metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tetra­kis[μ2-5-nitro-2-(phenyl­sulfan­yl)benzoato-κ2O:O′]bis­­[(aceto­nitrile-κN)copper(II)]

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, Hubei 430205, People's Republic of China
*Correspondence e-mail: longsihui@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 4 June 2020; accepted 15 June 2020; online 23 June 2020)

The title compound, [Cu2(μ2-O2CC12H8NO2S)4(CH3CN)2], consists of a dinuclear and centrosymmetric complex based on two CuII atoms coordinated by four 5-nitro-2-phenyl­sulfanyl-benzoate anions and two aceto­nitrile ligands. Each benzoate anion acts as a bis-monodentate ligand while each aceto­nitrile acts as a monodentate ligand, leading to a square-pyramidal NO4 coordination environment for each CuII atom with the aceto­nitrile N atom at the apex. The intra­molecular Cu⋯Cu distance in the dimer is 2.6478 (3) Å. The cohesion of the crystal structure is ensured by (phen­yl)C—H⋯O(nitro) hydrogen bonds and (phen­yl)C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound was obtained serendipitously during efforts to make 5-nitro-2-phenyl­sulfanyl-benzoic acid by reacting 2-bromo-5-nitro-benzoic acid with benzene­thiol through a modified Ullmann reaction with Cu/Cu2O as catalyst, K2CO3 as base, and eth­oxy­ethanol as solvent (Liu et al., 2007[Liu, S., Pestano, J. P. C. & Wolf, C. (2007). Synthesis, pp. 3519-3527.]). The complex likely formed between CuII generated in situ and 5-nitro-2-phenyl­sulfanyl-benzoate.

The title compound is a centrosymmetric dinuclear CuII complex with two pairs of bis-monodentate 5-nitro-2-phenyl­sulfanyl-benzoate anions and a pair of aceto­nitrile mol­ecules as ligands (Fig. 1[link]). The coordination of each copper(II) atom is square-pyramidal, with the aceto­nitrile N atom at the apex of the NO4 coordination set. The intra­molecular Cu⋯Cu distance in the dimer is 2.6478 (3) Å (Fig. 1[link]). The aromatic rings of the two independent benzoate moieties (denoted by suffix A and B for the two anions in the asymmetric unit) are nearly perpendicular with a dihedral angle of 86.55 (5)°. The negative charge of the carboxyl­ate group is delocalized over the two O atoms in each of the anions, as indicated by the nearly identical length of the two C—O bonds [1.2574 (17) and 1.2624 (17) Å for mol­ecule A and 1.2574 (17) and 1.2655 (16) Å for mol­ecule B]. A weak inter­molecular hydrogen bond is formed between the C9B—H9B group of a phenyl ring and the O19B atom of an inversion-related (−x + 1, −y + 2, −z + 1) NO2 group (Table 1[link]), leading to the formation of supra­molecular pillars along [100] and [010] (Fig. 2[link]). An additional C—H⋯π inter­action between C10A—H10A and the centroid of a neighbouring phenyl ring (Table 1[link]) consolidates the three-dimensional network structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C8B–C13B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C9B—H9B⋯O19Bi 0.95 2.39 3.2351 (19) 148
C10—H10ACg4ii 0.95 2.63 3.4171 (17) 140
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z.
[Figure 1]
Figure 1
The mol­ecular structure of the binuclear title complex, with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Non-labelled atoms are generated by inversion symmetry (symmetry code: −x + 1, −y + 2, −z).
[Figure 2]
Figure 2
Packing of the mol­ecules in the title compound, with inter­molecular C—H⋯O hydrogen bonds indicated by blue dashed lines (H atoms not participating in hydrogen bonding are omitted).

The mol­ecular structure of the title complex is similar to that of tetra­kis­(μ2-benzoato-O,O')-bis­(di­methyl­sulfoxide)­dicopper(II) (Reyes-Ortega et al., 2005[Reyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc. 127, 16312-16317.]) and other related copper complexes (Vives et al., 2003[Vives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699-704.]).

Synthesis and crystallization

A mixture of benzene­thiol (1.25 g, 11.4 mmol), 2-bromo-5-nitro-benzoic acid (2.16 g, 8.8 mmol), K2CO3 (1.21 g, 8.8 mmol), Cu powder (51 mg, 0.8 mmol), Cu2O (38 mg, 0.4 mmol) and 2-eth­oxy­ethanol (3 ml) was heated to 403 K for 24 h. The reaction was cooled down to room temperature, and the solvent was removed under reduced pressure. The residue was poured into water (30 ml), treated with charcoal, and the resulting suspension was filtered through Celite. Acidification of the filtrate with dilute HCl (pH 5) gave a bluish precipitate (crude product). The crude product was dissolved in aqueous Na2CO3 solution (5%wt, 100 ml) and the solution was filtered through Celite and subjected to acidification and subsequent precipitation to give a pure product. Blue rod-shaped crystals were grown from CH3CN solution by slow evaporation (Fig. 3[link]).

[Figure 3]
Figure 3
Crystals of the title complex. The length of the red scale bar represents 0.1 mm.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C13H8NO4S)4(C2H3N)2]
Mr 1306.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 10.7377 (1), 11.0957 (1), 12.4857 (2)
α, β, γ (°) 77.9948 (5), 88.1362 (5), 72.3710 (5)
V3) 1385.97 (3)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.00
Crystal size (mm) 0.50 × 0.40 × 0.20
 
Data collection
Diffractometer Nonius KappaCCD diffractometer
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.636, 0.826
No. of measured, independent and observed [I > 2σ(I)] reflections 12571, 6335, 5914
Rint 0.016
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.061, 1.05
No. of reflections 6335
No. of parameters 380
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.39
Computer programs: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]), DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), XP in SHELXTL and SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Tetrakis[µ2-5-nitro-2-(phenylsulfanyl)benzoato-κ2O:O']bis[(acetonitrile-κN)copper(II)] top
Crystal data top
[Cu2(C13H8NO4S)4(C2H3N)2]Z = 1
Mr = 1306.24F(000) = 666
Triclinic, P1Dx = 1.565 Mg m3
a = 10.7377 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0957 (1) ÅCell parameters from 6289 reflections
c = 12.4857 (2) Åθ = 1.0–27.5°
α = 77.9948 (5)°µ = 1.00 mm1
β = 88.1362 (5)°T = 90 K
γ = 72.3710 (5)°Rod, blue
V = 1385.97 (3) Å30.50 × 0.40 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
6335 independent reflections
Radiation source: fine-focus sealed tube5914 reflections with I > 2σ(I)
Detector resolution: 18 pixels mm-1Rint = 0.016
ω scans at fixed χ=55°θmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(Scalepack; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.636, Tmax = 0.826k = 1414
12571 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0208P)2 + 0.9758P]
where P = (Fo2 + 2Fc2)/3
6335 reflections(Δ/σ)max = 0.002
380 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37846 (2)0.99509 (2)0.01065 (2)0.00993 (5)
C200.00546 (18)1.0018 (2)0.19864 (15)0.0383 (4)
H20A0.0217840.9180440.2494620.057*
H20B0.0824181.0276380.1650400.057*
H20C0.0121331.0668830.2386910.057*
C210.10207 (15)0.99118 (16)0.11335 (13)0.0219 (3)
N220.17853 (12)0.98250 (13)0.04760 (11)0.0210 (3)
C1A0.73172 (13)0.54587 (13)0.03417 (11)0.0129 (3)
C2A0.63214 (13)0.61581 (13)0.02586 (10)0.0121 (3)
C3A0.57027 (13)0.55063 (13)0.10719 (11)0.0131 (3)
H3A0.5029080.5974530.1474040.016*
C4A0.60775 (13)0.41742 (13)0.12878 (11)0.0135 (3)
C5A0.70116 (14)0.34601 (13)0.06829 (11)0.0154 (3)
H5A0.7230210.2544240.0824990.018*
C6A0.76180 (14)0.41077 (14)0.01307 (12)0.0161 (3)
H6A0.8251600.3628400.0556050.019*
S7A0.81150 (3)0.63183 (3)0.13466 (3)0.01537 (8)
C8A0.90777 (13)0.50792 (13)0.20027 (11)0.0141 (3)
C9A0.87216 (14)0.50745 (14)0.30608 (12)0.0164 (3)
H9A0.7962240.5707170.3417010.020*
C10A0.94849 (14)0.41366 (15)0.35961 (12)0.0199 (3)
H10A0.9259250.4140270.4326420.024*
C11A1.05753 (15)0.31967 (15)0.30620 (13)0.0220 (3)
H11A1.1082050.2546190.3423540.026*
C12A1.09315 (14)0.31990 (15)0.20054 (13)0.0211 (3)
H12A1.1674430.2547410.1642270.025*
C13A1.01995 (14)0.41563 (15)0.14789 (12)0.0176 (3)
H13A1.0460030.4183410.0766590.021*
C14A0.58662 (13)0.76073 (13)0.00758 (10)0.0119 (2)
O15A0.32797 (9)1.18158 (9)0.00850 (8)0.0148 (2)
O16A0.46503 (10)0.81172 (9)0.01343 (8)0.0167 (2)
N17A0.54354 (12)0.34971 (12)0.21587 (9)0.0167 (2)
O18A0.57926 (13)0.23095 (10)0.23492 (9)0.0291 (3)
O19A0.45741 (11)0.41481 (10)0.26574 (9)0.0218 (2)
C1B0.47177 (13)0.84097 (13)0.39310 (11)0.0132 (3)
C2B0.55474 (13)0.90071 (13)0.32621 (11)0.0123 (3)
C3B0.66210 (13)0.91810 (13)0.37284 (11)0.0132 (3)
H3B0.7184860.9570580.3280180.016*
C4B0.68656 (13)0.87855 (13)0.48456 (11)0.0135 (3)
C5B0.60457 (14)0.82457 (13)0.55299 (11)0.0146 (3)
H5B0.6209790.8008780.6300000.018*
C6B0.49851 (13)0.80600 (13)0.50678 (11)0.0146 (3)
H6B0.4420990.7685850.5530190.017*
S7B0.34082 (3)0.80704 (4)0.33483 (3)0.01856 (8)
C8B0.28760 (13)0.71437 (14)0.45143 (11)0.0161 (3)
C9B0.18868 (14)0.77613 (15)0.51410 (13)0.0203 (3)
H9B0.1484110.8668970.4938670.024*
C10B0.14911 (15)0.70463 (16)0.60623 (13)0.0228 (3)
H10B0.0820940.7467740.6493820.027*
C11B0.20682 (15)0.57216 (16)0.63558 (12)0.0221 (3)
H11B0.1814780.5239630.7000330.026*
C12B0.30193 (15)0.50986 (15)0.57050 (13)0.0210 (3)
H12B0.3398400.4186770.5894750.025*
C13B0.34171 (14)0.58063 (14)0.47772 (12)0.0177 (3)
H13B0.4055300.5378580.4325250.021*
C14B0.53438 (13)0.94456 (13)0.20461 (11)0.0127 (3)
O15B0.36927 (9)1.03736 (9)0.14980 (8)0.01443 (19)
O16B0.42258 (10)0.95862 (10)0.16679 (8)0.0179 (2)
N17B0.80353 (12)0.89184 (12)0.53147 (10)0.0176 (2)
O18B0.81739 (12)0.86967 (12)0.63151 (9)0.0276 (3)
O19B0.88348 (10)0.92404 (11)0.46750 (9)0.0218 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01075 (8)0.00931 (8)0.00903 (8)0.00330 (6)0.00151 (6)0.00015 (6)
C200.0299 (9)0.0581 (13)0.0299 (9)0.0159 (9)0.0122 (8)0.0135 (9)
C210.0170 (7)0.0264 (8)0.0228 (8)0.0082 (6)0.0015 (6)0.0034 (6)
N220.0148 (6)0.0245 (7)0.0233 (6)0.0080 (5)0.0009 (5)0.0010 (5)
C1A0.0140 (6)0.0137 (6)0.0112 (6)0.0047 (5)0.0003 (5)0.0022 (5)
C2A0.0143 (6)0.0115 (6)0.0104 (6)0.0037 (5)0.0011 (5)0.0018 (5)
C3A0.0150 (6)0.0133 (6)0.0105 (6)0.0037 (5)0.0001 (5)0.0025 (5)
C4A0.0173 (6)0.0136 (6)0.0099 (6)0.0068 (5)0.0002 (5)0.0000 (5)
C5A0.0183 (7)0.0106 (6)0.0163 (6)0.0035 (5)0.0010 (5)0.0019 (5)
C6A0.0169 (7)0.0140 (7)0.0177 (7)0.0037 (5)0.0028 (5)0.0055 (5)
S7A0.01914 (17)0.01343 (16)0.01462 (16)0.00625 (13)0.00703 (13)0.00429 (12)
C8A0.0141 (6)0.0146 (6)0.0146 (6)0.0054 (5)0.0047 (5)0.0040 (5)
C9A0.0135 (6)0.0179 (7)0.0165 (7)0.0030 (5)0.0004 (5)0.0036 (5)
C10A0.0186 (7)0.0262 (8)0.0175 (7)0.0068 (6)0.0016 (5)0.0103 (6)
C11A0.0177 (7)0.0212 (8)0.0286 (8)0.0039 (6)0.0068 (6)0.0122 (6)
C12A0.0136 (7)0.0202 (7)0.0256 (8)0.0014 (6)0.0008 (6)0.0015 (6)
C13A0.0154 (7)0.0230 (7)0.0142 (6)0.0067 (6)0.0008 (5)0.0022 (5)
C14A0.0165 (6)0.0115 (6)0.0070 (6)0.0035 (5)0.0009 (5)0.0012 (5)
O15A0.0164 (5)0.0110 (5)0.0177 (5)0.0050 (4)0.0039 (4)0.0039 (4)
O16A0.0149 (5)0.0102 (5)0.0231 (5)0.0029 (4)0.0014 (4)0.0009 (4)
N17A0.0243 (6)0.0150 (6)0.0116 (5)0.0087 (5)0.0004 (5)0.0004 (4)
O18A0.0527 (8)0.0130 (5)0.0222 (6)0.0134 (5)0.0126 (5)0.0016 (4)
O19A0.0243 (5)0.0208 (5)0.0188 (5)0.0072 (4)0.0082 (4)0.0015 (4)
C1B0.0130 (6)0.0118 (6)0.0127 (6)0.0017 (5)0.0005 (5)0.0013 (5)
C2B0.0140 (6)0.0098 (6)0.0109 (6)0.0008 (5)0.0020 (5)0.0017 (5)
C3B0.0149 (6)0.0108 (6)0.0133 (6)0.0028 (5)0.0034 (5)0.0031 (5)
C4B0.0135 (6)0.0125 (6)0.0147 (6)0.0032 (5)0.0003 (5)0.0043 (5)
C5B0.0182 (7)0.0133 (6)0.0104 (6)0.0025 (5)0.0010 (5)0.0016 (5)
C6B0.0154 (6)0.0151 (7)0.0118 (6)0.0042 (5)0.0032 (5)0.0007 (5)
S7B0.01666 (17)0.02532 (19)0.01348 (16)0.01036 (14)0.00195 (13)0.00278 (13)
C8B0.0139 (6)0.0204 (7)0.0144 (6)0.0077 (5)0.0000 (5)0.0006 (5)
C9B0.0181 (7)0.0177 (7)0.0269 (8)0.0069 (6)0.0033 (6)0.0066 (6)
C10B0.0210 (7)0.0297 (8)0.0239 (8)0.0124 (6)0.0093 (6)0.0134 (6)
C11B0.0228 (7)0.0304 (8)0.0163 (7)0.0158 (7)0.0014 (6)0.0007 (6)
C12B0.0194 (7)0.0187 (7)0.0226 (7)0.0060 (6)0.0029 (6)0.0015 (6)
C13B0.0133 (6)0.0209 (7)0.0178 (7)0.0036 (5)0.0000 (5)0.0041 (6)
C14B0.0167 (6)0.0088 (6)0.0111 (6)0.0020 (5)0.0016 (5)0.0018 (5)
O15B0.0153 (5)0.0167 (5)0.0099 (4)0.0040 (4)0.0027 (4)0.0015 (4)
O16B0.0172 (5)0.0245 (5)0.0104 (4)0.0073 (4)0.0004 (4)0.0017 (4)
N17B0.0187 (6)0.0177 (6)0.0180 (6)0.0065 (5)0.0004 (5)0.0059 (5)
O18B0.0295 (6)0.0413 (7)0.0168 (5)0.0159 (5)0.0035 (4)0.0080 (5)
O19B0.0196 (5)0.0248 (6)0.0243 (5)0.0116 (4)0.0030 (4)0.0053 (4)
Geometric parameters (Å, º) top
Cu1—O16B1.9505 (10)C13A—H13A0.9500
Cu1—O16A1.9576 (10)C14A—O15Ai1.2574 (17)
Cu1—O15B1.9588 (9)C14A—O16A1.2624 (17)
Cu1—O15A1.9685 (10)N17A—O18A1.2287 (16)
Cu1—N222.2206 (12)N17A—O19A1.2287 (16)
Cu1—Cu1i2.6478 (3)C1B—C6B1.4062 (18)
C20—C211.460 (2)C1B—C2B1.4176 (18)
C20—H20A0.9800C1B—S7B1.7746 (14)
C20—H20B0.9800C2B—C3B1.3893 (19)
C20—H20C0.9800C2B—C14B1.4966 (18)
C21—N221.139 (2)C3B—C4B1.3808 (19)
C1A—C6A1.4032 (19)C3B—H3B0.9500
C1A—C2A1.4123 (18)C4B—C5B1.3862 (19)
C1A—S7A1.7734 (14)C4B—N17B1.4623 (18)
C2A—C3A1.3919 (18)C5B—C6B1.381 (2)
C2A—C14A1.5017 (18)C5B—H5B0.9500
C3A—C4A1.3785 (19)C6B—H6B0.9500
C3A—H3A0.9500S7B—C8B1.7839 (14)
C4A—C5A1.3865 (19)C8B—C13B1.391 (2)
C4A—N17A1.4654 (17)C8B—C9B1.392 (2)
C5A—C6A1.3816 (19)C9B—C10B1.388 (2)
C5A—H5A0.9500C9B—H9B0.9500
C6A—H6A0.9500C10B—C11B1.385 (2)
S7A—C8A1.7840 (14)C10B—H10B0.9500
C8A—C9A1.3887 (19)C11B—C12B1.390 (2)
C8A—C13A1.397 (2)C11B—H11B0.9500
C9A—C10A1.392 (2)C12B—C13B1.391 (2)
C9A—H9A0.9500C12B—H12B0.9500
C10A—C11A1.387 (2)C13B—H13B0.9500
C10A—H10A0.9500C14B—O16B1.2574 (17)
C11A—C12A1.386 (2)C14B—O15Bi1.2655 (16)
C11A—H11A0.9500N17B—O18B1.2267 (16)
C12A—C13A1.389 (2)N17B—O19B1.2349 (16)
C12A—H12A0.9500
O16B—Cu1—O16A87.64 (4)C12A—C13A—C8A119.63 (13)
O16B—Cu1—O15B168.27 (4)C12A—C13A—H13A120.2
O16A—Cu1—O15B91.98 (4)C8A—C13A—H13A120.2
O16B—Cu1—O15A89.65 (4)O15Ai—C14A—O16A126.72 (13)
O16A—Cu1—O15A168.31 (4)O15Ai—C14A—C2A117.69 (12)
O15B—Cu1—O15A88.37 (4)O16A—C14A—C2A115.55 (12)
O16B—Cu1—N2290.57 (4)C14Ai—O15A—Cu1119.40 (9)
O16A—Cu1—N2297.89 (5)C14A—O16A—Cu1125.20 (9)
O15B—Cu1—N22101.10 (4)O18A—N17A—O19A123.80 (12)
O15A—Cu1—N2293.50 (4)O18A—N17A—C4A118.00 (12)
O16B—Cu1—Cu1i83.35 (3)O19A—N17A—C4A118.21 (11)
O16A—Cu1—Cu1i81.95 (3)C6B—C1B—C2B118.05 (12)
O15B—Cu1—Cu1i84.98 (3)C6B—C1B—S7B120.91 (10)
O15A—Cu1—Cu1i86.45 (3)C2B—C1B—S7B121.02 (10)
N22—Cu1—Cu1i173.92 (4)C3B—C2B—C1B119.99 (12)
C21—C20—H20A109.5C3B—C2B—C14B117.13 (12)
C21—C20—H20B109.5C1B—C2B—C14B122.86 (12)
H20A—C20—H20B109.5C4B—C3B—C2B119.77 (12)
C21—C20—H20C109.5C4B—C3B—H3B120.1
H20A—C20—H20C109.5C2B—C3B—H3B120.1
H20B—C20—H20C109.5C3B—C4B—C5B121.79 (13)
N22—C21—C20179.27 (17)C3B—C4B—N17B118.98 (12)
C21—N22—Cu1142.80 (12)C5B—C4B—N17B119.22 (12)
C6A—C1A—C2A118.39 (12)C6B—C5B—C4B118.55 (12)
C6A—C1A—S7A122.63 (10)C6B—C5B—H5B120.7
C2A—C1A—S7A118.97 (10)C4B—C5B—H5B120.7
C3A—C2A—C1A120.17 (12)C5B—C6B—C1B121.77 (13)
C3A—C2A—C14A116.23 (12)C5B—C6B—H6B119.1
C1A—C2A—C14A123.60 (12)C1B—C6B—H6B119.1
C4A—C3A—C2A119.31 (13)C1B—S7B—C8B101.35 (6)
C4A—C3A—H3A120.3C13B—C8B—C9B120.08 (13)
C2A—C3A—H3A120.3C13B—C8B—S7B120.24 (11)
C3A—C4A—C5A121.98 (12)C9B—C8B—S7B119.66 (11)
C3A—C4A—N17A118.85 (12)C10B—C9B—C8B119.76 (14)
C5A—C4A—N17A119.13 (12)C10B—C9B—H9B120.1
C6A—C5A—C4A118.65 (13)C8B—C9B—H9B120.1
C6A—C5A—H5A120.7C11B—C10B—C9B120.33 (14)
C4A—C5A—H5A120.7C11B—C10B—H10B119.8
C5A—C6A—C1A121.35 (13)C9B—C10B—H10B119.8
C5A—C6A—H6A119.3C10B—C11B—C12B119.85 (14)
C1A—C6A—H6A119.3C10B—C11B—H11B120.1
C1A—S7A—C8A102.32 (6)C12B—C11B—H11B120.1
C9A—C8A—C13A120.39 (13)C11B—C12B—C13B120.19 (14)
C9A—C8A—S7A118.87 (11)C11B—C12B—H12B119.9
C13A—C8A—S7A120.69 (11)C13B—C12B—H12B119.9
C8A—C9A—C10A119.57 (13)C12B—C13B—C8B119.66 (14)
C8A—C9A—H9A120.2C12B—C13B—H13B120.2
C10A—C9A—H9A120.2C8B—C13B—H13B120.2
C11A—C10A—C9A119.95 (14)O16B—C14B—O15Bi126.33 (12)
C11A—C10A—H10A120.0O16B—C14B—C2B116.29 (12)
C9A—C10A—H10A120.0O15Bi—C14B—C2B117.37 (12)
C12A—C11A—C10A120.55 (14)C14Bi—O15B—Cu1121.32 (9)
C12A—C11A—H11A119.7C14B—O16B—Cu1123.77 (9)
C10A—C11A—H11A119.7O18B—N17B—O19B123.72 (12)
C11A—C12A—C13A119.84 (14)O18B—N17B—C4B118.56 (12)
C11A—C12A—H12A120.1O19B—N17B—C4B117.72 (12)
C13A—C12A—H12A120.1
C6A—C1A—C2A—C3A2.85 (19)C6B—C1B—C2B—C3B2.74 (19)
S7A—C1A—C2A—C3A178.32 (10)S7B—C1B—C2B—C3B175.48 (10)
C6A—C1A—C2A—C14A177.17 (12)C6B—C1B—C2B—C14B178.72 (12)
S7A—C1A—C2A—C14A1.66 (18)S7B—C1B—C2B—C14B3.05 (18)
C1A—C2A—C3A—C4A0.4 (2)C1B—C2B—C3B—C4B0.8 (2)
C14A—C2A—C3A—C4A179.61 (12)C14B—C2B—C3B—C4B179.46 (12)
C2A—C3A—C4A—C5A3.2 (2)C2B—C3B—C4B—C5B1.8 (2)
C2A—C3A—C4A—N17A178.95 (12)C2B—C3B—C4B—N17B177.03 (12)
C3A—C4A—C5A—C6A2.6 (2)C3B—C4B—C5B—C6B2.4 (2)
N17A—C4A—C5A—C6A179.52 (12)N17B—C4B—C5B—C6B176.42 (12)
C4A—C5A—C6A—C1A0.8 (2)C4B—C5B—C6B—C1B0.4 (2)
C2A—C1A—C6A—C5A3.4 (2)C2B—C1B—C6B—C5B2.1 (2)
S7A—C1A—C6A—C5A177.77 (11)S7B—C1B—C6B—C5B176.08 (11)
C6A—C1A—S7A—C8A7.14 (13)C6B—C1B—S7B—C8B5.99 (13)
C2A—C1A—S7A—C8A171.63 (11)C2B—C1B—S7B—C8B172.19 (11)
C1A—S7A—C8A—C9A108.76 (12)C1B—S7B—C8B—C13B89.83 (12)
C1A—S7A—C8A—C13A73.62 (12)C1B—S7B—C8B—C9B92.16 (12)
C13A—C8A—C9A—C10A0.5 (2)C13B—C8B—C9B—C10B3.4 (2)
S7A—C8A—C9A—C10A178.11 (11)S7B—C8B—C9B—C10B178.58 (12)
C8A—C9A—C10A—C11A1.5 (2)C8B—C9B—C10B—C11B0.5 (2)
C9A—C10A—C11A—C12A1.5 (2)C9B—C10B—C11B—C12B2.1 (2)
C10A—C11A—C12A—C13A0.6 (2)C10B—C11B—C12B—C13B1.7 (2)
C11A—C12A—C13A—C8A2.6 (2)C11B—C12B—C13B—C8B1.2 (2)
C9A—C8A—C13A—C12A2.6 (2)C9B—C8B—C13B—C12B3.7 (2)
S7A—C8A—C13A—C12A179.85 (11)S7B—C8B—C13B—C12B178.26 (11)
C3A—C2A—C14A—O15Ai138.82 (13)C3B—C2B—C14B—O16B162.85 (12)
C1A—C2A—C14A—O15Ai41.16 (18)C1B—C2B—C14B—O16B18.58 (19)
C3A—C2A—C14A—O16A39.11 (17)C3B—C2B—C14B—O15Bi17.83 (18)
C1A—C2A—C14A—O16A140.91 (13)C1B—C2B—C14B—O15Bi160.74 (13)
O15Ai—C14A—O16A—Cu15.3 (2)O15Bi—C14B—O16B—Cu16.7 (2)
C2A—C14A—O16A—Cu1172.44 (8)C2B—C14B—O16B—Cu1172.57 (9)
C3A—C4A—N17A—O18A179.13 (13)C3B—C4B—N17B—O18B172.27 (13)
C5A—C4A—N17A—O18A2.94 (19)C5B—C4B—N17B—O18B8.87 (19)
C3A—C4A—N17A—O19A0.73 (19)C3B—C4B—N17B—O19B8.25 (19)
C5A—C4A—N17A—O19A177.20 (13)C5B—C4B—N17B—O19B170.61 (13)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of the C8B–C13B ring.
D—H···AD—HH···AD···AD—H···A
C6B—H6B···O18Aii0.952.653.2785 (17)124
C9B—H9B···O19Biii0.952.393.2351 (19)148
C10—H10A···Cg4iv0.952.633.4171 (17)140
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z.
 

Acknowledgements

The authors thank Dr Sean Parkin for assistance in preparing the manuscript.

Funding information

The authors acknowledge the Natural Science Foundation of Hubei Province for financial support (2014CFB787).

References

First citationLiu, S., Pestano, J. P. C. & Wolf, C. (2007). Synthesis, pp. 3519–3527.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReyes-Ortega, Y., Alcántara-Flores, J. L., Hernández-Galindo, M. C., Ramírez-Rosales, D., Bernès, S., Ramírez-García, J. C., Zamorano-Ulloa, R. & Escudero, R. (2005). J. Am. Chem. Soc. 127, 16312–16317.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVives, G., Mason, S. A., Prince, P. D., Junk, P. C. & Steed, J. W. (2003). Cryst. Growth Des. 3, 699–704.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds