organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-Hy­dr­oxy-3,4-dimeth­­oxy-10-methyl­acridin-9-one

CROSSMARK_Color_square_no_text.svg

aLaboratory of Synthesis and Drug Delivery, Center of Applied Biological and Social Sciences, State University of Paraiba-Campus V; 58071-160, João Pessoa, Paraiba, Brazil, bLaboratory of Medicinal Chemistry, Departament of Organic Chemistry, Faculty of Sciences, University of Yaounde I; POBOX 812, Yaounde, Cameroon, and cDepartamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo - USP, 13560-970 - São Carlos, SP, Brazil
*Correspondence e-mail: casimone@ifsc.usp.br

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 19 February 2020; accepted 21 July 2020; online 11 August 2020)

There are two independent mol­ecules in the asymmetric unit of the title compound, C16H15NO4, which was isolated from fruits of Zanthoxylum leprieurii. The atoms of the three rings of each mol­ecule are close to coplanar with the largest deviations from the least-squares planes being 0.084 (3) Å and 0.069 (2) Å. Each molecule features an intramolecular O—H⋯·O hydrogen bond. In the crystal, C—H⋯·O hydrogen-bonding inter­actions link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Zanthoxyllum leprieurii is one of the 549 species of the Zanthoxyllum genus (Rutaceae). It is widely distributed in tropical Africa (Wansi et al., 2016[Wansi, J. D., Tcho, A. T., Toze, F. A. A., Nahar, L., Martin, C. & Sarker, S. D. (2016). Phytochemistry Lett. 17, 293-298.]), and is used in traditional medicine for the treatment of anaemia, arthritis, rheumatism, pain, leprosy, HIV, malaria, stomach problems and urinary diseases, as well as having vermifuge, diuretic and laxative properties (Guetchueng et al., 2017[Guetchueng, S. T., Nahar, L., Ritchie, K. J., Ismail, F. M., Wansi, J. D., Evans, A. R. & Sarker, S. D. (2017). Rec. Nat. Prod. 11, 304-309.]). Its anti­cancer, anti­microbial, anti­plasmodial and anti­oxidant activities have also recently been well studied (Misra et al., 2013[Misra, L. N., Wouatsa, N. A. V., Kumar, S., Kumar, R. V. & Tchoumbougnang, F. (2013). J. Ethnopharmacol. 148, 74-80.]). For its biological activity, see: Lamorde et al., (2010); Ngane et al., (2000). For related structures, see: Baudouin et al. (1985[Baudouin, G., Tillequin, F., Koch, M., Dau, M. T. H., Guilhem, J., Pusset, J. & Chauviere, G. (1985). J. Nat. Prod. 48, 260-265.]); Tchinda et al., (2009).

One of the most important secondary metabolites described in Z. leprieurii are acridone derivatives (Ngoumfo et al., 2010[Ngoumfo, R. M., Jouda, J.-B., Mouafo, F. T., Komguem, J., Mbazoa, C. D., Shiao, T. C., Choudhary, M. I., Laatsch, H., Legault, J., Pichette, A. & Roy, A. (2010). Bioorg. Med. Chem. 18, 3601-3605.]), of which we can highlight 1-hy­droxy-3,4-dimeth­oxy-N-methyl­acridone, which was first described by Baudouin et al. (1985[Baudouin, G., Tillequin, F., Koch, M., Dau, M. T. H., Guilhem, J., Pusset, J. & Chauviere, G. (1985). J. Nat. Prod. 48, 260-265.]) and has been isolated and evaluated for its bioactive potential in a single or synergistic action with other natural constituents (Baudouin et al., 1985[Baudouin, G., Tillequin, F., Koch, M., Dau, M. T. H., Guilhem, J., Pusset, J. & Chauviere, G. (1985). J. Nat. Prod. 48, 260-265.]). For background to 1-hy­droxy-3,4-dimeth­oxy-N-methyl-acridone, see: Ladino & Suárez (2010[Ladino, O. J. P. & Suárez, L. E. C. (2010). Quím. Nova, 33, 1019-1021.]). In this work, we describe the crystal structure of the title compound, isolated from Z. leprieurii.

There are two independent mol­ecules in the asymmetric unit of the title compound, as shown in Fig. 1[link]. The atoms of the three rings of the mol­ecule are close to coplanar, the largest deviations from their least-square planes being exhibited by atoms C12 [0.084 (3) Å] and C26 [0.069 (2) Å]. Atoms O1, O2, O3 and C16 lie close to the mean least-squares plane of the ring system with deviations of 0.068 (2), 0.053 (2), 0.067 (2) and 0.102 (2) Å, respectively [O5 −0.082 (1), O6 0.013 (2), O7 −0.120 (2), C32 0.033 (3) Å in the second independent mol­ecule]. Atoms C14 and C15 are −0.502 (2) and 1.374 (2) Å, respectively, out of the ring-system plane. The deviations for the second mol­ecule are 0.440 (2) for C30 and −1.409 (2) Å for C31. The outer rings make dihedral angles of 3.26 (8) and 2.46 (7) ° with the central ring in the first mol­ecule [2.84 (5) and 1.53 (4)° in the second.

[Figure 1]
Figure 1
The asymmetric unit of the title compound showing the atom labelling and 50% probability displacement ellipsoids.

In the crystal mol­ecules are linked by weak C—H⋯O inter­actions (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O3i 0.93 2.52 3.441 (2) 170
C32—H32A⋯O8ii 0.96 2.55 3.460 (3) 157
C30—H30C⋯O7iii 0.96 2.59 3.513 (3) 159
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1.

Synthesis and crystallization

The powder obtained after the pulverization of the plant material was soaked in a mixture of methyl­ene chloride and methanol. The crude extract was subjected to chromatography on a silica gel column eluted with an increasing polarity of ethyl acetate in hexane. The title compound, red in colour, soluble in acetone was obtained from fractions 111–120 (90 mg) by recrystallization from hexa­ne/ethyl acetate 80/20 solution. The solvent used for single-crystal formation was absolute ethanol.

Spectroscopic data the title compound are in agreement with literature data (Baudouin et al., 1985[Baudouin, G., Tillequin, F., Koch, M., Dau, M. T. H., Guilhem, J., Pusset, J. & Chauviere, G. (1985). J. Nat. Prod. 48, 260-265.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H15NO4
Mr 285.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.3360 (2), 10.1780 (3), 16.3260 (4)
α, β, γ (°) 82.284 (2), 76.557 (2), 87.081 (2)
V3) 1334.73 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.36 × 0.23 × 0.15
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 19726, 6073, 4671
Rint 0.022
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.184, 1.06
No. of reflections 6073
No. of parameters 380
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.41
Computer programs: COLLECT (Nonius, 1997[Nonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1997); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012).

1-Hydroxy-3,4-dimethoxy-10-methylacridin-9-one top
Crystal data top
C16H15NO4Z = 4
Mr = 285.29F(000) = 600
Triclinic, P1Dx = 1.420 Mg m3
a = 8.3360 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1780 (3) ÅCell parameters from 11197 reflections
c = 16.3260 (4) Åθ = 2.6–27.5°
α = 82.284 (2)°µ = 0.10 mm1
β = 76.557 (2)°T = 293 K
γ = 87.081 (2)°Prism, colourless
V = 1334.73 (6) Å30.36 × 0.23 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
4671 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.022
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 1010
CCD rotation images,thick slices scansk = 1312
19726 measured reflectionsl = 1821
6073 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.184 w = 1/[σ2(Fo2) + (0.1054P)2 + 0.3107P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
6073 reflectionsΔρmax = 0.44 e Å3
380 parametersΔρmin = 0.40 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (rings) or C—H = 0.96 Å (methyl snd hydroxy) with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34832 (15)0.29142 (11)0.15710 (8)0.0453 (3)
O20.64583 (16)0.21124 (12)0.09702 (9)0.0515 (3)
O30.84531 (15)0.65229 (13)0.03086 (9)0.0523 (3)
O40.64390 (16)0.83835 (12)0.05781 (9)0.0545 (3)
O50.27751 (16)0.74356 (12)0.61638 (8)0.0490 (3)
O60.19210 (18)0.86749 (12)0.48348 (9)0.0535 (3)
O70.14839 (19)0.46740 (13)0.37138 (8)0.0563 (4)
O80.2317 (2)0.25560 (13)0.44761 (9)0.0576 (4)
N10.26613 (16)0.57543 (13)0.14686 (8)0.0371 (3)
N20.34120 (17)0.45683 (13)0.62919 (9)0.0396 (3)
C10.2369 (2)0.71041 (16)0.15183 (10)0.0390 (4)
C20.3625 (2)0.80256 (16)0.11976 (10)0.0398 (4)
C30.5293 (2)0.75708 (16)0.08543 (10)0.0384 (3)
C40.55708 (18)0.61589 (15)0.08865 (9)0.0343 (3)
C50.42538 (18)0.52538 (15)0.12017 (9)0.0329 (3)
C60.46427 (19)0.38806 (15)0.12420 (10)0.0356 (3)
C70.6265 (2)0.34534 (16)0.09288 (10)0.0385 (3)
C80.7552 (2)0.43262 (17)0.06184 (11)0.0413 (4)
H80.86240.40150.04250.050*
C90.72055 (19)0.56693 (16)0.06034 (10)0.0383 (3)
C100.3281 (2)0.93932 (18)0.12005 (13)0.0508 (4)
H100.41200.99960.09740.061*
C110.1715 (3)0.9843 (2)0.15353 (15)0.0614 (5)
H110.14811.07470.15250.074*
C120.0491 (3)0.8930 (2)0.18875 (16)0.0641 (6)
H120.05610.92330.21320.077*
C130.0781 (2)0.7589 (2)0.18874 (13)0.0538 (5)
H130.00660.70000.21300.065*
C140.1194 (2)0.49385 (19)0.15926 (13)0.0494 (4)
H14A0.02180.54620.17770.074*
H14B0.11630.46270.10670.074*
H14C0.12450.41940.20150.074*
C150.3563 (3)0.2314 (2)0.24026 (12)0.0567 (5)
H15A0.27320.16530.25990.085*
H15B0.46320.19070.23870.085*
H15C0.33780.29790.27810.085*
C160.8075 (3)0.1570 (2)0.06854 (15)0.0583 (5)
H16A0.80290.06200.07510.087*
H16B0.84930.18960.00980.087*
H16C0.87910.18290.10160.087*
C170.28342 (19)0.52898 (15)0.56263 (10)0.0360 (3)
C180.2465 (2)0.45975 (15)0.49895 (10)0.0375 (3)
C190.2651 (2)0.31822 (16)0.50310 (11)0.0418 (4)
C200.3209 (2)0.24810 (16)0.57486 (11)0.0403 (4)
C210.3513 (2)0.31925 (16)0.63754 (10)0.0389 (3)
C220.2578 (2)0.66750 (16)0.55527 (10)0.0394 (4)
C230.2074 (2)0.73401 (16)0.48463 (11)0.0425 (4)
C240.1726 (2)0.66747 (18)0.42197 (11)0.0461 (4)
H240.13960.71390.37540.055*
C250.1881 (2)0.53179 (17)0.43046 (11)0.0422 (4)
C260.3953 (3)0.24636 (19)0.70890 (12)0.0522 (4)
H260.41020.29030.75290.063*
C270.4164 (3)0.1110 (2)0.71424 (14)0.0600 (5)
H270.44550.06470.76190.072*
C280.3953 (3)0.04215 (19)0.64993 (15)0.0587 (5)
H280.41470.04900.65310.070*
C290.3454 (2)0.11009 (18)0.58159 (13)0.0500 (4)
H290.32760.06410.53910.060*
C300.4188 (3)0.5227 (2)0.68466 (13)0.0562 (5)
H30A0.40420.61700.67330.084*
H30B0.36840.49350.74300.084*
H30C0.53450.50050.67380.084*
C310.1259 (3)0.7728 (2)0.67321 (14)0.0658 (6)
H31A0.14710.82550.71390.099*
H31B0.05300.82100.64170.099*
H31C0.07550.69150.70220.099*
C320.1415 (3)0.94238 (19)0.41295 (15)0.0621 (5)
H32A0.13551.03490.41970.093*
H32B0.22010.92870.36140.093*
H32C0.03510.91390.41030.093*
H10.79610.74340.03500.094 (6)*
H20.16960.37650.39150.094 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0453 (7)0.0403 (6)0.0503 (7)0.0098 (5)0.0123 (5)0.0002 (5)
O20.0498 (7)0.0375 (6)0.0649 (8)0.0037 (5)0.0077 (6)0.0100 (6)
O30.0331 (6)0.0481 (7)0.0706 (9)0.0067 (5)0.0031 (6)0.0028 (6)
O40.0450 (7)0.0406 (6)0.0731 (9)0.0082 (5)0.0079 (6)0.0031 (6)
O50.0582 (8)0.0420 (6)0.0514 (7)0.0085 (5)0.0129 (6)0.0182 (5)
O60.0693 (9)0.0340 (6)0.0591 (8)0.0027 (6)0.0186 (6)0.0044 (5)
O70.0781 (9)0.0519 (7)0.0504 (7)0.0021 (6)0.0344 (7)0.0144 (6)
O80.0878 (10)0.0419 (7)0.0548 (8)0.0002 (6)0.0334 (7)0.0177 (6)
N10.0306 (6)0.0409 (7)0.0388 (7)0.0026 (5)0.0078 (5)0.0009 (5)
N20.0459 (8)0.0390 (7)0.0380 (7)0.0055 (6)0.0149 (6)0.0085 (5)
C10.0374 (8)0.0434 (8)0.0370 (8)0.0038 (6)0.0117 (6)0.0043 (6)
C20.0404 (8)0.0395 (8)0.0412 (8)0.0028 (6)0.0153 (7)0.0024 (6)
C30.0383 (8)0.0394 (8)0.0376 (8)0.0021 (6)0.0119 (6)0.0010 (6)
C40.0337 (7)0.0385 (8)0.0312 (7)0.0013 (6)0.0109 (6)0.0002 (6)
C50.0322 (7)0.0392 (8)0.0283 (7)0.0010 (6)0.0101 (6)0.0019 (6)
C60.0363 (8)0.0372 (8)0.0341 (7)0.0046 (6)0.0101 (6)0.0018 (6)
C70.0424 (8)0.0379 (8)0.0372 (8)0.0029 (6)0.0126 (7)0.0064 (6)
C80.0334 (8)0.0471 (9)0.0430 (9)0.0029 (7)0.0084 (6)0.0063 (7)
C90.0322 (7)0.0443 (8)0.0378 (8)0.0033 (6)0.0082 (6)0.0026 (6)
C100.0532 (10)0.0410 (9)0.0624 (11)0.0042 (7)0.0237 (9)0.0045 (8)
C110.0575 (12)0.0487 (10)0.0840 (15)0.0164 (9)0.0267 (11)0.0177 (10)
C120.0476 (11)0.0653 (13)0.0804 (14)0.0181 (9)0.0140 (10)0.0214 (11)
C130.0393 (9)0.0592 (11)0.0614 (11)0.0042 (8)0.0078 (8)0.0106 (9)
C140.0335 (8)0.0531 (10)0.0605 (11)0.0079 (7)0.0105 (7)0.0011 (8)
C150.0694 (13)0.0494 (10)0.0464 (10)0.0116 (9)0.0058 (9)0.0018 (8)
C160.0537 (11)0.0490 (10)0.0731 (13)0.0145 (8)0.0156 (10)0.0147 (9)
C170.0356 (8)0.0378 (8)0.0353 (8)0.0056 (6)0.0069 (6)0.0072 (6)
C180.0398 (8)0.0375 (8)0.0373 (8)0.0032 (6)0.0099 (6)0.0096 (6)
C190.0465 (9)0.0404 (8)0.0418 (8)0.0040 (7)0.0123 (7)0.0116 (7)
C200.0391 (8)0.0390 (8)0.0447 (9)0.0030 (6)0.0111 (7)0.0081 (7)
C210.0364 (8)0.0403 (8)0.0413 (8)0.0038 (6)0.0098 (6)0.0070 (7)
C220.0423 (8)0.0363 (8)0.0413 (8)0.0071 (6)0.0087 (7)0.0104 (6)
C230.0429 (9)0.0359 (8)0.0482 (9)0.0041 (6)0.0080 (7)0.0067 (7)
C240.0517 (10)0.0442 (9)0.0443 (9)0.0001 (7)0.0159 (8)0.0037 (7)
C250.0461 (9)0.0445 (9)0.0397 (8)0.0015 (7)0.0140 (7)0.0113 (7)
C260.0618 (11)0.0513 (10)0.0489 (10)0.0043 (8)0.0242 (9)0.0039 (8)
C270.0666 (13)0.0526 (11)0.0653 (12)0.0021 (9)0.0310 (10)0.0046 (9)
C280.0628 (12)0.0400 (9)0.0783 (14)0.0001 (8)0.0296 (11)0.0018 (9)
C290.0521 (10)0.0411 (9)0.0627 (11)0.0006 (7)0.0213 (9)0.0126 (8)
C300.0723 (13)0.0528 (11)0.0552 (11)0.0033 (9)0.0324 (10)0.0163 (9)
C310.0763 (14)0.0600 (12)0.0560 (12)0.0111 (10)0.0046 (10)0.0200 (10)
C320.0764 (14)0.0402 (9)0.0699 (13)0.0006 (9)0.0228 (11)0.0021 (9)
Geometric parameters (Å, º) top
O1—C61.3798 (19)C13—H130.9300
O1—C151.427 (2)C14—H14A0.9600
O2—C71.3606 (19)C14—H14B0.9600
O2—C161.428 (2)C14—H14C0.9600
O3—C91.347 (2)C15—H15A0.9600
O3—H11.00C15—H15B0.9600
O4—C31.257 (2)C15—H15C0.9600
O5—C221.3849 (19)C16—H16A0.9600
O5—C311.427 (2)C16—H16B0.9600
O6—C231.356 (2)C16—H16C0.9600
O6—C321.429 (2)C17—C221.408 (2)
O7—C251.345 (2)C17—C181.428 (2)
O7—H20.96C18—C251.421 (2)
O8—C191.263 (2)C18—C191.435 (2)
N1—C51.3905 (19)C19—C201.447 (2)
N1—C11.393 (2)C20—C291.402 (2)
N1—C141.473 (2)C20—C211.405 (2)
N2—C211.389 (2)C21—C261.408 (2)
N2—C171.395 (2)C22—C231.397 (2)
N2—C301.472 (2)C23—C241.390 (2)
C1—C21.401 (2)C24—C251.372 (2)
C1—C131.414 (2)C24—H240.9300
C2—C101.407 (2)C26—C271.374 (3)
C2—C31.450 (2)C26—H260.9300
C3—C41.440 (2)C27—C281.386 (3)
C4—C91.421 (2)C27—H270.9300
C4—C51.425 (2)C28—C291.369 (3)
C5—C61.415 (2)C28—H280.9300
C6—C71.399 (2)C29—H290.9300
C7—C81.386 (2)C30—H30A0.9600
C8—C91.381 (2)C30—H30B0.9600
C8—H80.9300C30—H30C0.9600
C10—C111.374 (3)C31—H31A0.9600
C10—H100.9300C31—H31B0.9600
C11—C121.384 (3)C31—H31C0.9600
C11—H110.9300C32—H32A0.9600
C12—C131.374 (3)C32—H32B0.9600
C12—H120.9300C32—H32C0.9600
C6—O1—C15113.10 (13)O2—C16—H16A109.5
C7—O2—C16118.42 (15)O2—C16—H16B109.5
C9—O3—H1106.7H16A—C16—H16B109.5
C22—O5—C31113.22 (15)O2—C16—H16C109.5
C23—O6—C32117.70 (15)H16A—C16—H16C109.5
C25—O7—H2101.9H16B—C16—H16C109.5
C5—N1—C1120.95 (13)N2—C17—C22123.21 (14)
C5—N1—C14122.23 (14)N2—C17—C18118.85 (14)
C1—N1—C14116.26 (13)C22—C17—C18117.94 (15)
C21—N2—C17121.03 (13)C25—C18—C17119.60 (15)
C21—N2—C30116.86 (14)C25—C18—C19119.06 (14)
C17—N2—C30121.38 (14)C17—C18—C19121.34 (15)
N1—C1—C2121.35 (14)O8—C19—C18122.04 (16)
N1—C1—C13120.78 (16)O8—C19—C20120.53 (15)
C2—C1—C13117.87 (16)C18—C19—C20117.42 (14)
C1—C2—C10120.56 (16)C29—C20—C21120.19 (16)
C1—C2—C3119.91 (15)C29—C20—C19120.23 (15)
C10—C2—C3119.53 (16)C21—C20—C19119.58 (14)
O4—C3—C4122.44 (15)N2—C21—C20121.49 (15)
O4—C3—C2120.66 (15)N2—C21—C26120.81 (15)
C4—C3—C2116.82 (14)C20—C21—C26117.69 (16)
C9—C4—C5119.82 (14)O5—C22—C23116.96 (14)
C9—C4—C3118.60 (14)O5—C22—C17123.00 (15)
C5—C4—C3121.57 (14)C23—C22—C17120.03 (14)
N1—C5—C6123.14 (14)O6—C23—C24123.22 (16)
N1—C5—C4118.88 (14)O6—C23—C22114.49 (15)
C6—C5—C4117.96 (14)C24—C23—C22122.28 (15)
O1—C6—C7117.14 (14)C25—C24—C23118.45 (16)
O1—C6—C5123.08 (14)C25—C24—H24120.8
C7—C6—C5119.78 (14)C23—C24—H24120.8
O2—C7—C8123.57 (15)O7—C25—C24118.28 (15)
O2—C7—C6113.88 (14)O7—C25—C18120.19 (15)
C8—C7—C6122.54 (15)C24—C25—C18121.53 (15)
C9—C8—C7118.40 (15)C27—C26—C21120.69 (17)
C9—C8—H8120.8C27—C26—H26119.7
C7—C8—H8120.8C21—C26—H26119.7
O3—C9—C8118.70 (14)C26—C27—C28121.28 (18)
O3—C9—C4119.92 (15)C26—C27—H27119.4
C8—C9—C4121.38 (15)C28—C27—H27119.4
C11—C10—C2120.43 (19)C29—C28—C27119.12 (18)
C11—C10—H10119.8C29—C28—H28120.4
C2—C10—H10119.8C27—C28—H28120.4
C10—C11—C12119.01 (18)C28—C29—C20120.86 (17)
C10—C11—H11120.5C28—C29—H29119.6
C12—C11—H11120.5C20—C29—H29119.6
C13—C12—C11121.98 (18)N2—C30—H30A109.5
C13—C12—H12119.0N2—C30—H30B109.5
C11—C12—H12119.0H30A—C30—H30B109.5
C12—C13—C1120.04 (19)N2—C30—H30C109.5
C12—C13—H13120.0H30A—C30—H30C109.5
C1—C13—H13120.0H30B—C30—H30C109.5
N1—C14—H14A109.5O5—C31—H31A109.5
N1—C14—H14B109.5O5—C31—H31B109.5
H14A—C14—H14B109.5H31A—C31—H31B109.5
N1—C14—H14C109.5O5—C31—H31C109.5
H14A—C14—H14C109.5H31A—C31—H31C109.5
H14B—C14—H14C109.5H31B—C31—H31C109.5
O1—C15—H15A109.5O6—C32—H32A109.5
O1—C15—H15B109.5O6—C32—H32B109.5
H15A—C15—H15B109.5H32A—C32—H32B109.5
O1—C15—H15C109.5O6—C32—H32C109.5
H15A—C15—H15C109.5H32A—C32—H32C109.5
H15B—C15—H15C109.5H32B—C32—H32C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O3i0.932.523.441 (2)170
C32—H32A···O8ii0.962.553.460 (3)157
C30—H30C···O7iii0.962.593.513 (3)159
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Instituto de Física de São Carlos for access to the KappaCCD diffractometer and thank the Nucleus of Analysis and Research in Nuclear Magnetic Resonance (NAPRMN–UFAL) for providing the NMR spectra.

Funding information

This work was partly supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant No. 308590/2017–1) and was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. ENTZ thanks the World Academy of Science/Brazilian National Council for Scientific and Technological Development (TWAS/CNPq) for the 2017 Postdoctoral Fellowship Programme attributed to PhD Ernestine Nkwengoua T. Zondegoumba. and CAS is thankful to the CNPq for a fellowship.

References

First citationBaudouin, G., Tillequin, F., Koch, M., Dau, M. T. H., Guilhem, J., Pusset, J. & Chauviere, G. (1985). J. Nat. Prod. 48, 260–265.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuetchueng, S. T., Nahar, L., Ritchie, K. J., Ismail, F. M., Wansi, J. D., Evans, A. R. & Sarker, S. D. (2017). Rec. Nat. Prod. 11, 304–309.  CAS Google Scholar
First citationLadino, O. J. P. & Suárez, L. E. C. (2010). Quím. Nova, 33, 1019-1021.  Google Scholar
First citationMisra, L. N., Wouatsa, N. A. V., Kumar, S., Kumar, R. V. & Tchoumbougnang, F. (2013). J. Ethnopharmacol. 148, 74–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNgoumfo, R. M., Jouda, J.-B., Mouafo, F. T., Komguem, J., Mbazoa, C. D., Shiao, T. C., Choudhary, M. I., Laatsch, H., Legault, J., Pichette, A. & Roy, A. (2010). Bioorg. Med. Chem. 18, 3601–3605.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNonius (1997). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWansi, J. D., Tcho, A. T., Toze, F. A. A., Nahar, L., Martin, C. & Sarker, S. D. (2016). Phytochemistry Lett. 17, 293–298.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds