organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

6-(3,4-Di­fluoro­phen­yl)-7,8,13,14-tetra­hydro­dibenzo[c,k]phenanthridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China, and bDepartment of Chemistry, Yancheng Teachers College, Yancheng, Jiangsu, 224002, People's Republic of China
*Correspondence e-mail: 987372801@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 August 2020; accepted 9 September 2020; online 11 September 2020)

In the title compound, C27H19F2N, the five-fused-ring system is highly puckered and the dihedral angle between the central pyridine ring and pendant di­fluoro­benzene ring is 45.12 (12)°. In the crystal, inversion dimers linked by pairwise weak C—H⋯N hydrogen bonds generate R22(12) loops and the dimers are further linked by weak C—H⋯F inter­actions to form [[\overline{1}]01] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In recent years, nitro­gen-containing heterocyclic mol­ecular materials have found use as optoelectronic materials (Gu et al. 2017[Gu, B., Wu, W. B., Xu, G. X., Feng, G. X., Yin, F., Chong, P. H. J., Qu, J. L., Yong, K. T. & Liu, B. (2017). Adv. Mater. 29, 1701076.]; Zhang et al., 2019[Zhang, C., Zhao, Y., Li, D., Liu, J., Han, H., He, D., Tian, X., Li, S., Wu, J. & Tian, Y. (2019). Chem. Commun. 55, 1450-1453.]) because of their conjugated structures and photophysical properties. In this work, we describe the synthesis and structure of the title compound (Fig. 1[link]) in which the F atoms should increase solubility and provide strong electron-withdrawing groups.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

The crystal structure shows that the dihedral angle between the C1–C6 di­fluoro­benzene ring and the adjacent C7/C8/C17/C18/C27/N1 pyridine ring is 45.12 (12)°. In the crystal, pairwise weak C10—H10B⋯N1 hydrogen bonds (Table 1[link]) link the mol­ecules into inversion dimers, which are further linked by weak C—H⋯F inter­actions (Fig. 2[link]) to form [[\overline{1}]01] double chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯N1i 0.97 2.61 3.552 (4) 165
C19—H19A⋯F2ii 0.97 2.56 3.111 (4) 116
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z+1.
[Figure 2]
Figure 2
Partial packing diagram showing hydrogen bonds as dashed lines.

Synthesis and crystallization

Ammonium acetate (7.60 g, 0.100 mol) was dissolved in 15 ml glacial acetic acid. Then, 3,4-di­fluoro­benzaldehyde (2.00 g, 0.014 mol) and 1-tetra­hydro­naphthalone (4.12 g, 0.028 mol) were added and the reaction was heated to reflux at 383 K for 5 h. Upon cooling and recrystallization from ethanol solution, 1.64 g (yield 30%) of the title compound was recovered. Crystals for X-ray analysis were obtained from the slow evaporation of an aceto­nitrile solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H19F2N
Mr 395.43
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 9.394 (5), 9.802 (5), 11.914 (6)
α, β, γ (°) 88.983 (5), 73.144 (5), 69.488 (5)
V3) 979.0 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.03 × 0.02 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.633, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7892, 4051, 3053
Rint 0.027
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.190, 1.06
No. of reflections 4051
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.43, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

6-(3,4-Difluorophenyl)-7,8,13,14-tetrahydrodibenzo[c,k]phenanthridine top
Crystal data top
C27H19F2NZ = 2
Mr = 395.43F(000) = 412
Triclinic, P1Dx = 1.341 Mg m3
a = 9.394 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.802 (5) ÅCell parameters from 2895 reflections
c = 11.914 (6) Åθ = 2.4–27.5°
α = 88.983 (5)°µ = 0.09 mm1
β = 73.144 (5)°T = 296 K
γ = 69.488 (5)°Block-shaped, white
V = 979.0 (8) Å30.03 × 0.02 × 0.01 mm
Data collection top
Bruker APEXII CCD area detector
diffractometer
3053 reflections with I > 2σ(I)
phi and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.6°, θmin = 1.8°
Tmin = 0.633, Tmax = 0.746h = 1212
7892 measured reflectionsk = 1210
4051 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.0837P)2 + 0.5466P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4051 reflectionsΔρmax = 0.43 e Å3
271 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7467 (2)0.3707 (2)0.54946 (15)0.0391 (4)
F11.0054 (3)0.3247 (2)0.10698 (15)0.0904 (6)
F21.1593 (2)0.5132 (3)0.08204 (17)0.1047 (8)
C180.5333 (2)0.4724 (2)0.73116 (18)0.0380 (5)
C170.5140 (2)0.6141 (2)0.69776 (18)0.0381 (5)
C80.6055 (3)0.6315 (2)0.58465 (19)0.0391 (5)
C70.7235 (2)0.5064 (2)0.51581 (18)0.0363 (5)
C50.8364 (2)0.5126 (2)0.39951 (18)0.0386 (5)
C270.6517 (2)0.3545 (2)0.65376 (18)0.0374 (5)
C160.3991 (3)0.7498 (2)0.7746 (2)0.0417 (5)
C260.6825 (3)0.2019 (2)0.68702 (19)0.0410 (5)
C210.5609 (3)0.1703 (3)0.7718 (2)0.0439 (5)
C60.8684 (3)0.4139 (3)0.30477 (19)0.0443 (5)
H60.8175540.3465100.3131380.053*
C110.3292 (3)0.8721 (3)0.7200 (2)0.0456 (6)
C220.5900 (3)0.0269 (3)0.8019 (2)0.0534 (6)
H220.5102920.0051810.8575260.064*
C40.9152 (3)0.6117 (3)0.3848 (2)0.0510 (6)
H40.8946870.6782520.4474330.061*
C190.4315 (3)0.4353 (3)0.84374 (19)0.0462 (6)
H19A0.3287710.5144740.8707420.055*
H19B0.4831880.4265090.9045730.055*
C200.4060 (3)0.2928 (3)0.8250 (2)0.0508 (6)
H20A0.3505300.2679140.8999570.061*
H20B0.3397130.3063920.7735290.061*
C150.3651 (3)0.7608 (3)0.8972 (2)0.0517 (6)
H150.4164900.6820390.9335260.062*
C10.9756 (3)0.4166 (3)0.1989 (2)0.0549 (7)
C250.8280 (3)0.0895 (3)0.6371 (2)0.0508 (6)
H250.9089480.1097090.5814390.061*
C90.5619 (3)0.7816 (3)0.5415 (2)0.0480 (6)
H9A0.5955810.7729220.4560850.058*
H9B0.6164340.8361980.5680470.058*
C100.3802 (3)0.8638 (3)0.5889 (2)0.0510 (6)
H10A0.3528890.9616870.5633380.061*
H10B0.3256010.8128380.5582900.061*
C21.0529 (3)0.5146 (3)0.1853 (2)0.0615 (8)
C120.2169 (3)0.9997 (3)0.7903 (3)0.0588 (7)
H120.1663931.0801990.7551080.071*
C31.0245 (3)0.6118 (3)0.2769 (3)0.0617 (7)
H31.0774980.6774470.2674000.074*
C240.8549 (3)0.0521 (3)0.6687 (3)0.0618 (7)
H240.9530220.1261440.6349860.074*
C230.7334 (4)0.0818 (3)0.7512 (3)0.0617 (7)
H230.7499760.1767600.7721060.074*
C130.1814 (3)1.0058 (3)0.9111 (3)0.0670 (8)
H130.1065871.0904840.9568230.080*
C140.2552 (3)0.8882 (3)0.9651 (2)0.0616 (8)
H140.2316300.8941001.0466620.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0375 (9)0.0410 (10)0.0340 (9)0.0146 (8)0.0032 (7)0.0015 (7)
F10.0965 (14)0.0996 (14)0.0468 (9)0.0197 (11)0.0020 (9)0.0195 (9)
F20.0783 (13)0.1363 (19)0.0616 (11)0.0315 (13)0.0245 (10)0.0223 (11)
C180.0354 (11)0.0462 (12)0.0301 (10)0.0133 (9)0.0084 (8)0.0024 (9)
C170.0362 (11)0.0438 (12)0.0323 (10)0.0126 (9)0.0093 (9)0.0029 (9)
C80.0441 (12)0.0381 (12)0.0367 (11)0.0150 (9)0.0142 (9)0.0026 (9)
C70.0363 (11)0.0404 (12)0.0321 (10)0.0161 (9)0.0073 (9)0.0031 (8)
C50.0335 (10)0.0440 (12)0.0359 (11)0.0130 (9)0.0086 (9)0.0076 (9)
C270.0356 (11)0.0430 (12)0.0322 (10)0.0146 (9)0.0080 (9)0.0039 (9)
C160.0388 (11)0.0412 (12)0.0435 (12)0.0159 (10)0.0079 (10)0.0038 (9)
C260.0436 (12)0.0450 (13)0.0365 (11)0.0182 (10)0.0126 (9)0.0065 (9)
C210.0465 (13)0.0485 (13)0.0405 (12)0.0211 (11)0.0141 (10)0.0079 (10)
C60.0407 (12)0.0491 (13)0.0385 (12)0.0128 (10)0.0096 (10)0.0056 (10)
C110.0409 (12)0.0415 (12)0.0525 (13)0.0166 (10)0.0086 (10)0.0058 (10)
C220.0581 (15)0.0546 (15)0.0588 (15)0.0317 (13)0.0212 (13)0.0177 (12)
C40.0481 (14)0.0571 (15)0.0507 (14)0.0268 (12)0.0098 (11)0.0074 (11)
C190.0460 (13)0.0494 (14)0.0342 (11)0.0139 (11)0.0030 (10)0.0051 (10)
C200.0458 (13)0.0538 (15)0.0490 (14)0.0199 (11)0.0068 (11)0.0125 (11)
C150.0518 (14)0.0596 (16)0.0416 (12)0.0247 (12)0.0048 (11)0.0093 (11)
C10.0470 (14)0.0653 (16)0.0347 (12)0.0045 (12)0.0055 (10)0.0015 (11)
C250.0453 (13)0.0473 (14)0.0509 (14)0.0126 (11)0.0068 (11)0.0055 (11)
C90.0611 (15)0.0432 (13)0.0378 (12)0.0214 (11)0.0088 (11)0.0036 (10)
C100.0601 (15)0.0402 (13)0.0547 (14)0.0169 (11)0.0221 (12)0.0105 (11)
C20.0416 (13)0.0790 (19)0.0458 (14)0.0149 (13)0.0038 (11)0.0188 (13)
C120.0491 (14)0.0445 (14)0.0769 (19)0.0148 (12)0.0126 (13)0.0036 (13)
C30.0443 (14)0.0709 (18)0.0691 (18)0.0283 (13)0.0078 (13)0.0229 (15)
C240.0564 (16)0.0481 (15)0.0728 (18)0.0126 (12)0.0157 (14)0.0090 (13)
C230.0649 (17)0.0479 (15)0.0777 (19)0.0218 (13)0.0285 (15)0.0190 (13)
C130.0520 (15)0.0613 (18)0.0717 (19)0.0205 (14)0.0065 (14)0.0248 (15)
C140.0593 (16)0.0686 (18)0.0491 (14)0.0277 (14)0.0024 (12)0.0188 (13)
Geometric parameters (Å, º) top
N1—C71.344 (3)C4—H40.9300
N1—C271.348 (3)C4—C31.394 (3)
F1—C11.330 (3)C19—H19A0.9700
F2—C21.338 (3)C19—H19B0.9700
C18—C171.401 (3)C19—C201.528 (4)
C18—C271.402 (3)C20—H20A0.9700
C18—C191.526 (3)C20—H20B0.9700
C17—C81.417 (3)C15—H150.9300
C17—C161.495 (3)C15—C141.388 (4)
C8—C71.401 (3)C1—C21.376 (4)
C8—C91.506 (3)C25—H250.9300
C7—C51.496 (3)C25—C241.386 (4)
C5—C61.393 (3)C9—H9A0.9700
C5—C41.395 (3)C9—H9B0.9700
C27—C261.490 (3)C9—C101.541 (4)
C16—C111.399 (4)C10—H10A0.9700
C16—C151.400 (3)C10—H10B0.9700
C26—C211.410 (3)C2—C31.363 (4)
C26—C251.390 (3)C12—H120.9300
C21—C221.396 (3)C12—C131.377 (4)
C21—C201.493 (3)C3—H30.9300
C6—H60.9300C24—H240.9300
C6—C11.374 (3)C24—C231.388 (4)
C11—C101.490 (4)C23—H230.9300
C11—C121.407 (3)C13—H130.9300
C22—H220.9300C13—C141.377 (4)
C22—C231.364 (4)C14—H140.9300
C7—N1—C27118.46 (18)C21—C20—H20A109.4
C17—C18—C27117.92 (19)C21—C20—H20B109.4
C17—C18—C19125.17 (19)C19—C20—H20A109.4
C27—C18—C19116.9 (2)C19—C20—H20B109.4
C18—C17—C8118.99 (19)H20A—C20—H20B108.0
C18—C17—C16123.57 (19)C16—C15—H15119.7
C8—C17—C16117.4 (2)C14—C15—C16120.6 (3)
C17—C8—C9118.13 (19)C14—C15—H15119.7
C7—C8—C17118.1 (2)F1—C1—C6120.3 (3)
C7—C8—C9123.6 (2)F1—C1—C2118.7 (2)
N1—C7—C8122.89 (19)C6—C1—C2121.0 (2)
N1—C7—C5114.26 (18)C26—C25—H25119.4
C8—C7—C5122.84 (19)C24—C25—C26121.3 (2)
C6—C5—C7119.4 (2)C24—C25—H25119.4
C6—C5—C4119.0 (2)C8—C9—H9A109.7
C4—C5—C7121.5 (2)C8—C9—H9B109.7
N1—C27—C18123.3 (2)C8—C9—C10110.01 (19)
N1—C27—C26116.34 (19)H9A—C9—H9B108.2
C18—C27—C26120.27 (19)C10—C9—H9A109.7
C11—C16—C17118.0 (2)C10—C9—H9B109.7
C11—C16—C15119.3 (2)C11—C10—C9109.1 (2)
C15—C16—C17122.7 (2)C11—C10—H10A109.9
C21—C26—C27119.1 (2)C11—C10—H10B109.9
C25—C26—C27121.9 (2)C9—C10—H10A109.9
C25—C26—C21119.0 (2)C9—C10—H10B109.9
C26—C21—C20118.1 (2)H10A—C10—H10B108.3
C22—C21—C26118.9 (2)F2—C2—C1119.9 (3)
C22—C21—C20123.0 (2)F2—C2—C3119.5 (3)
C5—C6—H6120.2C3—C2—C1120.6 (2)
C1—C6—C5119.6 (2)C11—C12—H12119.9
C1—C6—H6120.2C13—C12—C11120.2 (3)
C16—C11—C10118.6 (2)C13—C12—H12119.9
C16—C11—C12119.2 (2)C4—C3—H3120.3
C12—C11—C10122.2 (2)C2—C3—C4119.4 (3)
C21—C22—H22119.4C2—C3—H3120.3
C23—C22—C21121.2 (2)C25—C24—H24120.4
C23—C22—H22119.4C25—C24—C23119.2 (3)
C5—C4—H4119.8C23—C24—H24120.4
C3—C4—C5120.4 (3)C22—C23—C24120.6 (3)
C3—C4—H4119.8C22—C23—H23119.7
C18—C19—H19A109.2C24—C23—H23119.7
C18—C19—H19B109.2C12—C13—H13119.6
C18—C19—C20111.98 (19)C14—C13—C12120.9 (3)
H19A—C19—H19B107.9C14—C13—H13119.6
C20—C19—H19A109.2C15—C14—H14120.2
C20—C19—H19B109.2C13—C14—C15119.7 (3)
C21—C20—C19111.3 (2)C13—C14—H14120.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N1i0.972.613.552 (4)165
C19—H19A···F2ii0.972.563.111 (4)116
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z+1.
 

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award Nos. 21871003 and 51672002).

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGu, B., Wu, W. B., Xu, G. X., Feng, G. X., Yin, F., Chong, P. H. J., Qu, J. L., Yong, K. T. & Liu, B. (2017). Adv. Mater. 29, 1701076.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, C., Zhao, Y., Li, D., Liu, J., Han, H., He, D., Tian, X., Li, S., Wu, J. & Tian, Y. (2019). Chem. Commun. 55, 1450–1453.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds