organic compounds
1-Benzyl-3-methylimidazolium bromide
aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The title compound, (BenzMIm)Br (BenzMIm=1-benzyl-3-methylimidazolium), C11H13N2+·Br−, was obtained as single crystals directly from a pure and liquid sample of the compound over several weeks. The molecular structure of (BenzMIm)Br consists of separated bromide anions and 1-benzyl-3-methylimidazolium cations connected via short C—H⋯Br contacts. The compound exhibits a relatively low melting point (m.p. = 72°C) and is a supercooled, highly viscous transparent liquid at ambient conditions. The title compound crystallizes with two unique ion pairs in the of the orthorhombic unit cell.
Keywords: crystal structure; ionic liquid; hydrogen bond; imidazolium.
CCDC reference: 2009703
Structure description
For the last 20 years, ionic liquids as salts with low melting points have attracted great interest because of their unique properties and applications. These properties include, for instance, large liquid ranges, broad electrochemical windows as well as low vapor pressures (Hallett & Welton, 2011; Welton, 1999). The title compound, which is a useful starting material in our ongoing efforts to investigate metal-containing ionic liquids (Peppel et al., 2010; Peppel et al., 2017; Peppel et al., 2019) was obtained as single crystals over a period of several weeks directly from its pure, highly viscous and supercooled liquid. 1-Benzyl-3-methylimidazolium bromide expands the range of known single-crystal X-ray structures of ionic liquids of the general formula (BenzMIm)X (X = Cl, PF6 (Ji et al., 2010; Hillesheim & Scipione, 2014) with a third example (X = Br). It can be seen from Fig. 1 that the (BenzMIm)Br is characterized by discrete 1-benzyl-3-methylimidazolium cations and bromide anions. The shortest C—H⋯Br contacts equal 2.740 Å (sum of van der Waals radii for H and Br: 3.0 Å). All bond lengths and angles within the cation are in expected ranges (Leclercq et al., 2009). The two symmetry-independent molecular units mainly differ by the angle between the phenyl and the imidazolium ring which is 84.02 (7)° in one of the cations and to 80.47 (7)° in the other. The title compound crystallizes with two unique ion pairs in the of the orthorhombic unit cell.
Synthesis and crystallization
The title compound, (BenzMIm)Br, was obtained in high purity as a transparent, supercooled, highly viscous liquid in multi-gram scale from N-methylimidazole and benzyl bromide in ethyl acetate solution under ambient conditions. Benzyl bromide (15.0 g, 87.7 mmol) was added in one portion to a vigorously stirred solution of N-methylimidazole (5.0 g, 60.9 mmol) in 100 ml ethyl acetate at room temperature. The clear solution became turbid after a few minutes and was stirred at room temperature overnight. Afterwards, the product was washed several times with portions of ethyl acetate and dried in vacuo (T = 90°C, p = 20 mbar, yield: 13.1 g, 85%).
Analytic data for (BenzMIm)Br: m.p. 72°C, EA for C11H13BrN2 % (calc.): C 52.47 (52.19); H 4.93 (5.18); N 10.91 (11.07); Br 31.63 (31.56).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 2009703
https://doi.org/10.1107/S2414314620007683/im4007sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620007683/im4007Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620007683/im4007Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).C11H13N2+·Br− | Dx = 1.506 Mg m−3 |
Mr = 253.14 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 9498 reflections |
a = 10.9070 (8) Å | θ = 2.4–30.4° |
b = 18.8993 (14) Å | µ = 3.65 mm−1 |
c = 21.6608 (15) Å | T = 150 K |
V = 4465.0 (6) Å3 | Prism, colourless |
Z = 16 | 0.40 × 0.32 × 0.22 mm |
F(000) = 2048 |
Bruker APEXII CCD diffractometer | 5934 independent reflections |
Radiation source: fine-focus sealed tube | 5054 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.028 |
φ and ω scans | θmax = 29.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | h = −14→14 |
Tmin = 0.33, Tmax = 0.51 | k = −25→25 |
51842 measured reflections | l = −29→29 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0243P)2 + 1.6832P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.002 |
5934 reflections | Δρmax = 0.32 e Å−3 |
255 parameters | Δρmin = −0.31 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.22716 (2) | 0.01486 (2) | 0.46713 (2) | 0.02635 (4) | |
Br2 | 0.78396 (2) | 0.20634 (2) | 0.71589 (2) | 0.02478 (4) | |
C1 | 0.17556 (12) | 0.07637 (7) | 0.67512 (6) | 0.0210 (3) | |
H1 | 0.234951 | 0.076170 | 0.707203 | 0.025* | |
C2 | 0.10465 (12) | 0.13162 (7) | 0.65814 (6) | 0.0205 (3) | |
H2 | 0.104466 | 0.177529 | 0.676007 | 0.025* | |
C3 | 0.05902 (12) | 0.04116 (7) | 0.59817 (6) | 0.0204 (3) | |
H3 | 0.022230 | 0.012662 | 0.567154 | 0.024* | |
C4 | 0.19785 (14) | −0.05091 (8) | 0.63992 (7) | 0.0286 (3) | |
H4A | 0.147699 | −0.080564 | 0.667121 | 0.043* | |
H4B | 0.281713 | −0.048522 | 0.656022 | 0.043* | |
H4C | 0.198986 | −0.071406 | 0.598363 | 0.043* | |
C5 | −0.05432 (12) | 0.15224 (7) | 0.57392 (6) | 0.0228 (3) | |
H5A | −0.118776 | 0.170949 | 0.601653 | 0.027* | |
H5B | −0.094422 | 0.122786 | 0.541970 | 0.027* | |
C6 | 0.01252 (12) | 0.21301 (7) | 0.54350 (6) | 0.0213 (3) | |
C7 | 0.00238 (14) | 0.28059 (8) | 0.56795 (7) | 0.0271 (3) | |
H7 | −0.048238 | 0.288620 | 0.602946 | 0.033* | |
C8 | 0.06598 (14) | 0.33662 (8) | 0.54144 (8) | 0.0337 (3) | |
H8 | 0.058858 | 0.382779 | 0.558435 | 0.040* | |
C9 | 0.13959 (14) | 0.32536 (9) | 0.49039 (8) | 0.0349 (4) | |
H9 | 0.183155 | 0.363715 | 0.472431 | 0.042* | |
C10 | 0.14976 (13) | 0.25800 (9) | 0.46543 (7) | 0.0332 (3) | |
H10 | 0.199832 | 0.250330 | 0.430171 | 0.040* | |
C11 | 0.08660 (13) | 0.20158 (8) | 0.49200 (6) | 0.0261 (3) | |
H11 | 0.094021 | 0.155416 | 0.475052 | 0.031* | |
C12 | 0.86546 (12) | 0.13770 (8) | 0.92679 (6) | 0.0247 (3) | |
H12 | 0.807687 | 0.143230 | 0.959254 | 0.030* | |
C13 | 0.93090 (12) | 0.07900 (8) | 0.91414 (6) | 0.0231 (3) | |
H13 | 0.928098 | 0.035409 | 0.935940 | 0.028* | |
C14 | 0.98114 (12) | 0.16068 (7) | 0.84610 (6) | 0.0216 (3) | |
H14 | 1.018734 | 0.184442 | 0.812405 | 0.026* | |
C15 | 0.84898 (15) | 0.26012 (8) | 0.87971 (7) | 0.0327 (3) | |
H15A | 0.910658 | 0.293794 | 0.894524 | 0.049* | |
H15B | 0.774922 | 0.264014 | 0.905102 | 0.049* | |
H15C | 0.828730 | 0.270763 | 0.836621 | 0.049* | |
C16 | 1.08871 (12) | 0.04543 (7) | 0.83297 (6) | 0.0220 (3) | |
H16A | 1.139346 | 0.021678 | 0.864745 | 0.026* | |
H16B | 1.144345 | 0.072702 | 0.805811 | 0.026* | |
C17 | 1.02277 (12) | −0.01005 (7) | 0.79499 (6) | 0.0194 (3) | |
C18 | 0.94292 (12) | 0.00932 (7) | 0.74732 (6) | 0.0205 (3) | |
H18 | 0.928300 | 0.057937 | 0.738951 | 0.025* | |
C19 | 0.88501 (12) | −0.04227 (8) | 0.71223 (6) | 0.0253 (3) | |
H19 | 0.831707 | −0.028868 | 0.679570 | 0.030* | |
C20 | 0.90486 (14) | −0.11361 (8) | 0.72479 (7) | 0.0314 (3) | |
H20 | 0.863894 | −0.148864 | 0.701293 | 0.038* | |
C21 | 0.98439 (15) | −0.13301 (8) | 0.77157 (7) | 0.0320 (3) | |
H21 | 0.998734 | −0.181666 | 0.779895 | 0.038* | |
C22 | 1.04355 (13) | −0.08133 (7) | 0.80652 (7) | 0.0256 (3) | |
H22 | 1.098428 | −0.094963 | 0.838439 | 0.031* | |
N1 | 0.14580 (10) | 0.02040 (6) | 0.63731 (5) | 0.0199 (2) | |
N2 | 0.03241 (10) | 0.10849 (6) | 0.60977 (5) | 0.0190 (2) | |
N3 | 0.89775 (10) | 0.18811 (6) | 0.88402 (5) | 0.0229 (2) | |
N4 | 1.00287 (10) | 0.09437 (6) | 0.86338 (5) | 0.0196 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02669 (8) | 0.02857 (8) | 0.02379 (7) | −0.00178 (6) | −0.00049 (5) | −0.00815 (5) |
Br2 | 0.02648 (7) | 0.02405 (7) | 0.02380 (7) | −0.00402 (6) | 0.00081 (5) | 0.00084 (5) |
C1 | 0.0192 (6) | 0.0264 (7) | 0.0175 (6) | −0.0047 (5) | 0.0002 (5) | 0.0005 (5) |
C2 | 0.0216 (6) | 0.0225 (7) | 0.0175 (6) | −0.0051 (5) | 0.0006 (5) | −0.0012 (5) |
C3 | 0.0212 (6) | 0.0213 (7) | 0.0186 (6) | −0.0025 (5) | 0.0009 (5) | −0.0004 (5) |
C4 | 0.0297 (7) | 0.0229 (7) | 0.0331 (7) | 0.0038 (6) | −0.0004 (6) | 0.0018 (6) |
C5 | 0.0206 (6) | 0.0235 (7) | 0.0243 (6) | 0.0001 (5) | −0.0023 (5) | 0.0022 (5) |
C6 | 0.0197 (6) | 0.0223 (7) | 0.0221 (6) | 0.0010 (5) | −0.0044 (5) | 0.0034 (5) |
C7 | 0.0272 (7) | 0.0255 (7) | 0.0286 (7) | 0.0018 (6) | −0.0040 (6) | −0.0005 (6) |
C8 | 0.0321 (8) | 0.0213 (7) | 0.0477 (9) | −0.0010 (6) | −0.0119 (7) | 0.0043 (7) |
C9 | 0.0231 (7) | 0.0342 (9) | 0.0473 (9) | −0.0041 (6) | −0.0090 (6) | 0.0203 (7) |
C10 | 0.0211 (7) | 0.0478 (10) | 0.0307 (7) | 0.0035 (6) | 0.0009 (6) | 0.0150 (7) |
C11 | 0.0237 (7) | 0.0298 (8) | 0.0246 (6) | 0.0051 (6) | −0.0013 (5) | 0.0022 (6) |
C12 | 0.0204 (6) | 0.0349 (8) | 0.0190 (6) | −0.0056 (6) | 0.0010 (5) | −0.0042 (5) |
C13 | 0.0241 (7) | 0.0272 (7) | 0.0179 (6) | −0.0067 (6) | 0.0010 (5) | 0.0009 (5) |
C14 | 0.0229 (6) | 0.0222 (7) | 0.0197 (6) | −0.0023 (5) | 0.0010 (5) | −0.0004 (5) |
C15 | 0.0351 (8) | 0.0265 (8) | 0.0365 (8) | 0.0071 (7) | −0.0044 (6) | −0.0079 (6) |
C16 | 0.0194 (6) | 0.0239 (7) | 0.0227 (6) | 0.0021 (5) | 0.0003 (5) | −0.0008 (5) |
C17 | 0.0176 (6) | 0.0203 (6) | 0.0203 (6) | 0.0003 (5) | 0.0042 (5) | 0.0007 (5) |
C18 | 0.0184 (6) | 0.0212 (6) | 0.0218 (6) | 0.0016 (5) | 0.0036 (5) | 0.0026 (5) |
C19 | 0.0198 (6) | 0.0322 (8) | 0.0240 (6) | −0.0006 (6) | 0.0008 (5) | −0.0007 (6) |
C20 | 0.0319 (8) | 0.0272 (8) | 0.0350 (8) | −0.0043 (6) | 0.0039 (6) | −0.0095 (6) |
C21 | 0.0377 (8) | 0.0179 (7) | 0.0404 (8) | 0.0030 (6) | 0.0052 (7) | 0.0011 (6) |
C22 | 0.0267 (7) | 0.0230 (7) | 0.0273 (6) | 0.0038 (6) | 0.0013 (6) | 0.0056 (5) |
N1 | 0.0195 (5) | 0.0213 (6) | 0.0189 (5) | −0.0012 (4) | 0.0014 (4) | 0.0008 (4) |
N2 | 0.0191 (5) | 0.0202 (6) | 0.0176 (5) | −0.0021 (4) | −0.0005 (4) | 0.0004 (4) |
N3 | 0.0212 (5) | 0.0249 (6) | 0.0226 (5) | −0.0005 (5) | −0.0004 (4) | −0.0050 (5) |
N4 | 0.0195 (5) | 0.0216 (6) | 0.0178 (5) | −0.0015 (4) | 0.0004 (4) | −0.0007 (4) |
C1—C2 | 1.3504 (19) | C12—C13 | 1.347 (2) |
C1—N1 | 1.3767 (17) | C12—N3 | 1.3747 (18) |
C1—H1 | 0.9500 | C12—H12 | 0.9500 |
C2—N2 | 1.3820 (16) | C13—N4 | 1.3819 (16) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—N2 | 1.3291 (17) | C14—N4 | 1.3293 (17) |
C3—N1 | 1.3298 (16) | C14—N3 | 1.3307 (17) |
C3—H3 | 0.9500 | C14—H14 | 0.9500 |
C4—N1 | 1.4636 (18) | C15—N3 | 1.4643 (19) |
C4—H4A | 0.9800 | C15—H15A | 0.9800 |
C4—H4B | 0.9800 | C15—H15B | 0.9800 |
C4—H4C | 0.9800 | C15—H15C | 0.9800 |
C5—N2 | 1.4771 (17) | C16—N4 | 1.4717 (17) |
C5—C6 | 1.5115 (19) | C16—C17 | 1.5144 (18) |
C5—H5A | 0.9900 | C16—H16A | 0.9900 |
C5—H5B | 0.9900 | C16—H16B | 0.9900 |
C6—C7 | 1.3871 (19) | C17—C22 | 1.3887 (19) |
C6—C11 | 1.3943 (19) | C17—C18 | 1.3995 (18) |
C7—C8 | 1.390 (2) | C18—C19 | 1.388 (2) |
C7—H7 | 0.9500 | C18—H18 | 0.9500 |
C8—C9 | 1.383 (2) | C19—C20 | 1.392 (2) |
C8—H8 | 0.9500 | C19—H19 | 0.9500 |
C9—C10 | 1.388 (2) | C20—C21 | 1.383 (2) |
C9—H9 | 0.9500 | C20—H20 | 0.9500 |
C10—C11 | 1.394 (2) | C21—C22 | 1.394 (2) |
C10—H10 | 0.9500 | C21—H21 | 0.9500 |
C11—H11 | 0.9500 | C22—H22 | 0.9500 |
C2—C1—N1 | 107.28 (11) | N4—C14—N3 | 108.38 (12) |
C2—C1—H1 | 126.4 | N4—C14—H14 | 125.8 |
N1—C1—H1 | 126.4 | N3—C14—H14 | 125.8 |
C1—C2—N2 | 106.76 (12) | N3—C15—H15A | 109.5 |
C1—C2—H2 | 126.6 | N3—C15—H15B | 109.5 |
N2—C2—H2 | 126.6 | H15A—C15—H15B | 109.5 |
N2—C3—N1 | 108.50 (11) | N3—C15—H15C | 109.5 |
N2—C3—H3 | 125.7 | H15A—C15—H15C | 109.5 |
N1—C3—H3 | 125.7 | H15B—C15—H15C | 109.5 |
N1—C4—H4A | 109.5 | N4—C16—C17 | 112.10 (10) |
N1—C4—H4B | 109.5 | N4—C16—H16A | 109.2 |
H4A—C4—H4B | 109.5 | C17—C16—H16A | 109.2 |
N1—C4—H4C | 109.5 | N4—C16—H16B | 109.2 |
H4A—C4—H4C | 109.5 | C17—C16—H16B | 109.2 |
H4B—C4—H4C | 109.5 | H16A—C16—H16B | 107.9 |
N2—C5—C6 | 110.22 (11) | C22—C17—C18 | 119.21 (13) |
N2—C5—H5A | 109.6 | C22—C17—C16 | 119.76 (12) |
C6—C5—H5A | 109.6 | C18—C17—C16 | 121.01 (12) |
N2—C5—H5B | 109.6 | C19—C18—C17 | 120.22 (13) |
C6—C5—H5B | 109.6 | C19—C18—H18 | 119.9 |
H5A—C5—H5B | 108.1 | C17—C18—H18 | 119.9 |
C7—C6—C11 | 119.62 (13) | C18—C19—C20 | 120.15 (13) |
C7—C6—C5 | 119.66 (12) | C18—C19—H19 | 119.9 |
C11—C6—C5 | 120.70 (13) | C20—C19—H19 | 119.9 |
C6—C7—C8 | 120.26 (14) | C21—C20—C19 | 119.82 (14) |
C6—C7—H7 | 119.9 | C21—C20—H20 | 120.1 |
C8—C7—H7 | 119.9 | C19—C20—H20 | 120.1 |
C9—C8—C7 | 120.18 (15) | C20—C21—C22 | 120.15 (14) |
C9—C8—H8 | 119.9 | C20—C21—H21 | 119.9 |
C7—C8—H8 | 119.9 | C22—C21—H21 | 119.9 |
C8—C9—C10 | 119.95 (14) | C17—C22—C21 | 120.42 (13) |
C8—C9—H9 | 120.0 | C17—C22—H22 | 119.8 |
C10—C9—H9 | 120.0 | C21—C22—H22 | 119.8 |
C9—C10—C11 | 120.09 (14) | C3—N1—C1 | 108.69 (11) |
C9—C10—H10 | 120.0 | C3—N1—C4 | 124.92 (12) |
C11—C10—H10 | 120.0 | C1—N1—C4 | 126.38 (11) |
C10—C11—C6 | 119.89 (14) | C3—N2—C2 | 108.76 (11) |
C10—C11—H11 | 120.1 | C3—N2—C5 | 125.20 (11) |
C6—C11—H11 | 120.1 | C2—N2—C5 | 125.92 (11) |
C13—C12—N3 | 107.33 (12) | C14—N3—C12 | 108.73 (12) |
C13—C12—H12 | 126.3 | C14—N3—C15 | 124.82 (12) |
N3—C12—H12 | 126.3 | C12—N3—C15 | 126.45 (12) |
C12—C13—N4 | 106.84 (12) | C14—N4—C13 | 108.72 (11) |
C12—C13—H13 | 126.6 | C14—N4—C16 | 125.44 (11) |
N4—C13—H13 | 126.6 | C13—N4—C16 | 125.83 (12) |
N1—C1—C2—N2 | −0.17 (14) | C20—C21—C22—C17 | 0.4 (2) |
N2—C5—C6—C7 | −103.83 (14) | N2—C3—N1—C1 | −0.01 (14) |
N2—C5—C6—C11 | 74.65 (15) | N2—C3—N1—C4 | 178.70 (12) |
C11—C6—C7—C8 | −0.2 (2) | C2—C1—N1—C3 | 0.12 (14) |
C5—C6—C7—C8 | 178.27 (13) | C2—C1—N1—C4 | −178.57 (12) |
C6—C7—C8—C9 | 0.2 (2) | N1—C3—N2—C2 | −0.10 (14) |
C7—C8—C9—C10 | 0.2 (2) | N1—C3—N2—C5 | 176.21 (11) |
C8—C9—C10—C11 | −0.5 (2) | C1—C2—N2—C3 | 0.17 (14) |
C9—C10—C11—C6 | 0.4 (2) | C1—C2—N2—C5 | −176.11 (12) |
C7—C6—C11—C10 | −0.1 (2) | C6—C5—N2—C3 | −116.36 (14) |
C5—C6—C11—C10 | −178.54 (12) | C6—C5—N2—C2 | 59.32 (16) |
N3—C12—C13—N4 | −0.04 (15) | N4—C14—N3—C12 | 0.03 (15) |
N4—C16—C17—C22 | −123.69 (13) | N4—C14—N3—C15 | −179.51 (12) |
N4—C16—C17—C18 | 57.74 (16) | C13—C12—N3—C14 | 0.01 (15) |
C22—C17—C18—C19 | 0.23 (19) | C13—C12—N3—C15 | 179.54 (13) |
C16—C17—C18—C19 | 178.81 (12) | N3—C14—N4—C13 | −0.05 (14) |
C17—C18—C19—C20 | 0.8 (2) | N3—C14—N4—C16 | 179.45 (11) |
C18—C19—C20—C21 | −1.3 (2) | C12—C13—N4—C14 | 0.06 (15) |
C19—C20—C21—C22 | 0.7 (2) | C12—C13—N4—C16 | −179.44 (12) |
C18—C17—C22—C21 | −0.8 (2) | C17—C16—N4—C14 | −105.12 (14) |
C16—C17—C22—C21 | −179.41 (13) | C17—C16—N4—C13 | 74.30 (15) |
Acknowledgements
The publication of this article was funded by the Open Access Fund of the Leibniz Association.
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576. Web of Science CrossRef CAS PubMed Google Scholar
Hillesheim, P. C. & Scipione, K. A. (2014). Acta Cryst. E70, o1248–o1249. CSD CrossRef IUCr Journals Google Scholar
Ji, X., Cheng, B., Song, J. & Liu, C. (2010). Acta Cryst. E66, o218. Web of Science CSD CrossRef IUCr Journals Google Scholar
Leclercq, L., Simard, M. & Schmitzer, A. R. (2009). J. Mol. Struct. 918, 101–107. Web of Science CSD CrossRef CAS Google Scholar
Peppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials 12, 3764. Web of Science CrossRef Google Scholar
Peppel, T., Hinz, A., Thiele, P., Geppert-Rybczyńska, M., Lehmann, J. K. & Köckerling, M. (2017). Eur. J. Inorg. Chem. pp. 885–893. Web of Science CSD CrossRef Google Scholar
Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116–7119. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Welton, T. (1999). Chem. Rev. 99, 2071–2084. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.