jain, S. K. M. & Ntie-Kang, F. (2017). RSC Adv. 7, 36977.]; Shin et al., 2014[Shin, S. Y., Yoon, H., Ahn, S., Kim, D. W., Bae, D. H., Koh, D., Lee, Y. H. & Lim, Y. (2014). Int. J. Mol. Sci. 14, 16970-16985.]). Therefore, the naphthyl ring system-containing title flavanone compound, C20H16O3, was synthesized and its crystal structure was determined.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the C2–C11 naphthyl ring system (r.m.s. deviation = 0.026 Å) and the C14–C19 2-meth­oxy­phenyl ring is 50.67 (3)°. The central pyran ring (C1/C2/C11/O2/C12/C13) has an envelope conformation with atom C12 as the flap, which is displaced by 0.691 (2) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.023 Å). In the arbitrarily chosen asymmetric mol­ecule, C12 has an R configuration but crystal symmetry generates a racemic mixture. The hydrogen atom H12 attached to C12 forms a trans diaxial conformation with one of H atoms of the C13 methyl­ene group (H12—C12—C13—H13A = 179°] and a gauche conformation with the other methyl­ene H atom H13B (H12—C12—C13—H13B = 61°). The meth­oxy group in the benzene ring is slightly tilted [C16—C15—O3—C20 = −15.2 (2)°] from the ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

In the crystal, weak C—H⋯O inter­actions link the mol­ecules into C(7) chains propagating along [101] (Table 1[link], Fig. 2[link]) with adjacent mol­ecules in the chain related by n-glide symmetry.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.94 2.60 3.3973 (17) 142
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds as blue lines. H atoms not involved in these inter­actions have been omitted for clarity.

Synthesis and crystallization

The synthetic scheme for the preparation of the title compound is shown in Fig. 3[link]: 2-hy­droxy-1-aceto­naphthone (I, 372 mg, 2 mmol) and 2-meth­oxy­benzaldehyde (II, 272 mg, 2 mmol) were dissolved in ethanol (20 ml) and the temperature was adjusted to around 276–277 K in an ice-bath. To the cooled reaction mixture was added 1.5 ml of 50% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. The mixture was poured into iced water (80 ml) and was acidified with 6 N HCl solution. The mixture was extracted with ethyl acetate (3 × 40 ml) and the combined organic layers were dried with MgSO4. Filtration and evaporation of the filtrate gave a solid product of chalcone (III), which was used for next reaction: the solid was dissolved in DMSO and a catalytic amount of conc. HCl was added. After stirring for 10 h, the reaction mixture was poured into iced water to give a solid product of the title flavanone and yellow blocks were recovered by recrystallization from ethanol solution.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H16O3
Mr 304.33
Crystal system, space group Monoclinic, P21/n
Temperature (K) 223
a, b, c (Å) 12.4519 (5), 7.8785 (3), 15.6680 (7)
β (°) 105.2534 (16)
V3) 1482.92 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.21 × 0.14 × 0.10
 
Data collection
Diffractometer PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.691, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 40884, 3704, 2879
Rint 0.049
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.113, 1.03
No. of reflections 3704
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(2-Methoxyphenyl)-2,3-dihydro-1H-benzo[f]chromen-1-one top
Crystal data top
C20H16O3F(000) = 640
Mr = 304.33Dx = 1.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.4519 (5) ÅCell parameters from 9975 reflections
b = 7.8785 (3) Åθ = 2.7–28.3°
c = 15.6680 (7) ŵ = 0.09 mm1
β = 105.2534 (16)°T = 223 K
V = 1482.92 (11) Å3Block, yellow
Z = 40.21 × 0.14 × 0.10 mm
Data collection top
PHOTON 100 CMOS
diffractometer
2879 reflections with I > 2σ(I)
φ and ω scansRint = 0.049
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.4°, θmin = 2.7°
Tmin = 0.691, Tmax = 0.746h = 1616
40884 measured reflectionsk = 1010
3704 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0466P)2 + 0.6269P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3704 reflectionsΔρmax = 0.32 e Å3
209 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.02968 (9)0.67451 (14)0.13018 (7)0.0408 (3)
C10.96744 (11)0.55251 (17)0.11882 (8)0.0277 (3)
C20.87200 (10)0.52818 (17)0.04044 (8)0.0254 (3)
C30.83775 (10)0.65224 (17)0.02963 (8)0.0256 (3)
C40.88498 (11)0.81647 (18)0.02699 (9)0.0319 (3)
H40.94420.84750.02140.038*
C50.84549 (12)0.93097 (19)0.09406 (10)0.0373 (3)
H50.87781.03940.09060.045*
C60.75818 (12)0.8889 (2)0.16720 (10)0.0383 (3)
H60.73180.96870.21250.046*
C70.71140 (12)0.7314 (2)0.17257 (9)0.0344 (3)
H70.65310.70290.22210.041*
C80.74920 (11)0.61053 (18)0.10475 (8)0.0279 (3)
C90.69968 (11)0.44738 (19)0.11078 (9)0.0312 (3)
H90.64340.41860.16160.037*
C100.73167 (11)0.33232 (18)0.04500 (9)0.0308 (3)
H100.69830.22450.05040.037*
C110.81568 (11)0.37503 (17)0.03210 (8)0.0268 (3)
O20.83415 (8)0.25362 (12)0.09597 (6)0.0327 (2)
C120.88068 (11)0.31806 (18)0.18418 (8)0.0284 (3)
H120.82750.40020.19810.034*
C130.98756 (11)0.41041 (18)0.18597 (9)0.0301 (3)
H13A1.04140.33020.17320.036*
H13B1.01930.45720.24520.036*
C140.89365 (11)0.17138 (18)0.24762 (9)0.0290 (3)
C150.89304 (11)0.20426 (18)0.33543 (9)0.0301 (3)
C160.90122 (12)0.0723 (2)0.39537 (10)0.0352 (3)
H160.90000.09470.45400.042*
C170.91114 (12)0.0927 (2)0.36806 (10)0.0381 (3)
H170.91660.18240.40860.046*
C180.91317 (13)0.1273 (2)0.28268 (11)0.0398 (3)
H180.92030.23970.26490.048*
C190.90462 (12)0.00531 (19)0.22271 (10)0.0358 (3)
H190.90630.01840.16430.043*
O30.88502 (9)0.37221 (13)0.35620 (7)0.0398 (3)
C200.85783 (17)0.4093 (2)0.43593 (11)0.0520 (5)
H20A0.79290.34410.43910.078*
H20B0.84180.52950.43810.078*
H20C0.92000.37990.48550.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (6)0.0414 (6)0.0332 (6)0.0146 (5)0.0011 (4)0.0012 (5)
C10.0279 (6)0.0315 (7)0.0237 (6)0.0012 (5)0.0070 (5)0.0024 (5)
C20.0248 (6)0.0290 (7)0.0224 (6)0.0004 (5)0.0063 (5)0.0012 (5)
C30.0255 (6)0.0289 (7)0.0237 (6)0.0009 (5)0.0086 (5)0.0009 (5)
C40.0314 (7)0.0320 (7)0.0317 (7)0.0033 (6)0.0072 (5)0.0011 (6)
C50.0384 (8)0.0297 (7)0.0447 (8)0.0017 (6)0.0124 (6)0.0056 (6)
C60.0364 (8)0.0393 (8)0.0391 (8)0.0066 (6)0.0094 (6)0.0141 (7)
C70.0299 (7)0.0422 (8)0.0289 (7)0.0034 (6)0.0036 (5)0.0060 (6)
C80.0258 (6)0.0338 (7)0.0242 (6)0.0011 (5)0.0066 (5)0.0008 (5)
C90.0289 (7)0.0384 (8)0.0235 (6)0.0041 (6)0.0022 (5)0.0024 (6)
C100.0317 (7)0.0315 (7)0.0280 (7)0.0075 (5)0.0059 (5)0.0031 (6)
C110.0287 (6)0.0288 (6)0.0233 (6)0.0001 (5)0.0078 (5)0.0012 (5)
O20.0403 (5)0.0299 (5)0.0248 (5)0.0056 (4)0.0033 (4)0.0037 (4)
C120.0297 (6)0.0319 (7)0.0228 (6)0.0005 (5)0.0054 (5)0.0019 (5)
C130.0273 (6)0.0369 (7)0.0248 (6)0.0000 (6)0.0044 (5)0.0019 (5)
C140.0257 (6)0.0322 (7)0.0286 (7)0.0021 (5)0.0064 (5)0.0051 (6)
C150.0274 (6)0.0326 (7)0.0305 (7)0.0004 (5)0.0083 (5)0.0036 (6)
C160.0352 (7)0.0413 (8)0.0285 (7)0.0005 (6)0.0073 (6)0.0078 (6)
C170.0354 (7)0.0359 (8)0.0419 (8)0.0025 (6)0.0083 (6)0.0143 (7)
C180.0409 (8)0.0316 (7)0.0465 (9)0.0056 (6)0.0110 (7)0.0039 (7)
C190.0380 (8)0.0365 (8)0.0329 (7)0.0045 (6)0.0095 (6)0.0019 (6)
O30.0562 (7)0.0342 (6)0.0333 (6)0.0010 (5)0.0192 (5)0.0029 (4)
C200.0748 (12)0.0454 (10)0.0433 (9)0.0065 (9)0.0290 (9)0.0019 (8)
Geometric parameters (Å, º) top
O1—C11.2180 (16)O2—C121.4430 (16)
C1—C21.4796 (17)C12—C141.5050 (18)
C1—C131.5114 (18)C12—C131.5105 (18)
C2—C111.3844 (18)C12—H120.9900
C2—C31.4478 (18)C13—H13A0.9800
C3—C41.4173 (19)C13—H13B0.9800
C3—C81.4235 (18)C14—C191.382 (2)
C4—C51.374 (2)C14—C151.4020 (19)
C4—H40.9400C15—O31.3725 (17)
C5—C61.396 (2)C15—C161.3869 (19)
C5—H50.9400C16—C171.384 (2)
C6—C71.364 (2)C16—H160.9400
C6—H60.9400C17—C181.372 (2)
C7—C81.4123 (19)C17—H170.9400
C7—H70.9400C18—C191.390 (2)
C8—C91.4179 (19)C18—H180.9400
C9—C101.3515 (19)C19—H190.9400
C9—H90.9400O3—C201.4083 (18)
C10—C111.4149 (18)C20—H20A0.9700
C10—H100.9400C20—H20B0.9700
C11—O21.3595 (15)C20—H20C0.9700
O1—C1—C2124.39 (12)C14—C12—C13114.63 (11)
O1—C1—C13120.01 (12)O2—C12—H12108.5
C2—C1—C13115.57 (11)C14—C12—H12108.5
C11—C2—C3118.42 (11)C13—C12—H12108.5
C11—C2—C1117.88 (12)C12—C13—C1111.10 (11)
C3—C2—C1123.64 (12)C12—C13—H13A109.4
C4—C3—C8117.39 (12)C1—C13—H13A109.4
C4—C3—C2123.84 (12)C12—C13—H13B109.4
C8—C3—C2118.73 (12)C1—C13—H13B109.4
C5—C4—C3120.98 (13)H13A—C13—H13B108.0
C5—C4—H4119.5C19—C14—C15118.58 (13)
C3—C4—H4119.5C19—C14—C12122.80 (12)
C4—C5—C6121.10 (14)C15—C14—C12118.61 (12)
C4—C5—H5119.4O3—C15—C16124.01 (13)
C6—C5—H5119.4O3—C15—C14115.49 (12)
C7—C6—C5119.62 (14)C16—C15—C14120.50 (13)
C7—C6—H6120.2C17—C16—C15119.44 (14)
C5—C6—H6120.2C17—C16—H16120.3
C6—C7—C8120.98 (13)C15—C16—H16120.3
C6—C7—H7119.5C18—C17—C16120.90 (14)
C8—C7—H7119.5C18—C17—H17119.5
C7—C8—C9120.54 (12)C16—C17—H17119.5
C7—C8—C3119.91 (13)C17—C18—C19119.50 (15)
C9—C8—C3119.54 (12)C17—C18—H18120.2
C10—C9—C8121.43 (12)C19—C18—H18120.2
C10—C9—H9119.3C14—C19—C18121.06 (14)
C8—C9—H9119.3C14—C19—H19119.5
C9—C10—C11119.67 (13)C18—C19—H19119.5
C9—C10—H10120.2C15—O3—C20117.37 (12)
C11—C10—H10120.2O3—C20—H20A109.5
O2—C11—C2124.08 (12)O3—C20—H20B109.5
O2—C11—C10113.89 (12)H20A—C20—H20B109.5
C2—C11—C10122.02 (12)O3—C20—H20C109.5
C11—O2—C12113.89 (10)H20A—C20—H20C109.5
O2—C12—C14107.98 (11)H20B—C20—H20C109.5
O2—C12—C13108.49 (10)
O1—C1—C2—C11173.33 (13)C9—C10—C11—C24.2 (2)
C13—C1—C2—C114.76 (17)C2—C11—O2—C1224.36 (17)
O1—C1—C2—C33.7 (2)C10—C11—O2—C12155.02 (11)
C13—C1—C2—C3178.17 (11)C11—O2—C12—C14178.52 (10)
C11—C2—C3—C4176.81 (12)C11—O2—C12—C1356.70 (14)
C1—C2—C3—C46.14 (19)O2—C12—C13—C157.80 (14)
C11—C2—C3—C81.15 (18)C14—C12—C13—C1178.55 (11)
C1—C2—C3—C8175.91 (12)O1—C1—C13—C12154.04 (13)
C8—C3—C4—C50.76 (19)C2—C1—C13—C1227.78 (16)
C2—C3—C4—C5177.22 (13)O2—C12—C14—C1924.76 (17)
C3—C4—C5—C60.4 (2)C13—C12—C14—C1996.26 (16)
C4—C5—C6—C70.3 (2)O2—C12—C14—C15154.33 (12)
C5—C6—C7—C80.6 (2)C13—C12—C14—C1584.64 (15)
C6—C7—C8—C9179.72 (14)C19—C14—C15—O3178.25 (12)
C6—C7—C8—C30.3 (2)C12—C14—C15—O32.62 (18)
C4—C3—C8—C70.40 (18)C19—C14—C15—C161.2 (2)
C2—C3—C8—C7177.69 (12)C12—C14—C15—C16177.95 (12)
C4—C3—C8—C9179.58 (12)O3—C15—C16—C17178.74 (13)
C2—C3—C8—C92.33 (18)C14—C15—C16—C170.6 (2)
C7—C8—C9—C10177.34 (13)C15—C16—C17—C180.1 (2)
C3—C8—C9—C102.7 (2)C16—C17—C18—C190.3 (2)
C8—C9—C10—C110.5 (2)C15—C14—C19—C181.0 (2)
C3—C2—C11—O2174.87 (11)C12—C14—C19—C18178.10 (13)
C1—C2—C11—O27.90 (19)C17—C18—C19—C140.3 (2)
C3—C2—C11—C104.46 (19)C16—C15—O3—C2015.2 (2)
C1—C2—C11—C10172.76 (12)C14—C15—O3—C20165.38 (14)
C9—C10—C11—O2175.16 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.942.603.3973 (17)142
Symmetry code: (i) x1/2, y+3/2, z1/2.
 

Funding information

This work was supported by a Dongduk Women's University grant.

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationKumar, D., Sharma, P., Singh, H., Nepali, K., Gupta, G. K., Jain, S. K. M. & Ntie-Kang, F. (2017). RSC Adv. 7, 36977.  Google Scholar
First citationLee, Y., Kim, B., Ahn, S., Koh, D., Lee, Y. H., Shin, S. Y. & Lim, H. (2016). Bioorg. Chem. 68, 166–176.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLichota, A., Gwozdzinski, L. & Gwozdzinski, K. (2019). Eur. J. Med. Chem. 176, 68–91.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Yoon, H., Ahn, S., Kim, D. W., Bae, D. H., Koh, D., Lee, Y. H. & Lim, Y. (2014). Int. J. Mol. Sci. 14, 16970–16985.  Web of Science CrossRef Google Scholar
First citationSingh, M., Kaur, M. & Silakari, O. (2014). Eur. J. Med. Chem. 84, 206–239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds