organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,2′-Oxybis[1,3-bis­­(4-meth­­oxy­phen­yl)-2,3-di­hydro-1H-benzo[d][1,3,2]di­aza­borole]

aDepartment of Chemistry, Davidson College, Davidson, North Carolina, USA, bDepartment of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, 19104-6323, USA, and cDepartment of Chemistry and Biochemistry, University of California San Diego, La, Jolla, California, USA
*Correspondence e-mail: mitch.anstey@davidson.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 25 August 2020; accepted 10 September 2020; online 18 September 2020)

In the title compound, C40H36B2N4O5, the B—O—B bond angle is 132.75 (13) and the dihedral angle between the benzodiazborole rings is 73.02 (5)°. In the crystal, weak C—H⋯O inter­actions link the mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The field of cooperative catalysis has given scientists the ability to access more complex mol­ecular transformations using cheaper, readily available metals (Allen et al., 2012[Allen, A. E. & MacMillan, D. W. C. (2012). Chem. Sci. 3, 633-658.]; Lohr & Marks, 2015[Lohr, T. L. & Marks, T. J. (2015). Nat. Chem. 7, 477-482.]). The title compound, C40H36B2N4O5, was synthesized using elements from the main group of the periodic table, which are cheaper and more accessible than the traditionally used transition metals (Karunananda et al., 2017[Karunananda, M. K. & Mankad, N. P. (2017). ACS Catal. 7, 6110-6119.]; Power, 2010[Power, P. P. (2010). Nature, 463, 171-177.]).

The title compound has a pincer-like orientation formed by an oxygen single-atom bridge connected to two Lewis-acidic boron centers (Fig. 1[link]). The di­amine moieties bound to the boron atoms provide redox-active sites, which give the structure the electron equivalents that boron lacks while also modulating the steric environment (Prier et al., 2013[Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322-5363.]; Pye et al., 2017[Pye, D. R. & Mankad, N. P. (2017). Chem. Sci. 8, 1705-1718.]; Bellemin-Laponnaz et al., 2014[Bellemin-Laponnaz, S. & Dagorne, S. (2014). Chem. Rev. 114, 8747-8774.]). The pincer shape might allow the compound to use the boron atoms and the redox-active ligands to create a binding pocket for coordination and bridging of a small mol­ecule substrate.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Hydrogen atoms have been omitted for clarity. Ellipsoids are at 50% probability.

The B1A—O1—B1B bond angle is 132.75 (13)°, which is reasonable given the steric bulk that is present in the di­aza­borole moiety. Additionally, it is likely that a p-type electronic inter­action exists between O1 and the adjacent boron atoms (B1A and B1B) that would serve to open up the bond angle substanti­ally beyond the textbook angle of 109.5° for an O atom bearing two lone pairs of electrons. As a result of steric encumbrance, the B1A and B1B benzodi­aza­borole rings are angled away from one another to a near perpendicular orientation, with a plane-to-plane tilt of 73.02 (5)°. The dihedral angles between the B1A benzodi­aza­borole ring system and its pendant p-meth­oxy­benzene rings are 80.49 (6) and 49.84 (7)° for the C7A and C14A rings, respectively. Comparable data for the B1B ring system and its pendant C7B and C14B rings are 78.32 (6) and 65.96 (7)°, respectively. The C atoms of the meth­oxy groups are all close to their respective ring planes: C13A [deviation = 0.333 (2) Å]; C20A [0.254 (2) Å]; C13B [−0.040 (2 Å)]; C20B [0.193 (2) Å].

In the crystal, weak C—H⋯O inter­actions (Table 1[link]) link the mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8B—H8B⋯O2Ai 0.95 2.40 3.233 (2) 147
C13B—H13E⋯O3Bii 0.98 2.46 3.374 (3) 155
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Synthesis and crystallization

The title compound was synthesized in two steps (Fig. 2[link]) from the previously reported precursor, N1,N2-bis­(4-meth­oxy­phen­yl)benzene-1,2-di­amine (Xiong et al., 2018[Xiong, M., Gao, Z., Liang, X., Cai, P., Zhu, H. & Pan, Y. (2018). Chem. Commun. 54, 9679-9682.]; Wang et al., 2018[Wang, Z., Chen, X., Xie, H., Wang, D., Huang, H. & Deng, G.-J. (2018). Org. Lett. 20, 5470-5473.]).

[Figure 2]
Figure 2
Chemical scheme for the synthesis of the title compound.

Under an anhydrous nitro­gen atmosphere, 12 mmol of the di­amine precursor was dissolved in 400 ml of diethyl ether. An excess of tri­ethyl­amine, four equivalents, was then added. A stoichiometric amount of boron trichloride was added to this stirred solution whereupon a white precipitate composed of a mixture of tri­ethyl­ammonium chloride and the monomeric di­aza­borole chloride was formed. The volatiles were removed under reduced pressure to give a white solid. The solid was extracted in a fritted glass filter with a minimum volume of benzene, and the filtrate was evaporated under reduced pressure to give the crude di­aza­borole chloride. This crude solid was recrystallized from a toluene/hexa­nes mixture. The di­aza­borole chloride, (II), was obtained in 87% yield. The single-crystal X-ray structure of the di­aza­borole chloride has been deposited with the Cambridge Structural Database (Mallard et al., 2020[Mallard, H. H., Anstey, M. R., Kennedy, N. D., Rudman, N. A., Greenwood, A. M., Angle, C. E., Nicoleau, J., Torquato, N. A., Gau, M. R. & Carroll, P. J. (2020). CSD Communication (refcode CCDC 2015021). CCDC, Cambridge, England.]).

Under an anhydrous nitro­gen atmosphere, a solution was prepared that contained 3.0 mmol of (II), four equivalents of tri­ethyl­amine, and ∼200 ml of 1,2-di­meth­oxy­ethane. This solution was then treated with half an equivalent of water (used as a 1 M solution in 1,2-di­meth­oxy­ethane). After stirring overnight, a white precipitate of the tri­ethyl­ammonium chloride formed that was then filtered and discarded. The filtrate was dried under reduced pressure to give the crude product. The solid was extracted in a fritted glass filter with a minimum volume of benzene, and the filtrate was evaporated under reduced pressure to give the title compound in 85% yield.

Single crystals suitable for X-ray analysis were obtained from a saturated solution of hexa­nes. The solution was allowed to stand overnight whereupon small colorless crystals formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A small number of intense low-angle reflections are missing from this data set due to the arrangement of the instrument with a conservatively sized beam stop. The large number of reflections in the data set ensures that no particular bias has been introduced.

Table 2
Experimental details

Crystal data
Chemical formula C40H36B2N4O5
Mr 674.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 16.7584 (15), 13.6696 (14), 16.0291 (17)
β (°) 111.125 (5)
V3) 3425.2 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.17 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker D8QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.696, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 46461, 6305, 4773
Rint 0.063
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.02
No. of reflections 6305
No. of parameters 464
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.23
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,2'-Oxybis[1,3-bis(4-methoxyphenyl)-2,3-dihydro-1H-benzo[d][1,3,2]diazaborole] top
Crystal data top
C40H36B2N4O5F(000) = 1416
Mr = 674.35Dx = 1.308 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.7584 (15) ÅCell parameters from 9875 reflections
b = 13.6696 (14) Åθ = 2.6–25.3°
c = 16.0291 (17) ŵ = 0.09 mm1
β = 111.125 (5)°T = 100 K
V = 3425.2 (6) Å3Plank, clear colourless
Z = 40.17 × 0.07 × 0.05 mm
Data collection top
Bruker D8QUEST
diffractometer
4773 reflections with I > 2σ(I)
ω and φ scansRint = 0.063
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 2.0°
Tmin = 0.696, Tmax = 0.745h = 2019
46461 measured reflectionsk = 1616
6305 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.8558P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6305 reflectionsΔρmax = 0.19 e Å3
464 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The hydrogen atoms were treated in calculated positions and refined in the riding model approximation with distances of C—H = 0.95 and 0.98 Å for the aryl and methyl groups, respectively. Methyl group H atoms were allowed to rotate, but not to tip, in order to find the best rotameric conformation.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.85920 (6)0.72089 (8)0.47878 (7)0.0182 (3)
O2A0.94929 (7)0.28970 (8)0.67336 (7)0.0215 (3)
O2B1.26822 (7)0.80020 (9)0.56662 (8)0.0271 (3)
O3B0.46275 (7)0.72061 (9)0.49287 (9)0.0293 (3)
N2A0.72444 (7)0.71200 (9)0.34165 (9)0.0164 (3)
N1B0.94279 (7)0.84989 (9)0.58254 (9)0.0153 (3)
N2B0.80077 (7)0.83556 (9)0.56577 (9)0.0165 (3)
N1A0.77512 (8)0.57002 (9)0.42085 (9)0.0165 (3)
O3A0.67160 (7)1.09930 (8)0.22224 (9)0.0306 (3)
C8A0.78840 (9)0.46361 (11)0.54824 (11)0.0179 (3)
H8A0.7360240.4889850.5493720.022*
C1B0.92486 (9)0.91823 (11)0.63878 (10)0.0155 (3)
C4A0.56664 (10)0.53896 (12)0.18616 (11)0.0220 (4)
H4A0.5197450.5351050.1309430.026*
C14B0.71442 (9)0.80361 (11)0.54539 (10)0.0156 (3)
C19B0.64607 (10)0.86514 (12)0.50179 (11)0.0196 (4)
H19B0.6564510.9285490.4836570.024*
C11A0.94122 (9)0.38913 (12)0.54478 (11)0.0181 (4)
H11A0.9935020.3636270.5435110.022*
C7B1.02652 (9)0.83921 (11)0.57765 (10)0.0153 (3)
C12B1.04462 (9)0.88045 (11)0.50785 (11)0.0173 (3)
H12B1.0017880.9171540.4636460.021*
C9B1.16985 (10)0.77675 (12)0.63780 (11)0.0196 (4)
H9B1.2131710.7417010.6830070.024*
C2A0.67165 (9)0.63331 (11)0.29705 (10)0.0163 (3)
C8B1.09010 (9)0.78759 (11)0.64347 (11)0.0181 (3)
H8B1.0786100.7598110.6923020.022*
C7A0.82051 (9)0.49728 (11)0.48451 (10)0.0160 (3)
C12A0.89620 (9)0.45872 (11)0.48261 (11)0.0178 (3)
H12A0.9175650.4801280.4382600.021*
C11B1.12469 (10)0.86905 (12)0.50128 (11)0.0196 (4)
H11B1.1362090.8969590.4525200.024*
C10A0.90946 (9)0.35708 (11)0.60870 (10)0.0169 (3)
C9A0.83218 (10)0.39372 (11)0.60967 (11)0.0191 (4)
H9A0.8097160.3705450.6526060.023*
C10B1.18735 (9)0.81671 (12)0.56643 (11)0.0190 (4)
C2B0.83793 (9)0.91005 (11)0.62841 (10)0.0155 (3)
C5A0.59719 (10)0.45422 (12)0.23465 (11)0.0218 (4)
H5A0.5707090.3933800.2122810.026*
C15B0.69809 (9)0.71079 (12)0.56962 (11)0.0191 (4)
H15B0.7446150.6684060.5993010.023*
C4B0.85715 (10)1.03368 (12)0.73819 (11)0.0216 (4)
H4B0.8347731.0742560.7726440.026*
C6A0.66609 (9)0.45685 (12)0.31563 (11)0.0184 (4)
H6A0.6870460.3989180.3490960.022*
C18B0.56315 (10)0.83459 (12)0.48467 (11)0.0202 (4)
H18B0.5167320.8772990.4555010.024*
C15A0.62849 (10)0.85263 (12)0.28888 (11)0.0195 (4)
H15A0.5826850.8145960.2931930.023*
C13A1.03594 (10)0.26680 (13)0.68586 (11)0.0235 (4)
H13A1.0378280.2315960.6333400.035*
H13B1.0604100.2256710.7390980.035*
H13C1.0690720.3274200.6937080.035*
C16B0.61476 (10)0.67826 (12)0.55134 (11)0.0217 (4)
H16B0.6042050.6137750.5669290.026*
C17B0.54747 (9)0.74158 (12)0.51001 (11)0.0197 (4)
C17A0.68022 (10)1.00504 (12)0.25366 (11)0.0218 (4)
C5B0.94306 (10)1.04153 (12)0.74906 (11)0.0206 (4)
H5B0.9785111.0868670.7910980.025*
C19A0.77567 (10)0.86889 (12)0.30786 (11)0.0223 (4)
H19A0.8315070.8419400.3245310.027*
C3A0.60342 (9)0.62980 (12)0.21689 (11)0.0195 (4)
H3A0.5820560.6876740.1834980.023*
C14A0.70906 (9)0.81108 (11)0.31211 (10)0.0169 (3)
C3B0.80324 (10)0.96752 (12)0.67782 (11)0.0189 (4)
H3B0.7446610.9620500.6708140.023*
C6B0.97784 (9)0.98366 (11)0.69901 (11)0.0172 (3)
H6B1.0364670.9891750.7062220.021*
C1A0.70288 (9)0.54691 (11)0.34553 (10)0.0165 (3)
B1B0.86581 (11)0.79655 (13)0.53674 (12)0.0156 (4)
C16A0.61347 (10)0.94878 (12)0.25942 (11)0.0213 (4)
H16A0.5577430.9759210.2432900.026*
C18A0.76183 (10)0.96511 (12)0.27972 (12)0.0263 (4)
H18A0.8082471.0040320.2781840.032*
B1A0.79043 (11)0.67265 (13)0.41912 (12)0.0164 (4)
C13B1.28701 (12)0.84058 (15)0.49346 (15)0.0377 (5)
H13D1.2485320.8120240.4372830.057*
H13E1.3464150.8257290.5009770.057*
H13F1.2789490.9116500.4919830.057*
C20A0.59608 (11)1.15048 (14)0.21765 (14)0.0363 (5)
H20A0.5459721.1178230.1748110.055*
H20B0.5989661.2179110.1981580.055*
H20C0.5913531.1509280.2768350.055*
C20B0.44238 (12)0.62958 (15)0.52332 (17)0.0465 (6)
H20D0.4574840.5760270.4911270.070*
H20E0.3809580.6271810.5122440.070*
H20F0.4746690.6228090.5875770.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0145 (5)0.0188 (6)0.0201 (6)0.0002 (4)0.0048 (5)0.0043 (5)
O2A0.0220 (6)0.0240 (6)0.0192 (6)0.0064 (5)0.0082 (5)0.0051 (5)
O2B0.0190 (6)0.0296 (7)0.0381 (8)0.0035 (5)0.0169 (5)0.0044 (6)
O3B0.0151 (6)0.0332 (7)0.0390 (8)0.0048 (5)0.0092 (5)0.0001 (6)
N2A0.0159 (6)0.0148 (7)0.0180 (7)0.0012 (5)0.0056 (5)0.0014 (6)
N1B0.0144 (6)0.0164 (7)0.0169 (7)0.0012 (5)0.0078 (5)0.0029 (6)
N2B0.0136 (6)0.0184 (7)0.0174 (7)0.0029 (5)0.0054 (5)0.0025 (6)
N1A0.0144 (6)0.0170 (7)0.0166 (7)0.0009 (5)0.0037 (5)0.0004 (6)
O3A0.0296 (7)0.0184 (6)0.0426 (8)0.0034 (5)0.0115 (6)0.0083 (6)
C8A0.0146 (8)0.0184 (9)0.0215 (9)0.0006 (6)0.0074 (7)0.0020 (7)
C1B0.0175 (8)0.0163 (8)0.0143 (8)0.0010 (6)0.0075 (6)0.0024 (6)
C4A0.0181 (8)0.0260 (9)0.0185 (9)0.0018 (7)0.0026 (7)0.0026 (7)
C14B0.0143 (7)0.0201 (9)0.0129 (8)0.0014 (6)0.0056 (6)0.0031 (6)
C19B0.0219 (8)0.0185 (9)0.0194 (9)0.0011 (7)0.0085 (7)0.0003 (7)
C11A0.0158 (8)0.0206 (9)0.0184 (9)0.0014 (6)0.0067 (7)0.0016 (7)
C7B0.0140 (7)0.0143 (8)0.0173 (8)0.0023 (6)0.0055 (6)0.0055 (6)
C12B0.0179 (8)0.0156 (8)0.0176 (9)0.0014 (6)0.0054 (7)0.0004 (7)
C9B0.0169 (8)0.0198 (9)0.0196 (9)0.0018 (6)0.0035 (7)0.0004 (7)
C2A0.0159 (8)0.0167 (8)0.0190 (9)0.0021 (6)0.0095 (7)0.0026 (7)
C8B0.0194 (8)0.0187 (8)0.0167 (9)0.0031 (7)0.0072 (7)0.0009 (7)
C7A0.0158 (8)0.0135 (8)0.0163 (8)0.0023 (6)0.0027 (6)0.0024 (7)
C12A0.0186 (8)0.0204 (9)0.0161 (8)0.0013 (7)0.0082 (7)0.0009 (7)
C11B0.0233 (8)0.0182 (9)0.0207 (9)0.0022 (7)0.0121 (7)0.0006 (7)
C10A0.0186 (8)0.0154 (8)0.0150 (8)0.0001 (6)0.0041 (7)0.0013 (7)
C9A0.0206 (8)0.0210 (9)0.0184 (9)0.0018 (7)0.0101 (7)0.0004 (7)
C10B0.0157 (8)0.0171 (8)0.0257 (9)0.0008 (6)0.0092 (7)0.0032 (7)
C2B0.0169 (8)0.0141 (8)0.0143 (8)0.0015 (6)0.0043 (6)0.0018 (6)
C5A0.0189 (8)0.0205 (9)0.0246 (9)0.0062 (7)0.0063 (7)0.0063 (7)
C15B0.0162 (8)0.0204 (9)0.0207 (9)0.0034 (6)0.0067 (7)0.0020 (7)
C4B0.0257 (9)0.0208 (9)0.0211 (9)0.0021 (7)0.0116 (7)0.0016 (7)
C6A0.0172 (8)0.0171 (8)0.0219 (9)0.0009 (6)0.0083 (7)0.0004 (7)
C18B0.0163 (8)0.0264 (9)0.0161 (9)0.0054 (7)0.0036 (7)0.0005 (7)
C15A0.0164 (8)0.0207 (9)0.0220 (9)0.0020 (6)0.0077 (7)0.0003 (7)
C13A0.0222 (9)0.0271 (10)0.0202 (9)0.0070 (7)0.0064 (7)0.0008 (7)
C16B0.0216 (8)0.0177 (9)0.0275 (10)0.0019 (7)0.0108 (7)0.0002 (7)
C17B0.0148 (8)0.0268 (9)0.0181 (9)0.0042 (7)0.0068 (7)0.0051 (7)
C17A0.0247 (9)0.0160 (8)0.0236 (9)0.0009 (7)0.0075 (7)0.0005 (7)
C5B0.0225 (8)0.0198 (9)0.0184 (9)0.0041 (7)0.0063 (7)0.0036 (7)
C19A0.0162 (8)0.0212 (9)0.0305 (10)0.0014 (7)0.0097 (7)0.0009 (8)
C3A0.0173 (8)0.0217 (9)0.0190 (9)0.0010 (7)0.0060 (7)0.0014 (7)
C14A0.0191 (8)0.0159 (8)0.0153 (8)0.0000 (6)0.0060 (7)0.0025 (7)
C3B0.0169 (8)0.0223 (9)0.0194 (9)0.0008 (7)0.0088 (7)0.0006 (7)
C6B0.0153 (8)0.0178 (9)0.0188 (9)0.0025 (6)0.0065 (7)0.0004 (7)
C1A0.0136 (7)0.0199 (9)0.0172 (9)0.0006 (6)0.0067 (7)0.0018 (7)
B1B0.0160 (9)0.0152 (9)0.0146 (9)0.0000 (7)0.0045 (7)0.0011 (7)
C16A0.0175 (8)0.0217 (9)0.0239 (9)0.0034 (7)0.0066 (7)0.0018 (7)
C18A0.0214 (8)0.0222 (9)0.0372 (11)0.0038 (7)0.0130 (8)0.0027 (8)
B1A0.0137 (8)0.0197 (10)0.0180 (10)0.0005 (7)0.0081 (7)0.0041 (8)
C13B0.0304 (10)0.0370 (12)0.0588 (14)0.0033 (8)0.0320 (10)0.0105 (10)
C20A0.0372 (11)0.0230 (10)0.0457 (13)0.0108 (8)0.0112 (9)0.0073 (9)
C20B0.0231 (10)0.0426 (13)0.0723 (17)0.0100 (9)0.0155 (10)0.0125 (12)
Geometric parameters (Å, º) top
O1—B1B1.368 (2)C7A—C12A1.384 (2)
O1—B1A1.372 (2)C12A—H12A0.9500
O2A—C10A1.3673 (18)C11B—H11B0.9500
O2A—C13A1.4272 (18)C11B—C10B1.384 (2)
O2B—C10B1.3730 (18)C10A—C9A1.394 (2)
O2B—C13B1.430 (2)C9A—H9A0.9500
O3B—C17B1.3757 (18)C2B—C3B1.384 (2)
O3B—C20B1.422 (2)C5A—H5A0.9500
N2A—C2A1.4124 (19)C5A—C6A1.392 (2)
N2A—C14A1.427 (2)C15B—H15B0.9500
N2A—B1A1.437 (2)C15B—C16B1.392 (2)
N1B—C1B1.4040 (19)C4B—H4B0.9500
N1B—C7B1.4407 (19)C4B—C5B1.391 (2)
N1B—B1B1.432 (2)C4B—C3B1.393 (2)
N2B—C14B1.4322 (19)C6A—H6A0.9500
N2B—C2B1.4079 (19)C6A—C1A1.383 (2)
N2B—B1B1.433 (2)C18B—H18B0.9500
N1A—C7A1.431 (2)C18B—C17B1.388 (2)
N1A—C1A1.4034 (19)C15A—H15A0.9500
N1A—B1A1.428 (2)C15A—C14A1.386 (2)
O3A—C17A1.3720 (19)C15A—C16A1.389 (2)
O3A—C20A1.425 (2)C13A—H13A0.9800
C8A—H8A0.9500C13A—H13B0.9800
C8A—C7A1.393 (2)C13A—H13C0.9800
C8A—C9A1.378 (2)C16B—H16B0.9500
C1B—C2B1.410 (2)C16B—C17B1.386 (2)
C1B—C6B1.379 (2)C17A—C16A1.388 (2)
C4A—H4A0.9500C17A—C18A1.390 (2)
C4A—C5A1.386 (2)C5B—H5B0.9500
C4A—C3A1.395 (2)C5B—C6B1.395 (2)
C14B—C19B1.390 (2)C19A—H19A0.9500
C14B—C15B1.383 (2)C19A—C14A1.389 (2)
C19B—H19B0.9500C19A—C18A1.383 (2)
C19B—C18B1.380 (2)C3A—H3A0.9500
C11A—H11A0.9500C3B—H3B0.9500
C11A—C12A1.388 (2)C6B—H6B0.9500
C11A—C10A1.385 (2)C16A—H16A0.9500
C7B—C12B1.381 (2)C18A—H18A0.9500
C7B—C8B1.391 (2)C13B—H13D0.9800
C12B—H12B0.9500C13B—H13E0.9800
C12B—C11B1.392 (2)C13B—H13F0.9800
C9B—H9B0.9500C20A—H20A0.9800
C9B—C8B1.380 (2)C20A—H20B0.9800
C9B—C10B1.391 (2)C20A—H20C0.9800
C2A—C3A1.379 (2)C20B—H20D0.9800
C2A—C1A1.407 (2)C20B—H20E0.9800
C8B—H8B0.9500C20B—H20F0.9800
B1B—O1—B1A132.75 (13)C5B—C4B—C3B121.34 (15)
C10A—O2A—C13A116.62 (12)C3B—C4B—H4B119.3
C10B—O2B—C13B116.33 (13)C5A—C6A—H6A121.2
C17B—O3B—C20B118.15 (13)C1A—C6A—C5A117.54 (15)
C2A—N2A—C14A123.34 (13)C1A—C6A—H6A121.2
C2A—N2A—B1A107.38 (13)C19B—C18B—H18B119.9
C14A—N2A—B1A129.26 (13)C19B—C18B—C17B120.13 (15)
C1B—N1B—C7B122.71 (12)C17B—C18B—H18B119.9
C1B—N1B—B1B107.83 (12)C14A—C15A—H15A119.4
B1B—N1B—C7B129.45 (13)C14A—C15A—C16A121.25 (15)
C14B—N2B—B1B129.55 (13)C16A—C15A—H15A119.4
C2B—N2B—C14B122.27 (12)O2A—C13A—H13A109.5
C2B—N2B—B1B107.94 (12)O2A—C13A—H13B109.5
C1A—N1A—C7A121.93 (13)O2A—C13A—H13C109.5
C1A—N1A—B1A108.04 (13)H13A—C13A—H13B109.5
B1A—N1A—C7A130.03 (13)H13A—C13A—H13C109.5
C17A—O3A—C20A117.01 (13)H13B—C13A—H13C109.5
C7A—C8A—H8A119.8C15B—C16B—H16B120.6
C9A—C8A—H8A119.8C17B—C16B—C15B118.85 (15)
C9A—C8A—C7A120.39 (14)C17B—C16B—H16B120.6
N1B—C1B—C2B108.82 (13)O3B—C17B—C18B115.02 (14)
C6B—C1B—N1B130.41 (14)O3B—C17B—C16B124.66 (15)
C6B—C1B—C2B120.74 (14)C16B—C17B—C18B120.30 (14)
C5A—C4A—H4A119.4O3A—C17A—C16A124.35 (14)
C5A—C4A—C3A121.27 (15)O3A—C17A—C18A116.17 (14)
C3A—C4A—H4A119.4C16A—C17A—C18A119.47 (15)
C19B—C14B—N2B120.81 (14)C4B—C5B—H5B119.6
C15B—C14B—N2B120.11 (13)C4B—C5B—C6B120.83 (15)
C15B—C14B—C19B119.08 (14)C6B—C5B—H5B119.6
C14B—C19B—H19B119.8C14A—C19A—H19A119.5
C18B—C19B—C14B120.34 (15)C18A—C19A—H19A119.5
C18B—C19B—H19B119.8C18A—C19A—C14A120.92 (15)
C12A—C11A—H11A120.2C4A—C3A—H3A120.9
C10A—C11A—H11A120.2C2A—C3A—C4A118.20 (15)
C10A—C11A—C12A119.59 (14)C2A—C3A—H3A120.9
C12B—C7B—N1B120.36 (14)C15A—C14A—N2A121.32 (14)
C12B—C7B—C8B119.32 (14)C15A—C14A—C19A118.41 (15)
C8B—C7B—N1B120.32 (14)C19A—C14A—N2A120.25 (13)
C7B—C12B—H12B119.5C2B—C3B—C4B117.73 (14)
C7B—C12B—C11B120.99 (15)C2B—C3B—H3B121.1
C11B—C12B—H12B119.5C4B—C3B—H3B121.1
C8B—C9B—H9B119.7C1B—C6B—C5B118.25 (14)
C8B—C9B—C10B120.55 (15)C1B—C6B—H6B120.9
C10B—C9B—H9B119.7C5B—C6B—H6B120.9
C3A—C2A—N2A130.98 (15)N1A—C1A—C2A108.66 (13)
C3A—C2A—C1A120.25 (14)C6A—C1A—N1A129.58 (14)
C1A—C2A—N2A108.63 (13)C6A—C1A—C2A121.68 (14)
C7B—C8B—H8B120.0O1—B1B—N1B124.79 (14)
C9B—C8B—C7B119.98 (15)O1—B1B—N2B128.08 (14)
C9B—C8B—H8B120.0N1B—B1B—N2B107.10 (14)
C8A—C7A—N1A120.37 (13)C15A—C16A—H16A120.1
C12A—C7A—N1A120.31 (14)C17A—C16A—C15A119.70 (14)
C12A—C7A—C8A119.31 (14)C17A—C16A—H16A120.1
C11A—C12A—H12A119.6C17A—C18A—H18A119.9
C7A—C12A—C11A120.70 (15)C19A—C18A—C17A120.19 (15)
C7A—C12A—H12A119.6C19A—C18A—H18A119.9
C12B—C11B—H11B120.3O1—B1A—N2A127.87 (15)
C10B—C11B—C12B119.39 (15)O1—B1A—N1A124.76 (15)
C10B—C11B—H11B120.3N1A—B1A—N2A107.27 (13)
O2A—C10A—C11A124.14 (14)O2B—C13B—H13D109.5
O2A—C10A—C9A115.80 (14)O2B—C13B—H13E109.5
C11A—C10A—C9A120.06 (15)O2B—C13B—H13F109.5
C8A—C9A—C10A119.91 (15)H13D—C13B—H13E109.5
C8A—C9A—H9A120.0H13D—C13B—H13F109.5
C10A—C9A—H9A120.0H13E—C13B—H13F109.5
O2B—C10B—C9B115.73 (14)O3A—C20A—H20A109.5
O2B—C10B—C11B124.52 (15)O3A—C20A—H20B109.5
C11B—C10B—C9B119.75 (14)O3A—C20A—H20C109.5
N2B—C2B—C1B108.31 (13)H20A—C20A—H20B109.5
C3B—C2B—N2B130.53 (14)H20A—C20A—H20C109.5
C3B—C2B—C1B121.12 (14)H20B—C20A—H20C109.5
C4A—C5A—H5A119.5O3B—C20B—H20D109.5
C4A—C5A—C6A121.04 (15)O3B—C20B—H20E109.5
C6A—C5A—H5A119.5O3B—C20B—H20F109.5
C14B—C15B—H15B119.4H20D—C20B—H20E109.5
C14B—C15B—C16B121.26 (14)H20D—C20B—H20F109.5
C16B—C15B—H15B119.4H20E—C20B—H20F109.5
C5B—C4B—H4B119.3
O2A—C10A—C9A—C8A178.55 (14)C2B—N2B—B1B—N1B0.61 (17)
N2A—C2A—C3A—C4A175.54 (15)C2B—C1B—C6B—C5B0.2 (2)
N2A—C2A—C1A—N1A0.14 (17)C5A—C4A—C3A—C2A0.3 (2)
N2A—C2A—C1A—C6A177.10 (14)C5A—C6A—C1A—N1A175.77 (15)
N1B—C1B—C2B—N2B0.47 (17)C5A—C6A—C1A—C2A0.8 (2)
N1B—C1B—C2B—C3B178.43 (14)C15B—C14B—C19B—C18B1.4 (2)
N1B—C1B—C6B—C5B177.82 (15)C15B—C16B—C17B—O3B176.14 (15)
N1B—C7B—C12B—C11B178.68 (14)C15B—C16B—C17B—C18B2.2 (2)
N1B—C7B—C8B—C9B179.28 (14)C4B—C5B—C6B—C1B0.3 (2)
N2B—C14B—C19B—C18B178.20 (14)C13A—O2A—C10A—C11A13.0 (2)
N2B—C14B—C15B—C16B179.40 (14)C13A—O2A—C10A—C9A167.12 (14)
N2B—C2B—C3B—C4B177.41 (15)C5B—C4B—C3B—C2B0.4 (2)
N1A—C7A—C12A—C11A179.14 (14)C3A—C4A—C5A—C6A0.3 (2)
O3A—C17A—C16A—C15A177.38 (16)C3A—C2A—C1A—N1A176.32 (14)
O3A—C17A—C18A—C19A176.64 (16)C3A—C2A—C1A—C6A0.9 (2)
C8A—C7A—C12A—C11A1.7 (2)C14A—N2A—C2A—C3A6.7 (3)
C1B—N1B—C7B—C12B100.79 (18)C14A—N2A—C2A—C1A177.71 (13)
C1B—N1B—C7B—C8B78.92 (19)C14A—N2A—B1A—O16.6 (3)
C1B—N1B—B1B—O1177.24 (15)C14A—N2A—B1A—N1A177.07 (14)
C1B—N1B—B1B—N2B0.90 (17)C14A—C15A—C16A—C17A0.5 (3)
C1B—C2B—C3B—C4B0.0 (2)C14A—C19A—C18A—C17A1.1 (3)
C4A—C5A—C6A—C1A0.2 (2)C3B—C4B—C5B—C6B0.6 (3)
C14B—N2B—C2B—C1B174.97 (13)C6B—C1B—C2B—N2B177.64 (14)
C14B—N2B—C2B—C3B2.7 (3)C6B—C1B—C2B—C3B0.3 (2)
C14B—N2B—B1B—O13.1 (3)C1A—N1A—C7A—C8A78.00 (19)
C14B—N2B—B1B—N1B174.99 (14)C1A—N1A—C7A—C12A101.15 (17)
C14B—C19B—C18B—C17B0.8 (2)C1A—N1A—B1A—O1175.29 (15)
C14B—C15B—C16B—C17B1.6 (2)C1A—N1A—B1A—N2A1.21 (17)
C19B—C14B—C15B—C16B0.2 (2)C1A—C2A—C3A—C4A0.3 (2)
C19B—C18B—C17B—O3B177.45 (14)B1B—O1—B1A—N2A62.9 (3)
C19B—C18B—C17B—C16B1.0 (2)B1B—O1—B1A—N1A121.33 (19)
C11A—C10A—C9A—C8A1.5 (2)B1B—N1B—C1B—C2B0.85 (17)
C7B—N1B—C1B—C2B179.69 (13)B1B—N1B—C1B—C6B177.02 (16)
C7B—N1B—C1B—C6B1.8 (2)B1B—N1B—C7B—C12B80.6 (2)
C7B—N1B—B1B—O11.5 (3)B1B—N1B—C7B—C8B99.6 (2)
C7B—N1B—B1B—N2B179.63 (14)B1B—N2B—C14B—C19B119.01 (18)
C7B—C12B—C11B—C10B0.9 (2)B1B—N2B—C14B—C15B61.4 (2)
C12B—C7B—C8B—C9B1.0 (2)B1B—N2B—C2B—C1B0.10 (17)
C12B—C11B—C10B—O2B179.54 (14)B1B—N2B—C2B—C3B177.61 (17)
C12B—C11B—C10B—C9B0.4 (2)C16A—C15A—C14A—N2A179.44 (15)
C2A—N2A—C14A—C15A47.6 (2)C16A—C15A—C14A—C19A1.9 (2)
C2A—N2A—C14A—C19A133.79 (16)C16A—C17A—C18A—C19A2.5 (3)
C2A—N2A—B1A—O1175.24 (15)C18A—C17A—C16A—C15A1.7 (3)
C2A—N2A—B1A—N1A1.12 (17)C18A—C19A—C14A—N2A179.75 (16)
C8B—C7B—C12B—C11B1.6 (2)C18A—C19A—C14A—C15A1.1 (3)
C8B—C9B—C10B—O2B178.96 (14)B1A—O1—B1B—N1B167.79 (16)
C8B—C9B—C10B—C11B1.0 (2)B1A—O1—B1B—N2B14.5 (3)
C7A—N1A—C1A—C2A178.84 (13)B1A—N2A—C2A—C3A175.02 (16)
C7A—N1A—C1A—C6A4.2 (2)B1A—N2A—C2A—C1A0.61 (17)
C7A—N1A—B1A—O15.1 (3)B1A—N2A—C14A—C15A130.34 (17)
C7A—N1A—B1A—N2A178.45 (14)B1A—N2A—C14A—C19A48.3 (2)
C7A—C8A—C9A—C10A0.6 (2)B1A—N1A—C7A—C8A101.61 (19)
C12A—C11A—C10A—O2A179.27 (14)B1A—N1A—C7A—C12A79.2 (2)
C12A—C11A—C10A—C9A0.8 (2)B1A—N1A—C1A—C2A0.85 (17)
C10A—C11A—C12A—C7A0.8 (2)B1A—N1A—C1A—C6A176.11 (16)
C9A—C8A—C7A—N1A179.86 (14)C13B—O2B—C10B—C9B179.79 (15)
C9A—C8A—C7A—C12A1.0 (2)C13B—O2B—C10B—C11B0.2 (2)
C10B—C9B—C8B—C7B0.3 (2)C20A—O3A—C17A—C16A17.1 (2)
C2B—N2B—C14B—C19B67.3 (2)C20A—O3A—C17A—C18A163.81 (16)
C2B—N2B—C14B—C15B112.25 (17)C20B—O3B—C17B—C18B175.17 (17)
C2B—N2B—B1B—O1177.44 (16)C20B—O3B—C17B—C16B3.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8B—H8B···O2Ai0.952.403.233 (2)147
C13B—H13E···O3Bii0.982.463.374 (3)155
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the University of Pennsylvania for data-collection services and both Professor Louise Dawe (Wilfrid Laurier University) and Dr Amy Sarjeant (Bristol Myers Squibb) for their patient teaching on our journey into crystallography.

Funding information

Funding for this research was provided by program manager Dr Imre Gyuk through the US Department of Energy, Office of Electricity. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell Inter­national, Inc., for the US Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. The views expressed in this article do not necessarily represent the views of the US Department of Energy or the United States Government. Davidson College and the Davidson Research Institute are acknowledged for scholarships to HHM and NAR.

References

First citationAllen, A. E. & MacMillan, D. W. C. (2012). Chem. Sci. 3, 633–658.  CrossRef CAS Google Scholar
First citationBellemin-Laponnaz, S. & Dagorne, S. (2014). Chem. Rev. 114, 8747–8774.  CAS PubMed Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKarunananda, M. K. & Mankad, N. P. (2017). ACS Catal. 7, 6110–6119.  CrossRef CAS Google Scholar
First citationLohr, T. L. & Marks, T. J. (2015). Nat. Chem. 7, 477–482.  CrossRef CAS PubMed Google Scholar
First citationMallard, H. H., Anstey, M. R., Kennedy, N. D., Rudman, N. A., Greenwood, A. M., Angle, C. E., Nicoleau, J., Torquato, N. A., Gau, M. R. & Carroll, P. J. (2020). CSD Communication (refcode CCDC 2015021). CCDC, Cambridge, England.  Google Scholar
First citationPower, P. P. (2010). Nature, 463, 171–177.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPrier, C. K., Rankic, D. A. & MacMillan, D. W. C. (2013). Chem. Rev. 113, 5322–5363.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPye, D. R. & Mankad, N. P. (2017). Chem. Sci. 8, 1705–1718.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, Z., Chen, X., Xie, H., Wang, D., Huang, H. & Deng, G.-J. (2018). Org. Lett. 20, 5470–5473.  CrossRef CAS PubMed Google Scholar
First citationXiong, M., Gao, Z., Liang, X., Cai, P., Zhu, H. & Pan, Y. (2018). Chem. Commun. 54, 9679–9682.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds