metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­aqua­bis­­(2,3-di­hydro-1,4-benzodioxine-2-carboxyl­ato)calcium(II)

CROSSMARK_Color_square_no_text.svg

aCentro Especializado en Investigaciones en Química Inorgánica (CEIQUI), Escuela de Química, Universidad Autónoma de Chiriquí, David, Panama, bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060. San José, Costa Rica, and cEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: esmit.camargo@unachi.ac.pa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 July 2020; accepted 9 August 2020; online 14 August 2020)

The acid–base reaction of 1,4-benzodioxane 2-carb­oxy­lic acid with calcium carbonate furnished the centrosymmetric title compound, [Ca(C9H7O4)2(H2O)4], in which the metal ion is octa­hedrally coordinated by two monodentate 1,4-benzodioxane 2-carboxyl­ate ligands and four water mol­ecules. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,4-Benzodioxanes are components of some therapeutic agents used in cardiovascular treatments, acting as α- and β-adrenergic antagonists (Nelson et al., 1977[Nelson, W. L., Wennerstrom, J. E., Dyer, D. C. & Engel, M. (1977). J. Med. Chem. 20, 880-885.], 1979[Nelson, W. L., Powell, M. L. & Dyer, D. C. (1979). J. Med. Chem. 22, 1125-1127.]; Pigini et al., 1988[Pigini, M., Brasili, L., Giannella, M., Giardinà, D., Gulini, U., Quaglia, W. & Melchiorre, C. (1988). J. Med. Chem. 31, 2300-2304.]). For the latter application, the enanti­opure derivatives of chiral 2-substituted 1,4-benzodioxanes lend affinity and selectivity, mainly those derived from 1,4-benzodioxane 2-carb­oxy­lic acid (Ennis & Old, 1992[Ennis, M. D. & Old, D. W. (1992). Tetrahedron Lett. 33, 6283-6286.]; Antus et al., 1993[Antus, S., Gottsegen, A., Kajtár, J., Kovács, T., Tóth, T. S. & Wagner, H. (1993). Tetrahedron Asymmetry, 4, 339-344.]; Khouili et al., 1999[Khouili, M., Pujol, M. D., Solans, X., Font-Bardia, M., Souizi, A., Coudert, G. & Guillaumet, G. (1999). Acta Cryst. C55, 387-389.]; Jasinski et al., 2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B., Mallesha, L. & Mohana, K. N. (2009). J. Chem. Crystallogr. 39, 453-457.]). Naturally ocurring compounds with a similar structure to these heterocyclic scaffolds are known as 1,4-benzodioxane lignans, which also exhibit a wide array of biological activities (e.g., anti­cancer, anti­oxidant; Pilkington & Barker, 2015[Pilkington, L. I. & Barker, D. (2015). Nat. Prod. Rep. 32, 1369-1388.]).

In this work, we report the synthesis and the structure of the coordination properties of 1,4-benzodioxane 2-carb­oxy­lic acid toward calcium carbonate to afford the title compound Ca(C9H7O4)2(H2O)4.

The crystal structure of the title compound has monoclinic symmetry with half a mol­ecule in the asymmetric unit, the other half being generated by a crystallographic inversion center. The calcium ion is bonded to four aqua ligands and two 1,4-benzodioxane 2-carboxyl­ate ligands, whose carboxyl­ate groups link to the central atom in monodentate mode (Fig. 1[link]). The Ca1—O1, Ca1—O5, and Ca1—O6 bond lengths are 2.304 (2), 2.358 (2) and 2.317 (2) Å, respectively. The dioxane ring adopts a half-chair conformation with the pendant carboxyl­ate group in an axial orientation. In the arbitrarily chosen asymmetric unit, C2 has an R configuration but crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Unlabeled atoms are generated by the symmetry operation 1 − x, 1 − y, 2 − z.

In the crystal, O—H⋯O hydrogen bonds link the mol­ecules into (010) sheets with the acceptor O atoms being parts of carboxyl­ate groups (O1 and O2) and the dioxane ring (O4) and the packing is consolidated by weak C—H⋯O inter­actions (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.84 (2) 1.96 (2) 2.800 (3) 178 (4)
O5—H5B⋯O4ii 0.84 (3) 2.07 (3) 2.828 (3) 149 (4)
O6—H6A⋯O2iii 0.83 (3) 1.93 (2) 2.707 (3) 155 (3)
O6—H6B⋯O2i 0.84 (3) 1.88 (4) 2.715 (3) 176 (3)
C2—H2⋯O2i 1.00 2.53 3.379 (4) 143
C6—H6⋯O3iv 0.95 2.54 3.357 (4) 145
Symmetry codes: (i) x-1, y, z; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecules of the title compound. O—H⋯O and C—H⋯O hydrogen bonds are shown as green dashed lines.

Synthesis and crystallization

In a 100 mL two-necked flask, anhydrous CaCO3 (0.0100 g, 0.100 mmol) was dissolved in deionized water (20 mL) by heating to 338 K, and a solution of 1,4-benzodioxane-2-carb­oxy­lic acid (0.0560 g, 0.200 mmol) dissolved in distilled water (10 mL) was added dropwise at 353 K. The reaction mixture was refluxed for 2 h and then concentrated under vacuum to 10 mL. The precipitate obtained upon cooling overnight was filtered off and washed with cold distilled water. Colorless crystals suitable for X-ray analysis were grown from a warm water–methanol mixed solvent mixture (1:1) at room temperature. Yield: 0.0362 g (55%), m.p. 501–505 K. FTIR data (KBr, cm−1): 3600 and 3000 (br, m); 3568 (m); 1330 (m); 879 (m); 833 (s); 767 (s); 752 (s); 654 (m); 569 (m); 545 (w); 476 (m). 1H NMR (400 MHz, mix 1:1 D2O: CD4O, 298 K): δ 6.87–6.99 (s, 4H), 4.82 (dd, 1H), 4.35 p.p.m. (qd, 2H). 13C NMR (400 MHz, 1:1 mix D2O: CD4O, 298 K): δ 176, 143, 142, 123, 122, 117, 115, 73.5, 66 p.p.m. The 1H NMR and 13C NMR spectra for the title compound are included in the supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Ca(C9H7O4)2(H2O)4]
Mr 470.44
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 5.3477 (4), 26.6084 (18), 7.7367 (5)
β (°) 106.715 (2)
V3) 1054.37 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.36
Crystal size (mm) 0.35 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32373, 2384, 2242
Rint 0.036
(sin θ/λ)max−1) 0.647
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.133, 1.39
No. of reflections 2384
No. of parameters 158
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.43
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetraaquabis(2,3-dihydro-1,4-benzodioxine-2-carboxylato)calcium(II) top
Crystal data top
[Ca(C9H7O4)2(H2O)4]F(000) = 492
Mr = 470.44Dx = 1.482 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.3477 (4) ÅCell parameters from 9843 reflections
b = 26.6084 (18) Åθ = 2.9–27.4°
c = 7.7367 (5) ŵ = 0.36 mm1
β = 106.715 (2)°T = 100 K
V = 1054.37 (13) Å3Block, clear light white
Z = 20.35 × 0.25 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
2384 independent reflections
Mirrors monochromator2242 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.036
ω scansθmax = 27.4°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
h = 66
Tmin = 0.661, Tmax = 0.746k = 3434
32373 measured reflectionsl = 108
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.39 w = 1/[σ2(Fo2) + 3.3804P]
where P = (Fo2 + 2Fc2)/3
2384 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.42 e Å3
6 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.50.51.00.0115 (2)
O10.6722 (4)0.55435 (8)0.8323 (3)0.0144 (4)
O20.8347 (4)0.54948 (9)0.5982 (3)0.0164 (5)
O30.5527 (5)0.66992 (9)0.6702 (3)0.0199 (5)
O40.4402 (4)0.60021 (8)0.3776 (3)0.0144 (4)
O50.2000 (4)0.56223 (9)1.0277 (3)0.0167 (5)
H5A0.041 (3)0.5599 (16)0.972 (4)0.030 (12)*
H5B0.210 (7)0.5750 (15)1.129 (3)0.033 (12)*
O60.1782 (4)0.47510 (9)0.7438 (3)0.0158 (5)
H6A0.208 (8)0.4613 (13)0.655 (3)0.028 (12)*
H6B0.070 (7)0.4981 (12)0.703 (5)0.043 (14)*
C10.6624 (6)0.56196 (11)0.6687 (4)0.0116 (6)
C20.4144 (6)0.58769 (12)0.5516 (4)0.0121 (6)
H20.26710.56320.53350.015*
C30.3443 (6)0.63398 (12)0.6413 (5)0.0171 (6)
H3A0.18070.64880.56360.021*
H3B0.3160.62470.75820.021*
C40.6346 (6)0.67786 (12)0.5198 (4)0.0160 (6)
C50.7822 (7)0.72053 (13)0.5151 (5)0.0226 (7)
H50.81880.74370.61240.027*
C60.8762 (7)0.72926 (13)0.3682 (5)0.0261 (8)
H60.97840.75830.36560.031*
C70.8210 (7)0.69567 (14)0.2255 (5)0.0251 (8)
H70.88380.7020.12460.03*
C80.6745 (6)0.65272 (13)0.2289 (4)0.0191 (7)
H80.63730.62970.13110.023*
C90.5828 (6)0.64388 (11)0.3781 (4)0.0129 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0075 (4)0.0198 (4)0.0070 (4)0.0002 (3)0.0018 (3)0.0016 (3)
O10.0118 (10)0.0243 (12)0.0078 (10)0.0001 (8)0.0037 (8)0.0026 (8)
O20.0128 (10)0.0270 (12)0.0100 (10)0.0058 (9)0.0041 (8)0.0011 (9)
O30.0215 (12)0.0206 (12)0.0194 (12)0.0010 (9)0.0089 (9)0.0046 (9)
O40.0146 (10)0.0181 (11)0.0091 (10)0.0028 (8)0.0013 (8)0.0012 (8)
O50.0087 (10)0.0279 (12)0.0125 (11)0.0006 (9)0.0015 (8)0.0042 (9)
O60.0144 (11)0.0227 (12)0.0095 (10)0.0042 (9)0.0022 (8)0.0015 (9)
C10.0105 (13)0.0133 (13)0.0107 (13)0.0024 (10)0.0025 (11)0.0008 (10)
C20.0080 (13)0.0196 (15)0.0090 (13)0.0004 (11)0.0027 (10)0.0020 (11)
C30.0113 (14)0.0227 (16)0.0209 (16)0.0027 (12)0.0103 (12)0.0029 (13)
C40.0125 (14)0.0164 (15)0.0179 (15)0.0035 (11)0.0023 (12)0.0026 (12)
C50.0173 (16)0.0154 (15)0.0330 (19)0.0005 (12)0.0039 (14)0.0005 (14)
C60.0172 (17)0.0210 (17)0.038 (2)0.0025 (13)0.0051 (15)0.0121 (15)
C70.0187 (16)0.0316 (19)0.0244 (18)0.0005 (14)0.0053 (14)0.0144 (15)
C80.0182 (16)0.0249 (17)0.0124 (15)0.0016 (13)0.0016 (12)0.0059 (12)
C90.0077 (13)0.0177 (15)0.0141 (14)0.0025 (11)0.0041 (11)0.0042 (11)
Geometric parameters (Å, º) top
Ca1—O1i2.304 (2)O6—H6B0.839 (10)
Ca1—O12.304 (2)C1—C21.535 (4)
Ca1—O6i2.317 (2)C2—C31.513 (4)
Ca1—O62.317 (2)C2—H21.0
Ca1—O5i2.358 (2)C3—H3A0.99
Ca1—O52.358 (2)C3—H3B0.99
Ca1—H6B2.74 (4)C4—C91.386 (4)
O1—C11.268 (4)C4—C51.389 (5)
O2—C11.243 (4)C5—C61.388 (5)
O3—C41.372 (4)C5—H50.95
O3—C31.437 (4)C6—C71.385 (6)
O4—C91.389 (4)C6—H60.95
O4—C21.432 (3)C7—C81.390 (5)
O5—H5A0.838 (10)C7—H70.95
O5—H5B0.838 (10)C8—C91.397 (4)
O6—H6A0.837 (10)C8—H80.95
O1i—Ca1—O1180.0O1—C1—C2116.1 (3)
O1i—Ca1—O6i90.95 (8)O4—C2—C3110.2 (2)
O1—Ca1—O6i89.05 (8)O4—C2—C1111.0 (2)
O1i—Ca1—O689.05 (8)C3—C2—C1112.3 (2)
O1—Ca1—O690.95 (8)O4—C2—H2107.7
O6i—Ca1—O6180.00 (10)C3—C2—H2107.7
O1i—Ca1—O5i90.17 (8)C1—C2—H2107.7
O1—Ca1—O5i89.83 (8)O3—C3—C2109.3 (2)
O6i—Ca1—O5i85.49 (8)O3—C3—H3A109.8
O6—Ca1—O5i94.51 (8)C2—C3—H3A109.8
O1i—Ca1—O589.83 (8)O3—C3—H3B109.8
O1—Ca1—O590.17 (8)C2—C3—H3B109.8
O6i—Ca1—O594.51 (8)H3A—C3—H3B108.3
O6—Ca1—O585.49 (8)O3—C4—C9122.0 (3)
O5i—Ca1—O5180.0O3—C4—C5118.1 (3)
O1i—Ca1—H6B94.9 (10)C9—C4—C5119.9 (3)
O1—Ca1—H6B85.1 (9)C6—C5—C4120.0 (3)
O6i—Ca1—H6B163.5 (6)C6—C5—H5120.0
O6—Ca1—H6B16.5 (6)C4—C5—H5120.0
O5i—Ca1—H6B109.8 (6)C7—C6—C5120.0 (3)
O5—Ca1—H6B70.2 (6)C7—C6—H6120.0
C1—O1—Ca1138.9 (2)C5—C6—H6120.0
C4—O3—C3113.1 (2)C6—C7—C8120.5 (3)
C9—O4—C2113.2 (2)C6—C7—H7119.7
Ca1—O5—H5A121 (3)C8—C7—H7119.7
Ca1—O5—H5B120 (3)C7—C8—C9119.2 (3)
H5A—O5—H5B107 (2)C7—C8—H8120.4
Ca1—O6—H6A124 (3)C9—C8—H8120.4
Ca1—O6—H6B112 (3)C4—C9—O4122.1 (3)
H6A—O6—H6B106 (2)C4—C9—C8120.4 (3)
O2—C1—O1124.9 (3)O4—C9—C8117.5 (3)
O2—C1—C2118.9 (3)
Ca1—O1—C1—O2102.2 (4)O3—C4—C5—C6178.0 (3)
Ca1—O1—C1—C276.5 (4)C9—C4—C5—C60.4 (5)
C9—O4—C2—C345.0 (3)C4—C5—C6—C70.6 (5)
C9—O4—C2—C179.9 (3)C5—C6—C7—C80.8 (5)
O2—C1—C2—O48.8 (4)C6—C7—C8—C90.2 (5)
O1—C1—C2—O4172.4 (2)O3—C4—C9—O41.4 (5)
O2—C1—C2—C3132.6 (3)C5—C4—C9—O4178.9 (3)
O1—C1—C2—C348.5 (4)O3—C4—C9—C8178.6 (3)
C4—O3—C3—C248.5 (3)C5—C4—C9—C81.1 (5)
O4—C2—C3—O363.0 (3)C2—O4—C9—C415.5 (4)
C1—C2—C3—O361.3 (3)C2—O4—C9—C8164.4 (3)
C3—O3—C4—C919.4 (4)C7—C8—C9—C40.8 (5)
C3—O3—C4—C5163.1 (3)C7—C8—C9—O4179.1 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O1ii0.84 (2)1.96 (2)2.800 (3)178 (4)
O5—H5B···O4iii0.84 (3)2.07 (3)2.828 (3)149 (4)
O6—H6A···O2iv0.83 (3)1.93 (2)2.707 (3)155 (3)
O6—H6B···O2ii0.84 (3)1.88 (4)2.715 (3)176 (3)
C2—H2···O2ii1.002.533.379 (4)143
C6—H6···O3v0.952.543.357 (4)145
Symmetry codes: (ii) x1, y, z; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x+1/2, y+3/2, z1/2.
 

Acknowledgements

Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supporting liquid nitro­gen for the X-ray measurements.

Funding information

Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica; Escuela de Química, Universidad de Costa Rica; Vicerrectoría de Investigación y Posgrado, Universidad Autónoma de Chiriquí, Panamá (grant No. 1.87-205-100-2016-23-i01).

References

First citationAntus, S., Gottsegen, A., Kajtár, J., Kovács, T., Tóth, T. S. & Wagner, H. (1993). Tetrahedron Asymmetry, 4, 339–344.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnnis, M. D. & Old, D. W. (1992). Tetrahedron Lett. 33, 6283–6286.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Narayana, B., Mallesha, L. & Mohana, K. N. (2009). J. Chem. Crystallogr. 39, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhouili, M., Pujol, M. D., Solans, X., Font-Bardia, M., Souizi, A., Coudert, G. & Guillaumet, G. (1999). Acta Cryst. C55, 387–389.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNelson, W. L., Powell, M. L. & Dyer, D. C. (1979). J. Med. Chem. 22, 1125–1127.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNelson, W. L., Wennerstrom, J. E., Dyer, D. C. & Engel, M. (1977). J. Med. Chem. 20, 880–885.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPigini, M., Brasili, L., Giannella, M., Giardinà, D., Gulini, U., Quaglia, W. & Melchiorre, C. (1988). J. Med. Chem. 31, 2300–2304.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPilkington, L. I. & Barker, D. (2015). Nat. Prod. Rep. 32, 1369–1388.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds