organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

rac-12-Selena-13,14-di­aza­tri­cyclo­[9.3.0.02,4]tetra­deca-11,13-diene

CROSSMARK_Color_square_no_text.svg

aJohannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 July 2020; accepted 4 August 2020; online 11 August 2020)

The centrosymmetric crystal structure of the title compound, C11H16N2Se, is built up from alternating strands of (R,R)- and (S,S)-enanti­omers. These strands, which propagate along the c-axis direction, are composed of homochiral mol­ecules related to each other by twofold screw axes. The shape of the mol­ecule is an almost planar unit around the selena­diazole ring with a hexa­methyl­ene chain as an arched handle.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

1,2,3-Selena­diazo­les are synthesized from SeO2-oxidation of semicarbazones (Yalpani et al., 1971[Yalpani, M., Lalezari, I. & Shafiee, A. (1971). J. Org. Chem. 36, 2836-2838.]; Al-Smadi & Ratrout, 2004[Al-Smadi, M. & Ratrout, S. (2004). Molecules, 9, 957-967.]) and are important inter­mediates for the synthesis of medium-sized (Meier, 1972[Meier, H. (1972). Synthesis, pp. 235-253.]), heterocyclic (Detert, 2011[Detert, H. (2011). Targets in Heterocyclic Systems, 15, 1-49.]), and strained cyclo­alkynes (Bissinger et al. 1988[Bissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221-224.]).

The arbitrarily chosen asymmetric mol­ecule of the title compound (Fig. 1[link]) has S configurations for atoms C5 and C6 but crystal symmetry generates a racemic mixture. The selena­diazole ring with the directly bound carbon atoms and one bond of the cyclo­propane ring is almost planar, with a maximum deviation from this plane of 0.037 (2) Å at C12 and the dihedral angle between the selena­diazole ring and the cyclo­propane ring is 69.0 (2)°. Though the carbocyclic part is of medium ring size, the hexa­methyl­ene tether appears to be free of Pitzer and Prelog strain.

[Figure 1]
Figure 1
Perspective view of the title compound with displacement ellipsoids drawn at the 50% probability level.

No directional inter­actions beyond normal van der Waals contacts could be identified in the crystal. The packing consists of strands of homochiral mol­ecules, related to each other by twofold screw axes, propagating along the c-axis direction. The (R,R)- and (S,S)-enanti­omers alternate along the a-axis direction, being related by crystallographic c-glides (Fig. 2[link]).

[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the b-axis direction. Colour key: the asymmetric mol­ecule and its translation clones along [010] grey; mol­ecules generated by twofold screw axes green; mol­ecules generated by inversion symmetry orange; mol­ecules generated by c-glides purple.

Synthesis and crystallization

The title compound was prepared in ten steps from cyclo­octene according to Moore & Ward (1963[Moore, W. R. & Ward, H. R. (1963). J. Am. Chem. Soc. 85, 1, 86-89.]), Moore & Bertelson (1962[Moore, W. R. & Bertelson, R. C. (1962). J. Org. Chem. 27, 4182-4186.]), Gardner & Narayana (1961[Gardner, P. D. & Narayana, M. (1961). J. Org. Chem. 26, 3518-3519.]), Detert & Meier (1997[Detert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557-1563.]) and Whitham & Zaidlewicz (1972[Whitham, G. H. & Zaidlewicz, M. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1509-1513.]). Recrystallization from petroleum ether gave slightly pinkish crystals with m.p. 369 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C11H16N2Se
Mr 255.22
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 12.0239 (6), 7.1317 (3), 12.6836 (7)
β (°) 101.104 (4)
V3) 1067.27 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.48
Crystal size (mm) 0.55 × 0.47 × 0.10
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration
Tmin, Tmax 0.228, 0.704
No. of measured, independent and observed [I > 2σ(I)] reflections 5541, 2570, 2364
Rint 0.021
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.10
No. of reflections 2570
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.13, −0.90
Computer programs: X-AREA WinXpose, Recipe and Integrate (Stoe & Cie, 2019[Stoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA WinXpose (Stoe & Cie, 2019); cell refinement: X-AREA Recipe (Stoe & Cie, 2019); data reduction: X-AREA Integrate (Stoe & Cie, 2019); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020).

rac-12-Selena-13,14-diazatricyclo[9.3.0.02,4]tetradeca-11,13-diene top
Crystal data top
C11H16N2SeF(000) = 520
Mr = 255.22Dx = 1.588 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.0239 (6) ÅCell parameters from 11220 reflections
b = 7.1317 (3) Åθ = 2.9–28.5°
c = 12.6836 (7) ŵ = 3.48 mm1
β = 101.104 (4)°T = 120 K
V = 1067.27 (9) Å3Plate, colourless
Z = 40.55 × 0.47 × 0.10 mm
Data collection top
Stoe IPDS 2T
diffractometer
2570 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2364 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.021
rotation method, ω scansθmax = 28.0°, θmin = 3.3°
Absorption correction: integrationh = 1515
Tmin = 0.228, Tmax = 0.704k = 99
5541 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0573P)2 + 1.4452P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2570 reflectionsΔρmax = 1.13 e Å3
127 parametersΔρmin = 0.90 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbon atoms were placed at calculated positions and were refined in the riding-model approximation with C—H = 0.95 Å and Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.01806 (2)0.53889 (3)0.19801 (2)0.01717 (11)
N20.08518 (19)0.7735 (3)0.24245 (18)0.0195 (4)
N30.16960 (17)0.7494 (3)0.31890 (17)0.0167 (4)
C40.1961 (2)0.5686 (3)0.35355 (19)0.0131 (4)
C50.2954 (2)0.5360 (3)0.4406 (2)0.0144 (4)
H50.3375440.4172980.4331400.017*
C60.2942 (2)0.5921 (3)0.55614 (18)0.0149 (4)
H60.2252790.6620160.5671020.018*
C70.3456 (2)0.4626 (3)0.6468 (2)0.0177 (5)
H7A0.3756210.5394110.7110120.021*
H7B0.4104010.3960390.6261720.021*
C80.2633 (2)0.3164 (4)0.67731 (19)0.0178 (5)
H8A0.2030570.3827310.7058660.021*
H8B0.3050150.2367040.7357030.021*
C90.2071 (2)0.1890 (3)0.58429 (19)0.0173 (5)
H9A0.2605330.1701000.5347900.021*
H9B0.1921210.0648810.6136590.021*
C100.09558 (19)0.2684 (3)0.52058 (18)0.0154 (4)
H10A0.0356210.2525980.5635080.018*
H10B0.1050370.4044820.5096300.018*
C110.0569 (2)0.1748 (3)0.41110 (19)0.0170 (5)
H11A0.0223260.2122110.3820700.020*
H11B0.0580590.0370760.4211210.020*
C120.1307 (2)0.2250 (3)0.32802 (19)0.0147 (4)
H12A0.2101100.1876170.3565520.018*
H12B0.1037960.1531620.2611790.018*
C130.1270 (2)0.4310 (3)0.30231 (19)0.0143 (4)
C140.3690 (2)0.6950 (4)0.4927 (2)0.0195 (5)
H14A0.4516850.6730760.5119230.023*
H14B0.3468900.8241660.4686840.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01788 (15)0.01843 (16)0.01400 (15)0.00192 (8)0.00010 (10)0.00198 (8)
N20.0245 (10)0.0147 (9)0.0200 (11)0.0019 (8)0.0059 (8)0.0027 (8)
N30.0199 (10)0.0135 (9)0.0180 (10)0.0013 (8)0.0068 (8)0.0017 (7)
C40.0150 (10)0.0136 (9)0.0112 (10)0.0013 (8)0.0038 (8)0.0011 (8)
C50.0148 (10)0.0156 (11)0.0130 (11)0.0013 (8)0.0034 (9)0.0015 (8)
C60.0164 (10)0.0163 (10)0.0117 (10)0.0020 (9)0.0021 (8)0.0022 (8)
C70.0177 (11)0.0213 (12)0.0135 (11)0.0028 (9)0.0017 (9)0.0002 (8)
C80.0199 (11)0.0200 (11)0.0130 (11)0.0020 (9)0.0021 (9)0.0013 (9)
C90.0218 (11)0.0166 (10)0.0128 (11)0.0008 (9)0.0013 (9)0.0013 (8)
C100.0170 (10)0.0162 (10)0.0136 (11)0.0025 (8)0.0044 (9)0.0010 (8)
C110.0184 (11)0.0157 (10)0.0166 (11)0.0058 (9)0.0027 (9)0.0015 (9)
C120.0176 (10)0.0127 (10)0.0134 (10)0.0011 (8)0.0022 (8)0.0013 (8)
C130.0154 (10)0.0166 (10)0.0109 (10)0.0020 (9)0.0027 (8)0.0024 (8)
C140.0211 (11)0.0197 (11)0.0179 (12)0.0054 (10)0.0040 (9)0.0016 (9)
Geometric parameters (Å, º) top
Se1—C131.841 (2)C8—H8A0.9900
Se1—N21.896 (2)C8—H8B0.9900
N2—N31.273 (3)C9—C101.535 (3)
N3—C41.379 (3)C9—H9A0.9900
C4—C131.367 (3)C9—H9B0.9900
C4—C51.480 (3)C10—C111.530 (3)
C5—C141.510 (3)C10—H10A0.9900
C5—C61.522 (3)C10—H10B0.9900
C5—H51.0000C11—C121.544 (3)
C6—C141.507 (3)C11—H11A0.9900
C6—C71.511 (3)C11—H11B0.9900
C6—H61.0000C12—C131.504 (3)
C7—C81.538 (3)C12—H12A0.9900
C7—H7A0.9900C12—H12B0.9900
C7—H7B0.9900C14—H14A0.9900
C8—C91.538 (3)C14—H14B0.9900
C13—Se1—N287.26 (10)C8—C9—H9A108.9
N3—N2—Se1109.79 (16)C10—C9—H9B108.9
N2—N3—C4118.1 (2)C8—C9—H9B108.9
C13—C4—N3115.9 (2)H9A—C9—H9B107.7
C13—C4—C5124.8 (2)C11—C10—C9113.5 (2)
N3—C4—C5119.3 (2)C11—C10—H10A108.9
C4—C5—C14121.9 (2)C9—C10—H10A108.9
C4—C5—C6121.4 (2)C11—C10—H10B108.9
C14—C5—C659.64 (15)C9—C10—H10B108.9
C4—C5—H5114.4H10A—C10—H10B107.7
C14—C5—H5114.4C10—C11—C12113.84 (19)
C6—C5—H5114.4C10—C11—H11A108.8
C14—C6—C7120.4 (2)C12—C11—H11A108.8
C14—C6—C559.79 (15)C10—C11—H11B108.8
C7—C6—C5119.6 (2)C12—C11—H11B108.8
C14—C6—H6115.3H11A—C11—H11B107.7
C7—C6—H6115.3C13—C12—C11112.17 (19)
C5—C6—H6115.3C13—C12—H12A109.2
C6—C7—C8114.7 (2)C11—C12—H12A109.2
C6—C7—H7A108.6C13—C12—H12B109.2
C8—C7—H7A108.6C11—C12—H12B109.2
C6—C7—H7B108.6H12A—C12—H12B107.9
C8—C7—H7B108.6C4—C13—C12127.5 (2)
H7A—C7—H7B107.6C4—C13—Se1108.95 (17)
C7—C8—C9114.6 (2)C12—C13—Se1123.47 (18)
C7—C8—H8A108.6C6—C14—C560.58 (15)
C9—C8—H8A108.6C6—C14—H14A117.7
C7—C8—H8B108.6C5—C14—H14A117.7
C9—C8—H8B108.6C6—C14—H14B117.7
H8A—C8—H8B107.6C5—C14—H14B117.7
C10—C9—C8113.3 (2)H14A—C14—H14B114.8
C10—C9—H9A108.9
C13—Se1—N2—N30.23 (17)C7—C8—C9—C1089.4 (3)
Se1—N2—N3—C40.2 (3)C8—C9—C10—C11163.53 (19)
N2—N3—C4—C130.8 (3)C9—C10—C11—C1270.9 (3)
N2—N3—C4—C5178.6 (2)C10—C11—C12—C1362.5 (3)
C13—C4—C5—C14179.2 (2)N3—C4—C13—C12175.5 (2)
N3—C4—C5—C140.1 (3)C5—C4—C13—C125.1 (4)
C13—C4—C5—C6109.3 (3)N3—C4—C13—Se10.9 (3)
N3—C4—C5—C671.3 (3)C5—C4—C13—Se1178.47 (18)
C4—C5—C6—C14111.1 (2)C11—C12—C13—C489.1 (3)
C4—C5—C6—C7138.9 (2)C11—C12—C13—Se186.8 (2)
C14—C5—C6—C7110.0 (2)N2—Se1—C13—C40.62 (17)
C14—C6—C7—C8159.1 (2)N2—Se1—C13—C12175.9 (2)
C5—C6—C7—C888.8 (3)C7—C6—C14—C5108.7 (2)
C6—C7—C8—C956.9 (3)C4—C5—C14—C6110.3 (2)
 

References

First citationAl-Smadi, M. & Ratrout, S. (2004). Molecules, 9, 957–967.  Web of Science PubMed CAS Google Scholar
First citationBissinger, H.-J., Detert, H. & Meier, H. (1988). Liebigs Ann. Chem. pp. 221–224.  CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDetert, H. (2011). Targets in Heterocyclic Systems, 15, 1–49.  CAS Google Scholar
First citationDetert, H. & Meier, H. (1997). Liebigs Ann. Recl, pp. 1557–1563.  Google Scholar
First citationGardner, P. D. & Narayana, M. (1961). J. Org. Chem. 26, 3518–3519.  CrossRef CAS Web of Science Google Scholar
First citationMeier, H. (1972). Synthesis, pp. 235–253.  CrossRef Google Scholar
First citationMoore, W. R. & Bertelson, R. C. (1962). J. Org. Chem. 27, 4182–4186.  CrossRef CAS Web of Science Google Scholar
First citationMoore, W. R. & Ward, H. R. (1963). J. Am. Chem. Soc. 85, 1, 86–89.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2019). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWhitham, G. H. & Zaidlewicz, M. (1972). J. Chem. Soc. Perkin Trans. 1, pp. 1509–1513.  CrossRef Web of Science Google Scholar
First citationYalpani, M., Lalezari, I. & Shafiee, A. (1971). J. Org. Chem. 36, 2836–2838.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds