organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-[(E)-3-(4-Methyl­phen­yl)-3-oxoprop-1-en-1-yl]benzo­nitrile

aDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara Institute of Technology, Ujire -574 240, and affiliated to, Visvesvaraya Technological University, Belagavi, Karnataka, India, bLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: y.ramli@um5s.net.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 10 June 2020; accepted 15 June 2020; online 26 June 2020)

In the title mol­ecule C17H13NO, the phenyl rings are inclined to one another by 48.04 (9)°. In the crystal, weak C—H⋯π(ring) inter­actions form a layered structure parallel to the ab plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are compounds that can be easily synthesized, and their analogs can also be isolated from natural products (Dhar, 1981[Dhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley and Sons.]). Apart from their biological applications, some chalcones with appropriate substituents are also reported to be good NLO materials (Shettigar et al., 2006[Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44-49.]). As part of our work in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The title mol­ecule showing 30% probability ellipsoids.

The 4-cyano­phenyl and 4-methyl­benzoyl units are disposed in a trans fashion about the C7=C8 double bond. The dihedral angle between the planes of the C1–C6 and C10–C15 benzene rings is 48.04 (9)° and these benzene rings are inclined to the plane defined by the propene atoms C7, C8 and C9 by 16.0 (1) and 32.6 (1)°, respectively, while O1 lies 0.24 (1) Å away from the propene plane.

In the crystal, stacked mol­ecules form layers parallel to the ab plane with the para substituents on the phenyl rings on the outside surfaces of the layers (Figs. 2[link] and 3[link]). The mol­ecules constituting each layer are associated through very weak C2—H2⋯Cg2, C5—H5⋯Cg2, C12—H12⋯Cg1 and C15—H15⋯Cg1 inter­actions across centers of symmetry (Table 1[link]; Cg1 and Cg2 are the centroids of rings C1–C6 and C10–C15, respectively).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.93 2.98 3.645 (2) 129
C5—H5⋯Cg2ii 0.93 2.91 3.5929 (18) 132
C12—H12⋯Cg1iii 0.93 2.98 3.637 (2) 129
C15—H15⋯Cg1iv 0.93 2.99 3.604 (2) 125
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x, -y+1, -z+1.
[Figure 2]
Figure 2
Elevation view of a portion of one layer viewed along the a-axis direction with C—H⋯π(ring) inter­actions depicted by dashed lines.
[Figure 3]
Figure 3
View of a portion of one layer viewed along the b-axis direction with C—H⋯π(ring) inter­actions depicted by dashed lines.

Synthesis and crystallization

An equimolar mixture of 4-methyl­aceto­phenone (0.01 mol) and 4-cyano­benzaldehyde (0.01 mol) in ethanol (30 ml) was stirred for 3 h in the presence of NaOH (5 ml, 30%) at 283 K. The crude solid obtained was collected by filtration and dried. It was purified by repeated recrystallization. Thin layer chromatography was used to check the purity of the compound. Single crystals were grown from ethanol solution by slow evaporation, yield 86%, m.p. 415 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H13NO
Mr 247.28
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 5.8686 (2), 7.4955 (3), 15.2792 (5)
α, β, γ (°) 102.195 (2), 90.649 (2), 90.454 (2)
V3) 656.86 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.61
Crystal size (mm) 0.28 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.85, 0.88
No. of measured, independent and observed [I > 2σ(I)] reflections 4923, 2432, 2010
Rint 0.029
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.188, 1.09
No. of reflections 2432
No. of parameters 174
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-[(E)-3-(4-Methylphenyl)-3-oxoprop-1-en-1-yl]benzonitrile top
Crystal data top
C17H13NOZ = 2
Mr = 247.28F(000) = 260
Triclinic, P1Dx = 1.250 Mg m3
a = 5.8686 (2) ÅCu Kα radiation, λ = 1.54178 Å
b = 7.4955 (3) ÅCell parameters from 3797 reflections
c = 15.2792 (5) Åθ = 3.0–72.3°
α = 102.195 (2)°µ = 0.61 mm1
β = 90.649 (2)°T = 296 K
γ = 90.454 (2)°Block, colourless
V = 656.86 (4) Å30.28 × 0.27 × 0.22 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2432 independent reflections
Radiation source: INCOATEC IµS micro–focus source2010 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
ω scansθmax = 72.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 67
Tmin = 0.85, Tmax = 0.88k = 89
4923 measured reflectionsl = 1718
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1069P)2 + 0.0967P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2432 reflectionsΔρmax = 0.21 e Å3
174 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.045 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2283 (2)0.7780 (2)0.53901 (10)0.0780 (5)
N10.7607 (4)0.3451 (3)0.04455 (13)0.0857 (6)
C10.2420 (3)0.6151 (2)0.32693 (12)0.0518 (4)
C20.1652 (3)0.6113 (3)0.23990 (13)0.0580 (5)
H20.0229520.6589760.2311110.070*
C30.2945 (3)0.5390 (3)0.16681 (12)0.0613 (5)
H30.2402430.5375000.1092190.074*
C40.5071 (3)0.4682 (2)0.17993 (12)0.0551 (5)
C50.5873 (3)0.4695 (2)0.26642 (12)0.0556 (5)
H50.7291970.4210320.2749830.067*
C60.4562 (3)0.5427 (3)0.33882 (12)0.0558 (5)
H60.5104990.5440700.3963890.067*
C70.0932 (3)0.6890 (2)0.40188 (13)0.0565 (5)
H70.0575480.7084910.3873420.068*
C80.1490 (3)0.7312 (3)0.48794 (13)0.0606 (5)
H80.2998790.7210050.5054020.073*
C90.0252 (3)0.7946 (3)0.55739 (13)0.0580 (5)
C100.0541 (3)0.8750 (2)0.64974 (12)0.0519 (4)
C110.2692 (3)0.9570 (3)0.66834 (13)0.0576 (5)
H110.3695530.9599480.6219860.069*
C120.3322 (3)1.0337 (3)0.75564 (14)0.0611 (5)
H120.4747721.0894230.7668860.073*
C130.1902 (3)1.0302 (2)0.82681 (13)0.0587 (5)
C140.0233 (3)0.9458 (3)0.80743 (13)0.0613 (5)
H140.1213860.9393480.8540760.074*
C150.0909 (3)0.8723 (3)0.72091 (13)0.0574 (5)
H150.2353810.8199660.7097250.069*
C160.2597 (4)1.1135 (3)0.92168 (15)0.0803 (7)
H16A0.4059251.1721120.9222090.120*
H16B0.2686341.0196970.9556890.120*
H16C0.1490031.2019790.9477540.120*
C170.6484 (4)0.3977 (3)0.10434 (13)0.0648 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0489 (7)0.1059 (12)0.0725 (9)0.0032 (7)0.0061 (6)0.0041 (8)
N10.0888 (14)0.1008 (15)0.0662 (12)0.0074 (11)0.0107 (10)0.0141 (10)
C10.0492 (9)0.0493 (9)0.0571 (9)0.0090 (7)0.0044 (7)0.0121 (7)
C20.0506 (9)0.0646 (11)0.0614 (10)0.0032 (8)0.0078 (8)0.0195 (8)
C30.0596 (10)0.0720 (12)0.0545 (10)0.0105 (9)0.0090 (8)0.0190 (8)
C40.0560 (10)0.0534 (9)0.0558 (10)0.0086 (7)0.0011 (7)0.0115 (7)
C50.0489 (9)0.0591 (10)0.0593 (10)0.0033 (7)0.0044 (7)0.0139 (8)
C60.0543 (9)0.0619 (10)0.0515 (9)0.0046 (8)0.0084 (7)0.0132 (7)
C70.0499 (9)0.0556 (10)0.0637 (11)0.0027 (7)0.0052 (8)0.0120 (8)
C80.0503 (9)0.0696 (12)0.0606 (10)0.0019 (8)0.0028 (8)0.0109 (9)
C90.0476 (9)0.0609 (10)0.0642 (11)0.0008 (7)0.0032 (8)0.0105 (8)
C100.0443 (8)0.0508 (9)0.0604 (10)0.0019 (7)0.0004 (7)0.0109 (7)
C110.0450 (9)0.0593 (10)0.0672 (11)0.0029 (7)0.0050 (7)0.0105 (8)
C120.0457 (8)0.0578 (10)0.0758 (12)0.0042 (7)0.0042 (8)0.0055 (9)
C130.0576 (10)0.0524 (10)0.0643 (11)0.0019 (8)0.0046 (8)0.0082 (8)
C140.0568 (10)0.0627 (11)0.0633 (11)0.0039 (8)0.0073 (8)0.0106 (8)
C150.0437 (8)0.0583 (10)0.0685 (11)0.0044 (7)0.0026 (7)0.0099 (8)
C160.0880 (15)0.0769 (14)0.0691 (13)0.0031 (12)0.0106 (11)0.0008 (11)
C170.0694 (12)0.0678 (12)0.0572 (11)0.0050 (9)0.0026 (9)0.0135 (9)
Geometric parameters (Å, º) top
O1—C91.220 (2)C8—H80.9300
N1—C171.136 (3)C9—C101.481 (3)
C1—C21.394 (3)C10—C151.392 (3)
C1—C61.398 (3)C10—C111.399 (2)
C1—C71.464 (3)C11—C121.381 (3)
C2—C31.373 (3)C11—H110.9300
C2—H20.9300C12—C131.382 (3)
C3—C41.389 (3)C12—H120.9300
C3—H30.9300C13—C141.399 (3)
C4—C51.396 (3)C13—C161.503 (3)
C4—C171.439 (3)C14—C151.373 (3)
C5—C61.373 (3)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—C81.323 (3)C16—H16B0.9600
C7—H70.9300C16—H16C0.9600
C8—C91.489 (3)
C2—C1—C6118.38 (16)C10—C9—C8118.29 (15)
C2—C1—C7118.95 (16)C15—C10—C11118.40 (17)
C6—C1—C7122.64 (16)C15—C10—C9119.20 (16)
C3—C2—C1121.61 (17)C11—C10—C9122.39 (16)
C3—C2—H2119.2C12—C11—C10119.91 (17)
C1—C2—H2119.2C12—C11—H11120.0
C2—C3—C4119.20 (17)C10—C11—H11120.0
C2—C3—H3120.4C11—C12—C13122.10 (17)
C4—C3—H3120.4C11—C12—H12119.0
C3—C4—C5120.28 (17)C13—C12—H12119.0
C3—C4—C17120.01 (17)C12—C13—C14117.43 (17)
C5—C4—C17119.69 (17)C12—C13—C16121.89 (18)
C6—C5—C4119.81 (16)C14—C13—C16120.68 (18)
C6—C5—H5120.1C15—C14—C13121.31 (17)
C4—C5—H5120.1C15—C14—H14119.3
C5—C6—C1120.71 (16)C13—C14—H14119.3
C5—C6—H6119.6C14—C15—C10120.83 (16)
C1—C6—H6119.6C14—C15—H15119.6
C8—C7—C1127.33 (17)C10—C15—H15119.6
C8—C7—H7116.3C13—C16—H16A109.5
C1—C7—H7116.3C13—C16—H16B109.5
C7—C8—C9121.20 (17)H16A—C16—H16B109.5
C7—C8—H8119.4C13—C16—H16C109.5
C9—C8—H8119.4H16A—C16—H16C109.5
O1—C9—C10120.84 (17)H16B—C16—H16C109.5
O1—C9—C8120.86 (17)N1—C17—C4178.8 (2)
C6—C1—C2—C30.0 (3)O1—C9—C10—C1522.7 (3)
C7—C1—C2—C3178.17 (16)C8—C9—C10—C15156.09 (18)
C1—C2—C3—C40.1 (3)O1—C9—C10—C11156.2 (2)
C2—C3—C4—C50.4 (3)C8—C9—C10—C1125.0 (3)
C2—C3—C4—C17177.81 (17)C15—C10—C11—C120.4 (3)
C3—C4—C5—C60.6 (3)C9—C10—C11—C12178.50 (16)
C17—C4—C5—C6177.68 (16)C10—C11—C12—C131.0 (3)
C4—C5—C6—C10.4 (3)C11—C12—C13—C140.2 (3)
C2—C1—C6—C50.1 (3)C11—C12—C13—C16179.91 (18)
C7—C1—C6—C5177.96 (16)C12—C13—C14—C151.2 (3)
C2—C1—C7—C8167.96 (18)C16—C13—C14—C15178.69 (19)
C6—C1—C7—C814.0 (3)C13—C14—C15—C101.8 (3)
C1—C7—C8—C9176.11 (17)C11—C10—C15—C141.0 (3)
C7—C8—C9—O113.5 (3)C9—C10—C15—C14179.91 (16)
C7—C8—C9—C10167.68 (18)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.983.645 (2)129
C5—H5···Cg2ii0.932.913.5929 (18)132
C12—H12···Cg1iii0.932.983.637 (2)129
C15—H15···Cg1iv0.932.993.604 (2)125
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

DA is grateful to the Directorate of Minorities, Government of Karnataka, for providing a research fellowship and Visvesvaraya Technological University, Belagavi, for access to research facilities.

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDhar, D. N. (1981). The Chemistry of Chalcones and Related Compounds. New York: John Wiley and Sons.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara Prasad, J. (2006). J. Cryst. Growth, 295, 44–49.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds