organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

[1,3-Bis(2,6-diiso­propyl­phen­yl)-1,3-di­hydro-2H-imidazol-2-yl­­idene]tri­iodo­borane benzene hemisolvate

aInstitut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 June 2020; accepted 26 June 2020; online 30 June 2020)

In the title hemisolvate, C27H36BI3N2.0.5C6H6, the dihedral angles between the central heterocyclic ring and pendant benzene rings are 82.9 (8) and 88.7 (9)° and the complete benzene solvent mol­ecule of crystallization is generated by a crystallographic centre of inversion. In the crystal, one very weak C—H⋯I inter­action links the mol­ecules into [001] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

NHC-complexed trihaloboranes BX3.NHCIPr (NHCIPr = IPr) are of great technological importance, because they find use in the synthesis of borsubhalides and also as precursor mol­ecules for B=B double-bond-containing diborenes (Wang et al., 2007[Wang, Y., Quillian, B., Wei, P., Wannere, C. S., Xie, Y., King, R. B., Schaefer, H. F., Schleyer, P., v, R. G. & Robinson, H. (2007). J. Am. Chem. Soc. 129, 12412-12413.]). In the course of our investigations of silanides (Lerner, 2005[Lerner, H.-W. (2005). Coord. Chem. Rev. 249, 781-798.]; Budanow et al., 2014[Budanow, A., Haeri, H. H., Sänger, I., Schödel, F., Bolte, M., Prisner, T., Wagner, M. & Lerner, H.-W. (2014). Chem. Eur. J. 20, 10236-10239.]), we treated trihalides of the type EX3 (E = B, Al, Ga; X = Cl, Br) with the NHC supersilyl silver complex [Ag(IPr)SitBu3] (Schödel et al., 2020[Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2020). Z. Anorg. Allg. Chem. 646, 264-267.]). It is remarkable that along with tBu3SiEX2, EX3·IPr was thereby formed. The identity of EX3·IPr was confirmed by comparison with authentic samples that were obtained by an equimolar reaction of EX3 with NHCIPr (Schödel et al., 2020[Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2020). Z. Anorg. Allg. Chem. 646, 264-267.]). We now describe the synthesis and structure of the NHC-complexed tri­iodo­borane, BI3·IPr, which can be prepared by an analogous approach from NHCIPr and BI3, as shown in Fig. 1[link].

[Figure 1]
Figure 1
Reaction scheme for the preparation of the title compound.

The mol­ecular structure of the title compound (Fig. 2[link]) does not show any unusual features: the C1—B1 bond length is 1.63 (2) Å and the dihedral angles between the central C1/C2/C3/N1/N2 heterocyclic ring and the pendant C11–C16 and C21–C26 benzene rings are 82.9 (8) and 88.7 (9)°, respectively. The complete benzene solvent mol­ecule is generated by a crystallographic centre of inversion. The structures of the tri­fluoro-substituted borane (Bolte et al., 2020[Bolte, M., Schödel, F. & Lerner, H.-W. (2020). Private communication (deposition number 2010795). CCDC, Cambridge, England.]), which crystallizes without any solvent in the triclinic space group P[\overline{1}], and that of the tri­bromo-substituted borane (Wang et al., 2007[Wang, Y., Quillian, B., Wei, P., Wannere, C. S., Xie, Y., King, R. B., Schaefer, H. F., Schleyer, P., v, R. G. & Robinson, H. (2007). J. Am. Chem. Soc. 129, 12412-12413.]; Wang & Robinson, 2011[Wang, Y. & Robinson, H. (2011). Inorg. Chem. 50, 12326-12337.]), which crystallizes without any solvent in the monoclinic space group P21/n, agree well with that of the title compound.

[Figure 2]
Figure 2
A perspective view of the NHC-mol­ecule in the title compound; H atoms and the solvent benzene mol­ecule have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

The only directional inter­action identified in the title compound is a very weak C—H⋯I inter­action (Table 1[link]), which links the mol­ecules into C(6) [001] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯I2i 0.95 3.03 3.773 (13) 136
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Synthesis and crystallization

The NHC-complexed tri­iodo­borane (I) was synthesized according to a synthesis protocol for halogenated NHC-complexes (Schödel et al., 2020[Schödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2020). Z. Anorg. Allg. Chem. 646, 264-267.]). Treatment of a mixture of BI3 (85 mg, 0.22 mmol) in 6 ml benzene/hexane with NHCIPr (IPr) (76 mg, 0.20 mmol) yielded qu­anti­tatively (I).

After pipetting from insoluble material, single crystals of (I) were grown from the reaction solution (benzene/hexa­ne) at room temperature.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Some significant peaks remain in the final electron difference map close to the I atoms.

Table 2
Experimental details

Crystal data
Chemical formula C27H36BI3N2·0.5C6H6
Mr 819.14
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 16.0100 (14), 12.5361 (11), 16.3086 (18)
β (°) 90.041 (8)
V3) 3273.2 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.89
Crystal size (mm) 0.21 × 0.18 × 0.18
 
Data collection
Diffractometer STOE IPDS II two-circle diffractometer
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.719, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11917, 5990, 4253
Rint 0.051
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.094, 0.267, 1.13
No. of reflections 5990
No. of parameters 325
H-atom treatment H-atom parameters constrained
   
Δρmax, Δρmin (e Å−3) 6.06, −1.70
Computer programs: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]), XP in SHELXTL-Plus and SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

[1,3-Bis(2,6-diisopropylphenyl)-1,3-dihydro-2H-imidazol-2-ylidene]triiodoborane benzene hemisolvate top
Crystal data top
C27H36BI3N2·0.5C6H6F(000) = 1588
Mr = 819.14Dx = 1.662 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.0100 (14) ÅCell parameters from 13397 reflections
b = 12.5361 (11) Åθ = 3.5–25.9°
c = 16.3086 (18) ŵ = 2.89 mm1
β = 90.041 (8)°T = 173 K
V = 3273.2 (5) Å3Block, colourless
Z = 40.21 × 0.18 × 0.18 mm
Data collection top
STOE IPDS II two-circle-
diffractometer
4253 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray sourceRint = 0.051
ω scansθmax = 25.6°, θmin = 3.5°
Absorption correction: multi-scan
(X-Area; Stoe & Cie, 2001)
h = 1919
Tmin = 0.719, Tmax = 1.000k = 1512
11917 measured reflectionsl = 1619
5990 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.094H-atom parameters constrained
wR(F2) = 0.267 w = 1/[σ2(Fo2) + (0.1189P)2 + 68.6175P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
5990 reflectionsΔρmax = 6.06 e Å3
325 parametersΔρmin = 1.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The H atoms were refined using a riding model (C—H = 0.95–1.00 Å) and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.2324 (12)0.7430 (14)0.2487 (11)0.033 (4)
I10.12197 (7)0.67550 (9)0.18663 (6)0.0363 (3)
I20.25388 (8)0.90540 (9)0.19351 (6)0.0406 (3)
I30.34318 (8)0.63957 (11)0.21405 (7)0.0454 (4)
N10.1868 (8)0.6784 (9)0.3986 (7)0.028 (3)
N20.2796 (9)0.8040 (10)0.3982 (7)0.035 (3)
C10.2319 (9)0.7468 (11)0.3483 (8)0.025 (3)
C20.2103 (10)0.6921 (11)0.4788 (8)0.027 (3)
H20.1894360.6542410.5249320.032*
C30.2693 (10)0.7701 (13)0.4796 (8)0.031 (3)
H30.2980790.7966900.5263160.038*
C110.1170 (10)0.6030 (12)0.3801 (8)0.029 (3)
C120.1357 (10)0.4968 (12)0.3790 (9)0.034 (4)
C130.0698 (12)0.4282 (13)0.3723 (10)0.042 (4)
H130.0801430.3535720.3711220.051*
C140.0126 (13)0.4652 (16)0.3671 (12)0.051 (5)
H140.0577380.4166270.3610990.061*
C150.0266 (13)0.5719 (16)0.3709 (11)0.049 (5)
H150.0824560.5972690.3682450.059*
C160.0370 (10)0.6443 (15)0.3785 (9)0.038 (4)
C170.2240 (12)0.4532 (14)0.3828 (12)0.046 (4)
H170.2640210.5144290.3836120.055*
C180.0197 (11)0.7668 (13)0.3826 (9)0.036 (4)
H180.0695160.8044000.3595750.043*
C210.3265 (10)0.9006 (13)0.3832 (9)0.032 (3)
C220.4127 (12)0.8955 (16)0.3719 (10)0.047 (4)
C230.4507 (14)0.992 (2)0.3564 (12)0.066 (7)
H230.5087060.9928510.3439770.079*
C240.4077 (18)1.0863 (19)0.3581 (14)0.069 (6)
H240.4357661.1515920.3473510.082*
C250.3235 (15)1.0863 (16)0.3755 (12)0.055 (5)
H250.2945981.1524240.3766340.066*
C260.2808 (13)0.9963 (14)0.3908 (9)0.042 (4)
C270.4606 (13)0.7956 (17)0.3801 (11)0.052 (5)
H270.4214050.7336060.3768510.062*
C280.1927 (13)0.9982 (14)0.4164 (11)0.046 (4)
H280.1695210.9241860.4130650.055*
C1710.2336 (16)0.3898 (18)0.4635 (13)0.064 (6)
H17A0.2204210.4362030.5100400.095*
H17B0.1953720.3287980.4630310.095*
H17C0.2912540.3641930.4684960.095*
C1720.2441 (15)0.3830 (14)0.3101 (13)0.056 (5)
H17D0.3015500.3565780.3150180.084*
H17E0.2054360.3224480.3087680.084*
H17F0.2385120.4243930.2594550.084*
C1810.0110 (14)0.7997 (16)0.4721 (12)0.053 (5)
H18A0.0607300.7773010.5026040.080*
H18B0.0050690.8773490.4755620.080*
H18C0.0385610.7655340.4957140.080*
C1820.0563 (12)0.7999 (18)0.3326 (12)0.054 (5)
H18D0.0487540.7776050.2754330.082*
H18E0.1063420.7657240.3550770.082*
H18F0.0627120.8775390.3349260.082*
C2710.5312 (15)0.782 (2)0.3144 (17)0.080 (8)
H27A0.5064990.7817960.2594350.120*
H27B0.5712590.8403510.3191590.120*
H27C0.5600990.7136240.3236160.120*
C2720.5046 (16)0.794 (2)0.4622 (17)0.081 (8)
H27D0.5364180.7278020.4677320.122*
H27E0.5426400.8551890.4658280.122*
H27F0.4630990.7985860.5062550.122*
C2810.1881 (16)1.0382 (18)0.5090 (11)0.062 (6)
H28A0.1297471.0398430.5269160.093*
H28B0.2198840.9893590.5441070.093*
H28C0.2120281.1099890.5129310.093*
C2820.1388 (14)1.0719 (16)0.3653 (11)0.053 (5)
H28D0.0811481.0693980.3853290.079*
H28E0.1600931.1449590.3695880.079*
H28F0.1402921.0490160.3078290.079*
C310.4504 (16)0.514 (3)0.4308 (16)0.082 (8)
H310.4163720.5267850.3841720.098*
C320.4206 (16)0.535 (2)0.5071 (19)0.084 (8)
H320.3641010.5572380.5124980.101*
C330.4704 (15)0.526 (2)0.5791 (16)0.075 (7)
H330.4499070.5471600.6313860.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.032 (10)0.033 (9)0.032 (9)0.008 (7)0.001 (7)0.009 (7)
I10.0414 (6)0.0459 (6)0.0216 (5)0.0051 (5)0.0054 (4)0.0024 (4)
I20.0556 (8)0.0415 (6)0.0247 (5)0.0091 (5)0.0036 (4)0.0046 (4)
I30.0407 (7)0.0604 (8)0.0352 (6)0.0203 (6)0.0017 (5)0.0040 (5)
N10.044 (8)0.023 (6)0.018 (6)0.007 (5)0.003 (5)0.010 (5)
N20.054 (9)0.032 (7)0.020 (6)0.001 (6)0.002 (6)0.013 (5)
C10.030 (8)0.024 (7)0.022 (7)0.005 (6)0.000 (6)0.000 (5)
C20.037 (9)0.026 (7)0.017 (6)0.005 (6)0.011 (6)0.002 (5)
C30.037 (9)0.041 (9)0.015 (6)0.003 (7)0.004 (6)0.006 (6)
C110.037 (9)0.037 (8)0.014 (6)0.004 (7)0.005 (6)0.008 (6)
C120.040 (9)0.027 (8)0.034 (8)0.003 (7)0.007 (7)0.011 (6)
C130.057 (12)0.032 (9)0.038 (9)0.013 (8)0.010 (8)0.005 (7)
C140.056 (13)0.050 (11)0.048 (11)0.019 (9)0.009 (9)0.000 (9)
C150.051 (12)0.058 (12)0.038 (9)0.004 (9)0.003 (8)0.010 (8)
C160.033 (9)0.058 (11)0.023 (7)0.006 (8)0.001 (6)0.003 (7)
C170.047 (11)0.026 (8)0.065 (12)0.001 (8)0.007 (9)0.000 (8)
C180.040 (10)0.040 (9)0.029 (8)0.000 (7)0.005 (7)0.005 (7)
C210.037 (9)0.036 (8)0.021 (7)0.011 (7)0.000 (6)0.003 (6)
C220.046 (11)0.064 (12)0.030 (8)0.008 (9)0.004 (8)0.007 (8)
C230.053 (13)0.100 (19)0.046 (11)0.045 (13)0.004 (9)0.000 (11)
C240.09 (2)0.047 (12)0.065 (14)0.018 (13)0.005 (13)0.001 (10)
C250.077 (16)0.043 (11)0.046 (11)0.027 (10)0.000 (10)0.009 (8)
C260.066 (12)0.038 (9)0.021 (7)0.005 (9)0.002 (7)0.000 (7)
C270.050 (11)0.063 (13)0.042 (10)0.009 (10)0.015 (8)0.014 (9)
C280.060 (13)0.027 (8)0.051 (10)0.010 (8)0.006 (9)0.008 (8)
C1710.076 (16)0.063 (14)0.051 (12)0.021 (12)0.017 (11)0.004 (10)
C1720.084 (16)0.030 (10)0.055 (12)0.004 (9)0.003 (11)0.001 (8)
C1810.062 (13)0.044 (11)0.054 (11)0.016 (9)0.002 (10)0.004 (9)
C1820.043 (11)0.075 (14)0.046 (10)0.011 (10)0.009 (9)0.006 (10)
C2710.047 (14)0.11 (2)0.086 (18)0.002 (14)0.019 (12)0.016 (16)
C2720.065 (16)0.087 (19)0.093 (19)0.011 (14)0.012 (14)0.030 (15)
C2810.095 (18)0.056 (13)0.035 (10)0.025 (12)0.012 (10)0.002 (9)
C2820.074 (14)0.051 (11)0.033 (9)0.007 (10)0.000 (9)0.006 (8)
C310.059 (15)0.12 (2)0.063 (15)0.023 (15)0.017 (12)0.002 (15)
C320.045 (13)0.10 (2)0.10 (2)0.016 (13)0.012 (14)0.015 (17)
C330.046 (13)0.11 (2)0.068 (15)0.002 (13)0.001 (11)0.011 (14)
Geometric parameters (Å, º) top
B1—C11.63 (2)C25—H250.9500
B1—I12.205 (18)C26—C281.47 (3)
B1—I22.252 (17)C27—C2721.51 (3)
B1—I32.27 (2)C27—C2711.57 (3)
N1—C21.373 (17)C27—H271.0000
N1—C11.389 (19)C28—C2821.51 (3)
N1—C111.494 (19)C28—C2811.59 (3)
N2—C11.326 (19)C28—H281.0000
N2—C31.404 (18)C171—H17A0.9800
N2—C211.45 (2)C171—H17B0.9800
C2—C31.36 (2)C171—H17C0.9800
C2—H20.9500C172—H17D0.9800
C3—H30.9500C172—H17E0.9800
C11—C121.37 (2)C172—H17F0.9800
C11—C161.38 (2)C181—H18A0.9800
C12—C131.37 (2)C181—H18B0.9800
C12—C171.52 (2)C181—H18C0.9800
C13—C141.40 (3)C182—H18D0.9800
C13—H130.9500C182—H18E0.9800
C14—C151.36 (3)C182—H18F0.9800
C14—H140.9500C271—H27A0.9800
C15—C161.37 (3)C271—H27B0.9800
C15—H150.9500C271—H27C0.9800
C16—C181.56 (2)C272—H27D0.9800
C17—C1721.51 (3)C272—H27E0.9800
C17—C1711.54 (3)C272—H27F0.9800
C17—H171.0000C281—H28A0.9800
C18—C1821.52 (2)C281—H28B0.9800
C18—C1811.52 (2)C281—H28C0.9800
C18—H181.0000C282—H28D0.9800
C21—C221.39 (3)C282—H28E0.9800
C21—C261.41 (2)C282—H28F0.9800
C22—C231.38 (3)C31—C321.36 (4)
C22—C271.47 (3)C31—C33i1.37 (3)
C23—C241.37 (4)C31—H310.9500
C23—H230.9500C32—C331.42 (3)
C24—C251.38 (3)C32—H320.9500
C24—H240.9500C33—H330.9500
C25—C261.34 (3)
C1—B1—I1117.7 (11)C272—C27—C22109.4 (17)
C1—B1—I2112.0 (11)C272—C27—C271105.5 (19)
I1—B1—I2106.6 (7)C22—C27—C271114 (2)
C1—B1—I3105.6 (10)C272—C27—H27109.2
I1—B1—I3107.0 (8)C22—C27—H27109.2
I2—B1—I3107.3 (7)C271—C27—H27109.2
C2—N1—C1110.1 (12)C26—C28—C282113.6 (16)
C2—N1—C11118.4 (12)C26—C28—C281108.5 (16)
C1—N1—C11131.3 (11)C282—C28—C281107.7 (16)
C1—N2—C3110.5 (13)C26—C28—H28109.0
C1—N2—C21130.4 (12)C282—C28—H28109.0
C3—N2—C21118.3 (12)C281—C28—H28109.0
N2—C1—N1105.7 (12)C17—C171—H17A109.5
N2—C1—B1128.7 (14)C17—C171—H17B109.5
N1—C1—B1125.1 (12)H17A—C171—H17B109.5
C3—C2—N1106.8 (13)C17—C171—H17C109.5
C3—C2—H2126.6H17A—C171—H17C109.5
N1—C2—H2126.6H17B—C171—H17C109.5
C2—C3—N2106.8 (12)C17—C172—H17D109.5
C2—C3—H3126.6C17—C172—H17E109.5
N2—C3—H3126.6H17D—C172—H17E109.5
C12—C11—C16124.7 (15)C17—C172—H17F109.5
C12—C11—N1117.1 (14)H17D—C172—H17F109.5
C16—C11—N1117.4 (14)H17E—C172—H17F109.5
C11—C12—C13116.5 (16)C18—C181—H18A109.5
C11—C12—C17123.8 (15)C18—C181—H18B109.5
C13—C12—C17119.7 (15)H18A—C181—H18B109.5
C12—C13—C14121.6 (16)C18—C181—H18C109.5
C12—C13—H13119.2H18A—C181—H18C109.5
C14—C13—H13119.2H18B—C181—H18C109.5
C15—C14—C13118.6 (18)C18—C182—H18D109.5
C15—C14—H14120.7C18—C182—H18E109.5
C13—C14—H14120.7H18D—C182—H18E109.5
C16—C15—C14122 (2)C18—C182—H18F109.5
C16—C15—H15118.9H18D—C182—H18F109.5
C14—C15—H15118.9H18E—C182—H18F109.5
C15—C16—C11116.3 (17)C27—C271—H27A109.5
C15—C16—C18121.6 (16)C27—C271—H27B109.5
C11—C16—C18122.1 (15)H27A—C271—H27B109.5
C172—C17—C12112.2 (16)C27—C271—H27C109.5
C172—C17—C171110.3 (15)H27A—C271—H27C109.5
C12—C17—C171108.2 (17)H27B—C271—H27C109.5
C172—C17—H17108.7C27—C272—H27D109.5
C12—C17—H17108.7C27—C272—H27E109.5
C171—C17—H17108.7H27D—C272—H27E109.5
C182—C18—C181111.5 (16)C27—C272—H27F109.5
C182—C18—C16112.7 (15)H27D—C272—H27F109.5
C181—C18—C16108.9 (13)H27E—C272—H27F109.5
C182—C18—H18107.9C28—C281—H28A109.5
C181—C18—H18107.9C28—C281—H28B109.5
C16—C18—H18107.9H28A—C281—H28B109.5
C22—C21—C26124.4 (16)C28—C281—H28C109.5
C22—C21—N2119.9 (16)H28A—C281—H28C109.5
C26—C21—N2115.3 (15)H28B—C281—H28C109.5
C21—C22—C23115 (2)C28—C282—H28D109.5
C21—C22—C27122.8 (18)C28—C282—H28E109.5
C23—C22—C27122 (2)H28D—C282—H28E109.5
C24—C23—C22122 (2)C28—C282—H28F109.5
C24—C23—H23118.9H28D—C282—H28F109.5
C22—C23—H23118.9H28E—C282—H28F109.5
C23—C24—C25120 (2)C32—C31—C33i120 (2)
C23—C24—H24120.1C32—C31—H31119.8
C25—C24—H24120.1C33i—C31—H31119.8
C26—C25—C24123 (2)C31—C32—C33123 (2)
C26—C25—H25118.7C31—C32—H32118.6
C24—C25—H25118.7C33—C32—H32118.6
C25—C26—C21115.7 (19)C31i—C33—C32117 (2)
C25—C26—C28121.9 (18)C31i—C33—H33121.7
C21—C26—C28122.4 (15)C32—C33—H33121.7
C3—N2—C1—N13.0 (17)C11—C12—C17—C172122.6 (18)
C21—N2—C1—N1166.1 (16)C13—C12—C17—C17256 (2)
C3—N2—C1—B1169.6 (15)C11—C12—C17—C171115.4 (18)
C21—N2—C1—B121 (3)C13—C12—C17—C17166 (2)
C2—N1—C1—N22.5 (17)C15—C16—C18—C18232 (2)
C11—N1—C1—N2172.8 (14)C11—C16—C18—C182145.9 (16)
C2—N1—C1—B1170.5 (14)C15—C16—C18—C18191.9 (19)
C11—N1—C1—B114 (2)C11—C16—C18—C18189.8 (19)
I1—B1—C1—N2162.7 (13)C1—N2—C21—C22102 (2)
I2—B1—C1—N239 (2)C3—N2—C21—C2289.3 (18)
I3—B1—C1—N277.9 (17)C1—N2—C21—C2685 (2)
I1—B1—C1—N126 (2)C3—N2—C21—C2683.5 (18)
I2—B1—C1—N1150.2 (12)C26—C21—C22—C239 (2)
I3—B1—C1—N193.3 (15)N2—C21—C22—C23178.6 (15)
C1—N1—C2—C30.9 (17)C26—C21—C22—C27167.8 (15)
C11—N1—C2—C3175.0 (13)N2—C21—C22—C274 (2)
N1—C2—C3—N20.9 (17)C21—C22—C23—C245 (3)
C1—N2—C3—C22.5 (18)C27—C22—C23—C24172.3 (19)
C21—N2—C3—C2168.1 (14)C22—C23—C24—C250 (3)
C2—N1—C11—C1279.4 (18)C23—C24—C25—C260 (3)
C1—N1—C11—C12105.6 (18)C24—C25—C26—C214 (3)
C2—N1—C11—C1690.4 (16)C24—C25—C26—C28174.6 (19)
C1—N1—C11—C1684.6 (19)C22—C21—C26—C259 (2)
C16—C11—C12—C133 (2)N2—C21—C26—C25178.7 (14)
N1—C11—C12—C13172.0 (13)C22—C21—C26—C28169.4 (16)
C16—C11—C12—C17178.5 (15)N2—C21—C26—C283 (2)
N1—C11—C12—C179 (2)C21—C22—C27—C272102 (2)
C11—C12—C13—C140 (2)C23—C22—C27—C27275 (3)
C17—C12—C13—C14178.8 (17)C21—C22—C27—C271140.1 (18)
C12—C13—C14—C152 (3)C23—C22—C27—C27143 (2)
C13—C14—C15—C161 (3)C25—C26—C28—C28246 (2)
C14—C15—C16—C112 (3)C21—C26—C28—C282135.5 (16)
C14—C15—C16—C18179.9 (17)C25—C26—C28—C28173 (2)
C12—C11—C16—C154 (2)C21—C26—C28—C281104.9 (17)
N1—C11—C16—C15172.7 (13)C33i—C31—C32—C335 (5)
C12—C11—C16—C18178.0 (14)C31—C32—C33—C31i5 (5)
N1—C11—C16—C189 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···I2ii0.953.033.773 (13)136
Symmetry code: (ii) x, y+3/2, z+1/2.
 

References

First citationBolte, M., Schödel, F. & Lerner, H.-W. (2020). Private communication (deposition number 2010795). CCDC, Cambridge, England.  Google Scholar
First citationBudanow, A., Haeri, H. H., Sänger, I., Schödel, F., Bolte, M., Prisner, T., Wagner, M. & Lerner, H.-W. (2014). Chem. Eur. J. 20, 10236–10239.  CrossRef CAS PubMed Google Scholar
First citationLerner, H.-W. (2005). Coord. Chem. Rev. 249, 781–798.  Web of Science CrossRef CAS Google Scholar
First citationSchödel, F., Bolte, M., Wagner, M. & Lerner, H.-W. (2020). Z. Anorg. Allg. Chem. 646, 264–267.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWang, Y., Quillian, B., Wei, P., Wannere, C. S., Xie, Y., King, R. B., Schaefer, H. F., Schleyer, P., v, R. G. & Robinson, H. (2007). J. Am. Chem. Soc. 129, 12412–12413.  CrossRef PubMed CAS Google Scholar
First citationWang, Y. & Robinson, H. (2011). Inorg. Chem. 50, 12326–12337.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds