metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[2,2′-Bis(di­phenyl­phosphan­yl)-1,1′-bi­naphthyl-κ2P,P′]di­chlorido­platinum(II) aceto­nitrile tris­olvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
*Correspondence e-mail: david.herbert@umanitoba.ca

Edited by O. Blacque, University of Zürich, Switzerland (Received 17 June 2020; accepted 29 July 2020; online 4 August 2020)

The crystal structure (150 K) of the racemic title compound, [PtCl2(C44H32P2)]·3CH3CN, has been determined. The asymmetric unit comprises a single mol­ecule of the title compound co-crystallized with three aceto­nitrile solvent mol­ecules. Four mol­ecules are observed in the unit cell, with R and S enanti­omers present in a 2:2 ratio. Evidence of intra­molecular π-stacking is observed with no discernable inter­molecular inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The increasing demand for chiral compounds in the pharmaceutical, agrochemical and food industries has driven the development of chiral ligands and coordination complexes, which can perform asymmetric catalysis to yield desirable organic mol­ecules with high enanti­oselectivities (Noyori, 1994[Noyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: Wiley.]). Popular design motifs for chiral ligands are those that incorporate an atropisomeric backbone featuring C2 symmetry (Genet et al., 2014[Genet, J.-P., Ayad, T. & Ratovelomanana-Vidal, V. (2014). Chem. Rev. 114, 2824-2880.]). 2,2′-Bis(di­phenyl­phosphino)-1,1′-binaphthyl (BINAP, Fig. 1[link]), first developed by Noyori and Takaya in 1980 (Miyashita et al., 1980[Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932-7934.]), fits this brief. In the decades since its appearance in the literature, BINAP derivatives have been used to construct a wide variety of coordination complexes, typically involving late transition metals (Misra et al., 2017[Misra, A., Dwivedi, J. & Kishore, D. (2017). Synth. Commun. 47, 497-535.]). Palladium complexes of BINAP have been historically amongst the most common (Pereira et al., 2013[Pereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990-7027.]). They are exceptionally popular due to their successful and versatile application as catalysts in a variety of organic reactions such as the enanti­oselective benzoyl­ation of alcohols (Iwata et al., 2002[Iwata, T., Miyake, Y., Nishibayashi, Y. & Uemura, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1548-1554.]) and asymmetric alkyl­ations (Guerrero-Ríos & Martin, 2014[Guerrero-Ríos, I. & Martin, E. (2014). Dalton Trans. 43, 7533-7539.]). Although less common than complexes of the second-row metal Pd, atropisomers of (BINAP)PtCl2 (Fig. 2[link]) have found use in catalytic reactions such as enanti­oselective Baeyer–Villiger oxidations of cyclic ketones with hydrogen peroxide (Strukul et al., 1997[Strukul, G., Varagnolo, A. & Pinna, F. (1997). J. Mol. Catal. A Chem. 117, 413-423.]) and as precatalysts for asymmetric carbonyl-ene reactions (Doherty et al., 2006[Doherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. 71, 9751-9764.]). Enanti­omeric complexes of the formula L2PtCl2 including (BINAP)PtCl2 have also been examined for their cytotoxic activity against cancer cell lines and their ability to bind to the human telomeric sequence folded in the G-quadruplex structure (Bombard et al., 2010[Bombard, S., Gariboldi, M. B., Monti, E., Gabano, E., Gaviglio, L., Ravera, M. & Osella, D. (2010). J. Biol. Inorg. Chem. 15, 841-850.]). There is therefore significant inter­est in elucidating the solid-state structures of these types of compounds to help guide future design strategies appropriate for particular applications.

[Figure 1]
Figure 1
BINAP atropisomers.
[Figure 2]
Figure 2
Atropisomers of (BINAP)PtCl2.

While the structure of {(R)-BINAP}PtCl2 has been described as a di­chloro­methane solvate in the ortho­rhom­bic space group P212121 (Doherty et al., 2006[Doherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. 71, 9751-9764.]), the corresponding racemate (racBINAP)PtCl2 has yet to be structurally characterized. We report here the solid-state crystal structure of (racBINAP)PtCl2 determined via single-crystal X-ray diffraction and discuss its structural properties. The solid-state structure of [racBINAP]PtCl2 obtained by modelling single-crystal X-ray diffraction data is shown in Fig. 3[link] with selected bonds and angles in Table 1[link]. The compound crystallizes in the monoclinic space group P21/c with three aceto­nitrile solvent mol­ecules present within the asymmetric unit. The complex adopts a slightly distorted square-planar coordination geometry about the central PtII atom with trans atoms situated at bond angles of 171°, resulting in a τ4 value of 0.12. The bidentate BINAP ligand coordinates to Pt with a bite angle (P1—Pt1—P2) of 92.87 (3)°, consistent with typical literature values of approximately 93° (Birkholz et al., 2009[Birkholz (née Gensow), M., Freixa, Z. & van Leeuwen, P. W. N. M. (2009). Chem. Soc. Rev. 38, 1099-1118.]). Evidence of intra­molecular π stacking between naphthyl and phenyl substituents is observed, generating close contacts ranging from 3.2 to 4.0 Å. Fig. 4[link] shows the distances between calculated centroids of two of the phospho­rus phenyl substituents and the nearest six membered carbon ring of a napthyl unit.

Table 1
Selected geometric parameters (Å, °)

Pt1—Cl1 2.3518 (8) P1—Pt1 2.2447 (8)
Pt1—Cl2 2.3536 (8) P2—Pt1 2.2422 (8)
       
Cl1—Pt1—Cl2 87.44 (3) P2—Pt1—Cl1 170.91 (3)
P1—Pt1—Cl1 90.31 (3) P2—Pt1—Cl2 90.62 (3)
P1—Pt1—Cl2 171.33 (3) P2—Pt1—P1 92.87 (3)
[Figure 3]
Figure 3
Solid-state structure of (BINAP)PtCl2 showing (a) fully atom labels of the R enanti­omer and (b) side-on views of both R and S atropisomers present the crystal structure. Displacement ellipsoids are shown at the 50% probability. Hydrogen atoms and co-crystallized aceto­nitrile solvent mol­ecules are omitted for clarity.
[Figure 4]
Figure 4
View showing the close intramolecular contacts between the naphthyl and phenyl rings in the title compound.

Compared to the Pd analogue (Véron et al., 2013[Véron, A. C., Felber, M., Blacque, O. & Spingler, B. (2013). Polyhedron, 52, 102-105.]), the Pt—Cl bond lengths [Pt1—Cl1 = 2.3518 (8) Å; Pt1—Cl2 = 2.3536 (8) Å]) are only around 0.01 Å longer. The two Pt—Cl distances are also statistically indistinguishable, implying similar orbital overlap between the PtII metal centre and the strong trans phosphine donors. An only slightly acute Cl1—Pt1—Cl2 angle of 87.44 (3)° is observed, indicating slight steric repulsion from the di­phenyl­phosphine arms. Angles closer to the ideal of 90° are seen between cis-disposed phospho­rus and chlorine atoms. The bond lengths involving the Pt metal centre are similar to those in the enanti­opure (R-BINAP)PtCl2 (Doherty et al., 2006[Doherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. 71, 9751-9764.]); however, deviations are observed in several of the angles.

In a single unit cell, four mol­ecules can be found (Fig. 5[link]), with two of each enanti­omer present. Inter­estingly, no significant inter­molecular inter­actions are present within the sum of the van der Waals radii. The closest inter­molecular inter­action stems from hydrogen bonds between neighbouring aceto­nitrile solvent mol­ecules. These inter­actions are all greater than 3.40 Å and so were not investigated any further. Distances of 3.30 to 3.70 Å can be observed between naphthyl carbon atoms of neighbouring complexes; however, the arrangement is not stacked and so not likely to be significant.

[Figure 5]
Figure 5
A projection showing the unit-cell contents and packing of (racBINAP)PtCl2. Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms are omitted for clarity.

Synthesis and crystallization

Crystals of (racBINAP)PtCl2 were obtained as a side-product from a reaction mixture of (COD)PtCl2 and a tridentate, di­aryl­amido-N,N-phenanthridine-based ligand (Mandapati et al., 2019[Mandapati, P., Braun, J. D., Killeen, C., Davis, R. L., Williams, J. A. G. & Herbert, D. E. (2019). Inorg. Chem. 58, 14808-14817.]). BINAP was used to construct this ligand via a Pd-cross coupling reaction and was not completely removed from the proligand before metalation. Crystal-structure data were collected from a multi-faceted crystal of suitable size and quality selected from a representative sample of crystals of the same habit using an optical microscope.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [PtCl2(C44H32P2)]·3C2H3N
Mr 1011.79
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 11.3681 (4), 12.5001 (4), 30.7944 (11)
β (°) 96.439 (2)
V3) 4348.4 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.46
Crystal size (mm) 0.39 × 0.19 × 0.13
 
Data collection
Diffractometer Bruker D8 Quest ECO CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.])
Tmin, Tmax 0.553, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 142092, 13302, 11205
Rint 0.079
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.09
No. of reflections 13302
No. of parameters 526
No. of restraints 18
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.49
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: APEX3 and SAINT (Bruker, 2016); cell refinement: APEX3 (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2020).

[2,2'-Bis(diphenylphosphanyl)-1,1'-binaphthyl-κ2P,P']dichloridoplatinum(II) acetonitrile trisolvate top
Crystal data top
[PtCl2(C44H32P2)]·3C2H3NF(000) = 2016
Mr = 1011.79Dx = 1.546 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3681 (4) ÅCell parameters from 9175 reflections
b = 12.5001 (4) Åθ = 2.4–30.5°
c = 30.7944 (11) ŵ = 3.46 mm1
β = 96.439 (2)°T = 150 K
V = 4348.4 (3) Å3Block, orange
Z = 40.39 × 0.19 × 0.13 mm
Data collection top
Bruker D8 Quest ECO CMOS
diffractometer
11205 reflections with I > 2σ(I)
Radiation source: fine–focus tubeRint = 0.079
φ and ω scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1616
Tmin = 0.553, Tmax = 0.746k = 1717
142092 measured reflectionsl = 4444
13302 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0143P)2 + 16.231P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.003
13302 reflectionsΔρmax = 1.25 e Å3
526 parametersΔρmin = 1.49 e Å3
18 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A single-crystal was mounted on a MiTiGen loop and data collection was carried out in a cold stream of nitrogen. All diffractometer manipulations were carried out using Bruker APEX3 software (Bruker-AXS, 2016). Structure solution and refinement were carried out in the OLEX2 (Dolomanov et al., 2009) program using SHELXT (Sheldrick, 2015a) and SHELXL (Sheldrick, 2015b) softwares. All hydrogen atoms within the structure were placed in geometrically idealized positions and were constrained to ride on their parent atoms (C–H = 0.95 Å). The absence of additional symmetry was confirmed using ADDSYM incorporated in the PLATON program (Spek, 2020). The presence of inter- or intramolecular hydrogen bonds was probed, but not observed below a limit of 3.40 Å with a D–H···A angle of less than 120°.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2521 (3)0.1586 (3)0.40291 (10)0.0175 (6)
C20.2621 (3)0.0859 (3)0.43763 (11)0.0218 (7)
H20.3026140.0201460.4351510.026*
C30.2128 (3)0.1098 (4)0.47570 (12)0.0309 (9)
H30.2201480.0606520.4993780.037*
C40.1533 (3)0.2046 (4)0.47912 (13)0.0367 (10)
H40.1198920.2206260.5052850.044*
C50.1415 (3)0.2765 (4)0.44510 (14)0.0350 (9)
H50.1000820.3416840.4479390.042*
C60.1902 (3)0.2542 (3)0.40638 (12)0.0237 (7)
H60.1814220.3034830.3827420.028*
C70.2479 (3)0.0151 (3)0.32864 (10)0.0159 (6)
C80.1587 (3)0.0380 (3)0.34728 (12)0.0231 (7)
H80.1359360.0148400.3744950.028*
C90.1026 (4)0.1259 (3)0.32576 (13)0.0305 (8)
H90.0410220.1618470.3383450.037*
C100.1359 (3)0.1609 (3)0.28637 (13)0.0272 (8)
H100.0983550.2213970.2722080.033*
C110.2243 (3)0.1073 (3)0.26758 (11)0.0228 (7)
H110.2476820.1312090.2405500.027*
C120.2784 (3)0.0190 (3)0.28826 (10)0.0182 (6)
H120.3370440.0188420.2747840.022*
C130.4718 (3)0.0833 (2)0.37430 (9)0.0123 (5)
C140.5161 (3)0.0090 (2)0.35467 (10)0.0139 (6)
H140.4649810.0488980.3341860.017*
C150.6304 (3)0.0415 (2)0.36460 (10)0.0161 (6)
H150.6579150.1027530.3505070.019*
C160.7085 (3)0.0145 (2)0.39555 (10)0.0147 (6)
C170.8273 (3)0.0188 (3)0.40605 (11)0.0215 (7)
H170.8552460.0804960.3923530.026*
C180.9025 (3)0.0369 (3)0.43572 (12)0.0247 (7)
H180.9819740.0138620.4427460.030*
C190.8609 (3)0.1288 (3)0.45579 (11)0.0232 (7)
H190.9132460.1678010.4761780.028*
C200.7463 (3)0.1628 (3)0.44639 (10)0.0176 (6)
H200.7202210.2248110.4603280.021*
C210.6662 (3)0.1061 (2)0.41602 (10)0.0140 (6)
C220.5464 (3)0.1407 (2)0.40469 (9)0.0123 (5)
C230.5052 (3)0.2397 (2)0.42572 (9)0.0131 (5)
C240.4825 (3)0.3333 (2)0.40198 (9)0.0128 (5)
C250.4400 (3)0.4247 (2)0.42271 (10)0.0158 (6)
H250.4262770.4890990.4065470.019*
C260.4186 (3)0.4219 (3)0.46534 (10)0.0171 (6)
H260.3874040.4834290.4780660.020*
C270.4419 (3)0.3292 (2)0.49086 (10)0.0148 (6)
C280.4214 (3)0.3262 (3)0.53539 (10)0.0195 (6)
H280.3913110.3879230.5483800.023*
C290.4443 (3)0.2361 (3)0.55992 (10)0.0219 (6)
H290.4296160.2348110.5896780.026*
C300.4899 (3)0.1448 (3)0.54072 (10)0.0199 (6)
H300.5059930.0821190.5577820.024*
C310.5114 (3)0.1453 (2)0.49788 (10)0.0162 (6)
H310.5426570.0830090.4857260.019*
C320.4877 (3)0.2373 (2)0.47126 (9)0.0128 (5)
C330.4989 (3)0.4806 (3)0.33082 (10)0.0168 (6)
C340.3962 (3)0.5418 (3)0.33043 (11)0.0203 (7)
H340.3251240.5090010.3372720.024*
C350.3965 (4)0.6497 (3)0.32019 (11)0.0252 (7)
H350.3265740.6910910.3207630.030*
C360.4990 (4)0.6970 (3)0.30914 (12)0.0307 (9)
H360.4990500.7707070.3015820.037*
C370.6009 (4)0.6378 (3)0.30905 (13)0.0302 (8)
H370.6712990.6708360.3016920.036*
C380.6014 (3)0.5294 (3)0.31972 (12)0.0236 (7)
H380.6718700.4886840.3194050.028*
C390.6310 (3)0.2806 (2)0.33394 (10)0.0154 (6)
C400.6356 (3)0.2005 (3)0.30250 (10)0.0174 (6)
H400.5650410.1777710.2855600.021*
C410.7432 (3)0.1544 (3)0.29603 (12)0.0245 (7)
H410.7459610.0996780.2747470.029*
C420.8462 (3)0.1873 (3)0.32027 (13)0.0265 (8)
H420.9194630.1549590.3157770.032*
C430.8429 (3)0.2678 (3)0.35128 (12)0.0257 (7)
H430.9141780.2916340.3674400.031*
C440.7358 (3)0.3132 (3)0.35860 (11)0.0207 (7)
H440.7333910.3665730.3804230.025*
C450.0714 (4)0.5037 (4)0.32714 (18)0.0429 (11)
C460.0589 (4)0.5036 (4)0.28013 (17)0.0473 (12)
H46A0.1223950.5463440.2697880.071*
H46B0.0179630.5342980.2690590.071*
H46C0.0637170.4299400.2695330.071*
C470.8616 (4)0.2521 (4)0.56830 (15)0.0408 (10)
C480.7545 (5)0.3114 (6)0.5712 (2)0.0727 (19)
H48A0.7742480.3850730.5801910.109*
H48B0.7093460.2777250.5928390.109*
H48C0.7068890.3118670.5426590.109*
Cl10.14268 (7)0.21270 (7)0.27128 (3)0.02745 (19)
Cl20.34019 (8)0.38528 (6)0.24790 (2)0.02091 (16)
N10.0830 (6)0.5016 (5)0.3642 (2)0.0805 (17)
N20.9465 (5)0.2073 (4)0.56653 (16)0.0643 (14)
P10.32310 (7)0.13146 (6)0.35451 (2)0.01190 (14)
P20.49025 (7)0.33817 (6)0.34282 (2)0.01222 (14)
Pt10.32836 (2)0.26525 (2)0.30614 (2)0.01414 (3)
C510.8660 (10)0.5704 (9)0.4281 (4)0.144 (3)
H51A0.8941160.6361530.4431500.216*
H51B0.7906400.5844870.4102300.216*
H51C0.9245920.5460710.4092180.216*
C520.8493 (11)0.4896 (11)0.4595 (5)0.142 (3)
N30.8066 (10)0.4370 (8)0.4778 (4)0.144 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0155 (14)0.0225 (16)0.0150 (14)0.0041 (12)0.0049 (11)0.0059 (12)
C20.0181 (16)0.0295 (18)0.0180 (15)0.0067 (13)0.0028 (12)0.0005 (13)
C30.0261 (19)0.053 (3)0.0149 (16)0.0179 (17)0.0061 (14)0.0020 (15)
C40.0241 (18)0.066 (3)0.0225 (18)0.0163 (19)0.0125 (15)0.0214 (18)
C50.0227 (18)0.045 (2)0.039 (2)0.0012 (17)0.0096 (16)0.0223 (19)
C60.0174 (15)0.0272 (19)0.0268 (17)0.0012 (13)0.0036 (12)0.0075 (14)
C70.0163 (14)0.0158 (15)0.0148 (14)0.0016 (11)0.0016 (11)0.0010 (11)
C80.0231 (17)0.0245 (18)0.0220 (16)0.0072 (13)0.0038 (13)0.0031 (13)
C90.031 (2)0.028 (2)0.032 (2)0.0154 (16)0.0050 (16)0.0027 (15)
C100.0298 (19)0.0165 (16)0.034 (2)0.0084 (14)0.0038 (15)0.0042 (14)
C110.0272 (18)0.0200 (16)0.0202 (16)0.0010 (13)0.0010 (13)0.0050 (13)
C120.0213 (16)0.0164 (15)0.0169 (15)0.0004 (12)0.0023 (12)0.0017 (11)
C130.0143 (13)0.0108 (13)0.0122 (13)0.0014 (10)0.0030 (10)0.0018 (10)
C140.0184 (15)0.0116 (13)0.0116 (13)0.0014 (11)0.0017 (11)0.0012 (10)
C150.0203 (15)0.0139 (14)0.0147 (14)0.0022 (11)0.0042 (11)0.0017 (11)
C160.0140 (14)0.0157 (14)0.0152 (14)0.0018 (11)0.0045 (11)0.0007 (11)
C170.0186 (16)0.0241 (17)0.0222 (16)0.0047 (13)0.0035 (13)0.0016 (13)
C180.0121 (15)0.035 (2)0.0271 (18)0.0024 (13)0.0014 (13)0.0002 (15)
C190.0176 (16)0.0303 (19)0.0211 (16)0.0035 (13)0.0002 (13)0.0020 (13)
C200.0150 (14)0.0200 (15)0.0182 (15)0.0007 (12)0.0032 (11)0.0015 (12)
C210.0138 (14)0.0150 (14)0.0134 (13)0.0017 (11)0.0031 (11)0.0010 (11)
C220.0153 (14)0.0098 (13)0.0124 (13)0.0026 (10)0.0038 (10)0.0004 (10)
C230.0143 (13)0.0111 (13)0.0141 (13)0.0011 (11)0.0020 (10)0.0004 (10)
C240.0126 (13)0.0125 (13)0.0129 (13)0.0020 (10)0.0005 (10)0.0012 (10)
C250.0176 (15)0.0136 (14)0.0159 (14)0.0016 (11)0.0008 (11)0.0012 (11)
C260.0212 (16)0.0140 (14)0.0162 (14)0.0022 (12)0.0031 (12)0.0026 (11)
C270.0158 (14)0.0146 (14)0.0143 (14)0.0012 (11)0.0034 (11)0.0025 (11)
C280.0240 (17)0.0196 (16)0.0161 (15)0.0012 (13)0.0068 (12)0.0045 (12)
C290.0301 (17)0.0230 (16)0.0136 (13)0.0032 (14)0.0061 (12)0.0017 (12)
C300.0286 (18)0.0169 (15)0.0144 (14)0.0003 (13)0.0032 (13)0.0026 (11)
C310.0195 (15)0.0138 (14)0.0154 (14)0.0007 (11)0.0020 (11)0.0002 (11)
C320.0135 (12)0.0119 (13)0.0129 (12)0.0012 (11)0.0010 (10)0.0007 (10)
C330.0250 (16)0.0147 (14)0.0105 (13)0.0017 (12)0.0009 (12)0.0013 (10)
C340.0293 (18)0.0139 (15)0.0175 (15)0.0008 (13)0.0015 (13)0.0026 (11)
C350.040 (2)0.0167 (16)0.0188 (16)0.0063 (14)0.0027 (14)0.0001 (12)
C360.059 (3)0.0129 (15)0.0209 (17)0.0026 (16)0.0075 (17)0.0009 (13)
C370.043 (2)0.0193 (17)0.0300 (19)0.0100 (16)0.0134 (17)0.0004 (14)
C380.0307 (19)0.0180 (16)0.0238 (17)0.0045 (14)0.0108 (14)0.0023 (13)
C390.0167 (14)0.0157 (15)0.0142 (13)0.0010 (11)0.0037 (11)0.0025 (11)
C400.0206 (15)0.0154 (14)0.0172 (14)0.0013 (12)0.0058 (12)0.0018 (11)
C410.0281 (18)0.0193 (17)0.0284 (18)0.0025 (14)0.0134 (15)0.0000 (13)
C420.0178 (16)0.0291 (19)0.0342 (19)0.0051 (14)0.0097 (14)0.0091 (15)
C430.0167 (15)0.0324 (18)0.0283 (17)0.0045 (14)0.0034 (13)0.0076 (15)
C440.0190 (16)0.0237 (17)0.0195 (15)0.0051 (13)0.0025 (12)0.0009 (13)
C450.030 (2)0.043 (3)0.056 (3)0.0023 (19)0.006 (2)0.003 (2)
C460.036 (2)0.048 (3)0.054 (3)0.010 (2)0.007 (2)0.002 (2)
C470.046 (3)0.043 (3)0.034 (2)0.003 (2)0.0074 (18)0.0024 (19)
C480.037 (3)0.092 (5)0.088 (5)0.011 (3)0.001 (3)0.031 (4)
Cl10.0199 (4)0.0220 (4)0.0371 (5)0.0016 (3)0.0112 (3)0.0027 (3)
Cl20.0344 (4)0.0152 (3)0.0128 (3)0.0019 (3)0.0008 (3)0.0034 (3)
N10.091 (5)0.086 (4)0.066 (4)0.013 (3)0.019 (3)0.001 (3)
N20.071 (3)0.069 (3)0.054 (3)0.029 (3)0.013 (2)0.001 (2)
P10.0128 (3)0.0113 (3)0.0118 (3)0.0015 (3)0.0020 (3)0.0003 (3)
P20.0151 (4)0.0104 (3)0.0114 (3)0.0009 (3)0.0024 (3)0.0009 (3)
Pt10.01585 (5)0.01254 (5)0.01380 (5)0.00102 (5)0.00066 (4)0.00026 (4)
C510.144 (6)0.130 (7)0.170 (8)0.018 (5)0.072 (4)0.085 (6)
C520.142 (6)0.128 (7)0.168 (8)0.018 (5)0.071 (5)0.086 (6)
N30.145 (6)0.130 (7)0.170 (8)0.016 (5)0.068 (4)0.085 (6)
Geometric parameters (Å, º) top
C1—C21.398 (5)C27—C321.423 (4)
C1—C61.397 (5)C28—H280.9500
C1—P11.805 (3)C28—C291.366 (5)
C2—H20.9500C29—H290.9500
C2—C31.387 (5)C29—C301.410 (5)
C3—H30.9500C30—H300.9500
C3—C41.374 (6)C30—C311.368 (4)
C4—H40.9500C31—H310.9500
C4—C51.376 (7)C31—C321.421 (4)
C5—H50.9500C33—C341.395 (5)
C5—C61.398 (5)C33—C381.391 (5)
C6—H60.9500C33—P21.824 (3)
C7—C81.389 (5)C34—H340.9500
C7—C121.395 (4)C34—C351.386 (5)
C7—P11.825 (3)C35—H350.9500
C8—H80.9500C35—C361.383 (6)
C8—C91.399 (5)C36—H360.9500
C9—H90.9500C36—C371.375 (6)
C9—C101.381 (5)C37—H370.9500
C10—H100.9500C37—C381.394 (5)
C10—C111.387 (5)C38—H380.9500
C11—H110.9500C39—C401.397 (4)
C11—C121.383 (5)C39—C441.399 (4)
C12—H120.9500C39—P21.803 (3)
C13—C141.421 (4)C40—H400.9500
C13—C221.390 (4)C40—C411.387 (5)
C13—P11.833 (3)C41—H410.9500
C14—H140.9500C41—C421.379 (5)
C14—C151.363 (4)C42—H420.9500
C15—H150.9500C42—C431.390 (6)
C15—C161.413 (4)C43—H430.9500
C16—C171.416 (4)C43—C441.385 (5)
C16—C211.418 (4)C44—H440.9500
C17—H170.9500C45—C461.438 (7)
C17—C181.369 (5)C45—N11.134 (7)
C18—H180.9500C46—H46A0.9800
C18—C191.411 (5)C46—H46B0.9800
C19—H190.9500C46—H46C0.9800
C19—C201.369 (5)C47—C481.437 (7)
C20—H200.9500C47—N21.123 (6)
C20—C211.419 (4)C48—H48A0.9800
C21—C221.434 (4)C48—H48B0.9800
C22—C231.497 (4)C48—H48C0.9800
C23—C241.389 (4)Pt1—Cl12.3518 (8)
C23—C321.439 (4)Pt1—Cl22.3536 (8)
C24—C251.420 (4)P1—Pt12.2447 (8)
C24—P21.835 (3)P2—Pt12.2422 (8)
C25—H250.9500C51—H51A0.9800
C25—C261.362 (4)C51—H51B0.9800
C26—H260.9500C51—H51C0.9800
C26—C271.408 (4)C51—C521.426 (17)
C27—C281.417 (4)C52—N31.023 (15)
C2—C1—P1120.3 (3)C30—C29—H29120.3
C6—C1—C2119.7 (3)C29—C30—H30119.5
C6—C1—P1120.0 (3)C31—C30—C29121.0 (3)
C1—C2—H2120.0C31—C30—H30119.5
C3—C2—C1120.1 (4)C30—C31—H31119.4
C3—C2—H2120.0C30—C31—C32121.1 (3)
C2—C3—H3120.0C32—C31—H31119.4
C4—C3—C2119.9 (4)C27—C32—C23119.6 (3)
C4—C3—H3120.0C31—C32—C23122.8 (3)
C3—C4—H4119.6C31—C32—C27117.6 (3)
C3—C4—C5120.8 (3)C34—C33—P2118.2 (2)
C5—C4—H4119.6C38—C33—C34118.8 (3)
C4—C5—H5119.8C38—C33—P2122.9 (3)
C4—C5—C6120.4 (4)C33—C34—H34119.6
C6—C5—H5119.8C35—C34—C33120.8 (3)
C1—C6—C5119.1 (4)C35—C34—H34119.6
C1—C6—H6120.4C34—C35—H35120.1
C5—C6—H6120.4C36—C35—C34119.7 (4)
C8—C7—C12119.2 (3)C36—C35—H35120.1
C8—C7—P1121.9 (3)C35—C36—H36119.9
C12—C7—P1118.8 (2)C37—C36—C35120.2 (3)
C7—C8—H8120.2C37—C36—H36119.9
C7—C8—C9119.7 (3)C36—C37—H37119.9
C9—C8—H8120.2C36—C37—C38120.2 (4)
C8—C9—H9119.7C38—C37—H37119.9
C10—C9—C8120.6 (3)C33—C38—C37120.2 (4)
C10—C9—H9119.7C33—C38—H38119.9
C9—C10—H10120.1C37—C38—H38119.9
C9—C10—C11119.7 (3)C40—C39—C44119.3 (3)
C11—C10—H10120.1C40—C39—P2119.6 (2)
C10—C11—H11120.0C44—C39—P2121.1 (2)
C12—C11—C10119.9 (3)C39—C40—H40120.0
C12—C11—H11120.0C41—C40—C39120.0 (3)
C7—C12—H12119.6C41—C40—H40120.0
C11—C12—C7120.8 (3)C40—C41—H41119.8
C11—C12—H12119.6C42—C41—C40120.5 (3)
C14—C13—P1118.9 (2)C42—C41—H41119.8
C22—C13—C14119.1 (3)C41—C42—H42120.0
C22—C13—P1121.7 (2)C41—C42—C43120.1 (3)
C13—C14—H14119.3C43—C42—H42120.0
C15—C14—C13121.4 (3)C42—C43—H43120.0
C15—C14—H14119.3C44—C43—C42120.0 (3)
C14—C15—H15119.5C44—C43—H43120.0
C14—C15—C16121.0 (3)C39—C44—H44119.9
C16—C15—H15119.5C43—C44—C39120.2 (3)
C15—C16—C17121.3 (3)C43—C44—H44119.9
C15—C16—C21118.8 (3)N1—C45—C46178.3 (6)
C17—C16—C21119.9 (3)C45—C46—H46A109.5
C16—C17—H17119.6C45—C46—H46B109.5
C18—C17—C16120.7 (3)C45—C46—H46C109.5
C18—C17—H17119.6H46A—C46—H46B109.5
C17—C18—H18120.3H46A—C46—H46C109.5
C17—C18—C19119.5 (3)H46B—C46—H46C109.5
C19—C18—H18120.3N2—C47—C48178.6 (6)
C18—C19—H19119.4C47—C48—H48A109.5
C20—C19—C18121.2 (3)C47—C48—H48B109.5
C20—C19—H19119.4C47—C48—H48C109.5
C19—C20—H20119.7H48A—C48—H48B109.5
C19—C20—C21120.6 (3)H48A—C48—H48C109.5
C21—C20—H20119.7H48B—C48—H48C109.5
C16—C21—C20118.2 (3)C1—P1—C7106.21 (15)
C16—C21—C22119.7 (3)C1—P1—C13105.57 (14)
C20—C21—C22122.1 (3)C1—P1—Pt1117.11 (12)
C13—C22—C21120.0 (3)C7—P1—C13104.64 (14)
C13—C22—C23121.4 (3)C7—P1—Pt1110.51 (10)
C21—C22—C23118.6 (3)C13—P1—Pt1111.90 (10)
C24—C23—C22121.2 (3)C24—P2—Pt1111.01 (10)
C24—C23—C32119.5 (3)C33—P2—C24104.08 (14)
C32—C23—C22119.3 (3)C33—P2—Pt1110.78 (11)
C23—C24—C25119.6 (3)C39—P2—C24106.24 (14)
C23—C24—P2121.6 (2)C39—P2—C33106.87 (15)
C25—C24—P2118.5 (2)C39—P2—Pt1116.96 (11)
C24—C25—H25119.4Cl1—Pt1—Cl287.44 (3)
C26—C25—C24121.3 (3)P1—Pt1—Cl190.31 (3)
C26—C25—H25119.4P1—Pt1—Cl2171.33 (3)
C25—C26—H26119.5P2—Pt1—Cl1170.91 (3)
C25—C26—C27121.1 (3)P2—Pt1—Cl290.62 (3)
C27—C26—H26119.5P2—Pt1—P192.87 (3)
C26—C27—C28121.4 (3)H51A—C51—H51B109.5
C26—C27—C32118.8 (3)H51A—C51—H51C109.5
C28—C27—C32119.8 (3)H51B—C51—H51C109.5
C27—C28—H28119.5C52—C51—H51A109.5
C29—C28—C27121.0 (3)C52—C51—H51B109.5
C29—C28—H28119.5C52—C51—H51C109.5
C28—C29—H29120.3N3—C52—C51159.4 (19)
C28—C29—C30119.5 (3)
C1—C2—C3—C40.5 (5)C23—C24—P2—C33163.2 (3)
C2—C1—C6—C51.4 (5)C23—C24—P2—C3950.6 (3)
C2—C1—P1—C766.5 (3)C23—C24—P2—Pt177.5 (3)
C2—C1—P1—C1344.3 (3)C24—C23—C32—C273.0 (4)
C2—C1—P1—Pt1169.6 (2)C24—C23—C32—C31178.7 (3)
C2—C3—C4—C50.2 (6)C24—C25—C26—C272.3 (5)
C3—C4—C5—C60.1 (6)C25—C24—P2—C3323.5 (3)
C4—C5—C6—C10.7 (5)C25—C24—P2—C39136.1 (2)
C6—C1—C2—C31.3 (5)C25—C24—P2—Pt195.7 (2)
C6—C1—P1—C7115.7 (3)C25—C26—C27—C28179.1 (3)
C6—C1—P1—C13133.5 (3)C25—C26—C27—C320.5 (5)
C6—C1—P1—Pt18.2 (3)C26—C27—C28—C29180.0 (3)
C7—C8—C9—C100.6 (6)C26—C27—C32—C232.2 (4)
C8—C7—C12—C112.6 (5)C26—C27—C32—C31179.4 (3)
C8—C7—P1—C12.9 (3)C27—C28—C29—C300.5 (5)
C8—C7—P1—C13108.5 (3)C28—C27—C32—C23178.3 (3)
C8—C7—P1—Pt1130.9 (3)C28—C27—C32—C310.1 (4)
C8—C9—C10—C111.1 (6)C28—C29—C30—C310.1 (5)
C9—C10—C11—C120.2 (6)C29—C30—C31—C320.4 (5)
C10—C11—C12—C72.1 (5)C30—C31—C32—C23177.8 (3)
C12—C7—C8—C91.2 (5)C30—C31—C32—C270.5 (5)
C12—C7—P1—C1174.9 (3)C32—C23—C24—C251.3 (4)
C12—C7—P1—C1373.7 (3)C32—C23—C24—P2174.5 (2)
C12—C7—P1—Pt146.9 (3)C32—C27—C28—C290.4 (5)
C13—C14—C15—C161.3 (5)C33—C34—C35—C361.6 (5)
C13—C22—C23—C2469.7 (4)C34—C33—C38—C370.9 (5)
C13—C22—C23—C32109.7 (3)C34—C33—P2—C2475.0 (3)
C14—C13—C22—C210.3 (4)C34—C33—P2—C39172.9 (2)
C14—C13—C22—C23178.8 (3)C34—C33—P2—Pt144.4 (3)
C14—C13—P1—C1134.1 (2)C34—C35—C36—C371.2 (6)
C14—C13—P1—C722.2 (3)C35—C36—C37—C380.6 (6)
C14—C13—P1—Pt197.5 (2)C36—C37—C38—C330.4 (6)
C14—C15—C16—C17180.0 (3)C38—C33—C34—C351.5 (5)
C14—C15—C16—C210.5 (5)C38—C33—P2—C24108.7 (3)
C15—C16—C17—C18179.2 (3)C38—C33—P2—C393.5 (3)
C15—C16—C21—C20178.8 (3)C38—C33—P2—Pt1131.9 (3)
C15—C16—C21—C220.7 (4)C39—C40—C41—C420.4 (5)
C16—C17—C18—C190.4 (5)C40—C39—C44—C431.2 (5)
C16—C21—C22—C131.0 (4)C40—C39—P2—C24129.9 (3)
C16—C21—C22—C23178.1 (3)C40—C39—P2—C33119.4 (3)
C17—C16—C21—C200.7 (4)C40—C39—P2—Pt15.4 (3)
C17—C16—C21—C22178.9 (3)C40—C41—C42—C430.4 (5)
C17—C18—C19—C200.6 (6)C41—C42—C43—C441.6 (5)
C18—C19—C20—C210.1 (5)C42—C43—C44—C391.9 (5)
C19—C20—C21—C160.6 (5)C44—C39—C40—C410.0 (5)
C19—C20—C21—C22178.6 (3)C44—C39—P2—C2448.8 (3)
C20—C21—C22—C13179.1 (3)C44—C39—P2—C3361.9 (3)
C20—C21—C22—C230.0 (4)C44—C39—P2—Pt1173.4 (2)
C21—C16—C17—C180.3 (5)P1—C1—C2—C3176.5 (3)
C21—C22—C23—C24109.4 (3)P1—C1—C6—C5176.4 (3)
C21—C22—C23—C3271.3 (4)P1—C7—C8—C9179.0 (3)
C22—C13—C14—C150.9 (4)P1—C7—C12—C11179.6 (3)
C22—C13—P1—C152.6 (3)P1—C13—C14—C15172.6 (2)
C22—C13—P1—C7164.4 (2)P1—C13—C22—C21173.6 (2)
C22—C13—P1—Pt175.9 (2)P1—C13—C22—C235.5 (4)
C22—C23—C24—C25178.1 (3)P2—C24—C25—C26172.0 (3)
C22—C23—C24—P24.9 (4)P2—C33—C34—C35178.0 (3)
C22—C23—C32—C27176.3 (3)P2—C33—C38—C37177.2 (3)
C22—C23—C32—C312.0 (4)P2—C39—C40—C41178.8 (2)
C23—C24—C25—C261.4 (5)P2—C39—C44—C43179.9 (3)
 

Funding information

The following sources of funding are gratefully acknowledged: the Natural Sciences Engineering Research Council of Canada for a Discovery Grant to DEH (RGPIN-2014–03733) and a USRA to GU; the Canadian Foundation for Innovation and Research Manitoba for an award in support of an X-ray diffractometer (CFI No. 32146); the University of Manitoba for a UMGF PhD Fellowship (JDB).

References

First citationBirkholz (née Gensow), M., Freixa, Z. & van Leeuwen, P. W. N. M. (2009). Chem. Soc. Rev. 38, 1099–1118.  Google Scholar
First citationBombard, S., Gariboldi, M. B., Monti, E., Gabano, E., Gaviglio, L., Ravera, M. & Osella, D. (2010). J. Biol. Inorg. Chem. 15, 841–850.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Madison, Wisconsin, USA.  Google Scholar
First citationDoherty, S., Knight, J. G., Smyth, C. H., Harrington, R. W. & Clegg, W. (2006). J. Org. Chem. 71, 9751–9764.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGenet, J.-P., Ayad, T. & Ratovelomanana-Vidal, V. (2014). Chem. Rev. 114, 2824–2880.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGuerrero-Ríos, I. & Martin, E. (2014). Dalton Trans. 43, 7533–7539.  Web of Science PubMed Google Scholar
First citationIwata, T., Miyake, Y., Nishibayashi, Y. & Uemura, S. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 1548–1554.  Web of Science CrossRef Google Scholar
First citationMandapati, P., Braun, J. D., Killeen, C., Davis, R. L., Williams, J. A. G. & Herbert, D. E. (2019). Inorg. Chem. 58, 14808–14817.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMisra, A., Dwivedi, J. & Kishore, D. (2017). Synth. Commun. 47, 497–535.  Web of Science CrossRef CAS Google Scholar
First citationMiyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934.  CSD CrossRef CAS Web of Science Google Scholar
First citationNoyori, R. (1994). Asymmetric Catalysis in Organic Synthesis. New York: Wiley.  Google Scholar
First citationPereira, M. M., Calvete, M. J. F., Carrilho, R. M. B. & Abreu, A. R. (2013). Chem. Soc. Rev. 42, 6990–7027.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStrukul, G., Varagnolo, A. & Pinna, F. (1997). J. Mol. Catal. A Chem. 117, 413–423.  CrossRef CAS Web of Science Google Scholar
First citationVéron, A. C., Felber, M., Blacque, O. & Spingler, B. (2013). Polyhedron, 52, 102–105.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds