organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-3-{4,6-Dimeth­­oxy-2-[(E)-4-meth­­oxy­styr­yl]-3-methyl­phen­yl}-1-(2-hy­dr­oxy-5-meth­­oxy­phen­yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 June 2020; accepted 11 June 2020; online 16 June 2020)

In the title compound, C28H28O6, the benzene rings in the resveratrol moiety are connected by a trans C=C double bond, and the hydroxyl group containing a benzene ring and the central benzene ring are linked through a C=(O)—C=C (enone) moiety to form a chalcone unit. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, pairs of C—H⋯O hydrogen bonds generate dimers and additional weak C—H⋯O inter­actions link the dimers into chains propagating along the b-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Resveratrol is a secondary metabolite of plants. It has been shown to have phytoalexin abilities, which can be considered to be a self-defense system in the plants to protect from pathogen infections (Timperio et al., 2012[Timperio, A. M., D'Alessandro, A., Fagioni, M., Magro, P. & Zolla, L. (2012). Plant Physiol. Biochem. 50, 65-71.]). Chalcones, which are another essential secondary metabolites of plants, have been shown to possess diverse biological activities in our previous studies (Gil et al., 2018[Gil, H. N., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2018). Bioorg. Med. Chem. Lett. 28, 2969-2975.]; Lee et al., 2016[Lee, D. H., Jung Jung, Y., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2016). Cancer Lett. 372, 1-9.]). The title compound, (I), was designed to combine the chalcone and resveratrol units in order to explore its biological activities (Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]).

The mol­ecular structure of (I) is shown in Fig. 1[link]. The benzene ring (C1–C6) in the centre of the mol­ecule participates in chalcone formation through the –C7=C8—C9=(O1)– (enone) linkage and participates in the resveratrol unit through the C16=C17 double bond. In the resveratrol unit, the dihedral angle between the central benzene ring (C1–C6) and the C18–C23 benzene ring is 84.8 (2)°, which indicates that the rings are almost orthogonal to each other. On the other hand, in the chalcone unit, the dihedral angle formed by the central benzene ring and the C15–C15 benzene ring is 9.34 (1)°, which make the two rings close to coplanar. There are four meth­oxy groups attached to carbon atoms C2, C4, C14 and C21 of the benzene rings in (I). The C26 atom of the meth­oxy group at C2 is almost co-planar with the benzene ring [C3—C4—O4—C26 = 0.8 (3)°], whereas atoms C25, C27 and C28 of the meth­oxy groups at C2, C14 and C21, respectively, are slightly twisted from the corresponding ring planes [C3—C2—O3—C25 = −5.3 (3); C13—C14—O5—C27 = −10.2 (4); C22—C21—O6—C28 = −10.6 (3)°]. The hydroxyl group attached to the C10–C15 benzene ring forms an intra­molecular O2—H2⋯O1 hydrogen bond with carbonyl O atom of the chalcone unit (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.84 1.86 2.586 (2) 144
C25—H25A⋯O2i 0.98 2.63 3.556 (3) 157
C28—H28B⋯O1ii 0.98 2.64 3.247 (3) 120
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairs of C—H⋯O hydrogen bonds generate inversion dimers (Table 1[link], Fig. 2[link]) and another pair of C—H⋯O hydrogen bonds links the dimers into chains propagating along [010] (Fig. 3[link]). Given their H⋯O lengths of greater than 2.60 Å, these hydrogen bonds are presumably very weak.

[Figure 2]
Figure 2
A view of a dimer linked by pairwise C—H⋯O hydrogen bonds (dashed lines) in the crystal structure of (I). For clarity only those H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure of (I) with hydrogen bonds (blue dashed lines) shown. For clarity only those H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

The synthetic scheme for the preparation of the title compound is shown in Fig. 4[link]. Using the previously reported method (Shin et al. 2019[Shin, S. Y., Lee, J., Park, J., Lee, Y., Ahn, S., Lee, J. H., Koh, D., Lee, Y. H. & Lim, Y. (2019). Bioorg. Chem. 83, 438-449.]), the resveratrol aldehyde inter­mediates II and III were prepared in 30% and 15% yields, respectively, from trimeth­oxy resveratrol (I). The methyl­ated resveratrol aldehyde inter­mediate III was reacted with 2-hy­droxy-5-meth­oxy aceto­phenone (IV) under Claisen–Schmidt condensation conditions to give the desired title compound. Recrystallization of the final adduct from ethanol solution gave crystals of the title compound in the form of orange blocks.

[Figure 4]
Figure 4
Synthetic scheme for the preparation of (I).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C28H28O6
Mr 460.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 9.9641 (9), 10.2338 (9), 23.541 (2)
β (°) 100.086 (2)
V3) 2363.4 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.12 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 14437, 4659, 2351
Rint 0.058
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 0.88
No. of reflections 4659
No. of parameters 313
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.15
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-3-{4,6-dimethoxy-2-[(E)-4-methoxystyryl]-3-methylphenyl}-1-(2-hydroxy-5-methoxyphenyl)prop-2-en-1-one top
Crystal data top
C28H28O6F(000) = 976
Mr = 460.50Dx = 1.294 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3197 reflections
a = 9.9641 (9) Åθ = 2.5–25.2°
b = 10.2338 (9) ŵ = 0.09 mm1
c = 23.541 (2) ÅT = 200 K
β = 100.086 (2)°Block, orange
V = 2363.4 (4) Å30.12 × 0.09 × 0.06 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
phi and ω scansh = 1112
14437 measured reflectionsk = 912
4659 independent reflectionsl = 2829
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.038P)2]
where P = (Fo2 + 2Fc2)/3
4659 reflections(Δ/σ)max < 0.001
313 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3422 (2)0.3627 (2)0.40004 (9)0.0406 (6)
C20.2593 (2)0.4124 (2)0.35097 (9)0.0394 (6)
C30.1584 (2)0.5038 (2)0.35435 (9)0.0408 (6)
H30.10260.53550.32030.049*
C40.1399 (2)0.5484 (2)0.40788 (9)0.0406 (6)
C50.2191 (2)0.5016 (2)0.45928 (9)0.0388 (6)
C60.3192 (2)0.4054 (2)0.45383 (9)0.0379 (5)
C70.2088 (2)0.5513 (2)0.51624 (9)0.0439 (6)
H70.27520.51810.54680.053*
C80.1215 (2)0.6356 (2)0.53234 (9)0.0527 (7)
H80.05140.67090.50390.063*
C90.1295 (2)0.6759 (2)0.59251 (10)0.0466 (6)
O10.20637 (17)0.62039 (17)0.63223 (7)0.0635 (5)
C100.0400 (2)0.7828 (2)0.60542 (9)0.0417 (6)
C110.0227 (2)0.8074 (2)0.66249 (10)0.0455 (6)
O20.09471 (17)0.74132 (18)0.70846 (6)0.0597 (5)
H20.15210.69230.69700.090*
C120.0714 (2)0.8998 (2)0.67300 (11)0.0528 (7)
H120.08580.91350.71140.063*
C130.1444 (2)0.9722 (2)0.62869 (11)0.0533 (7)
H130.20841.03540.63670.064*
C140.1245 (2)0.9527 (2)0.57248 (11)0.0508 (6)
C150.0335 (2)0.8589 (2)0.56154 (10)0.0469 (6)
H150.02030.84550.52300.056*
C160.4010 (2)0.3476 (2)0.50661 (9)0.0422 (6)
H160.49460.37090.51570.051*
C170.3536 (2)0.2669 (2)0.54151 (9)0.0459 (6)
H170.26070.24220.53080.055*
C180.4276 (2)0.2103 (2)0.59522 (9)0.0408 (6)
C190.5437 (2)0.2690 (2)0.62614 (9)0.0433 (6)
H190.57500.34890.61260.052*
C200.6147 (2)0.2142 (2)0.67603 (9)0.0439 (6)
H200.69420.25590.69620.053*
C210.5698 (2)0.0981 (2)0.69667 (9)0.0405 (6)
C220.4544 (2)0.0388 (2)0.66742 (9)0.0434 (6)
H220.42290.04060.68140.052*
C230.3837 (2)0.0955 (2)0.61703 (9)0.0456 (6)
H230.30350.05440.59720.055*
C240.4492 (2)0.2627 (2)0.39366 (10)0.0577 (7)
H24A0.40700.18960.37020.087*
H24B0.49130.23060.43190.087*
H24C0.51910.30280.37470.087*
O30.28463 (16)0.36458 (15)0.29960 (6)0.0508 (4)
C250.1959 (2)0.4029 (2)0.24813 (9)0.0553 (7)
H25A0.10210.37850.25070.083*
H25B0.22320.35890.21500.083*
H25C0.20140.49780.24330.083*
O40.04512 (16)0.64150 (15)0.41344 (6)0.0542 (5)
C260.0374 (3)0.6922 (2)0.36263 (10)0.0626 (8)
H26A0.02110.73010.33750.094*
H26B0.09800.75990.37330.094*
H26C0.09210.62150.34220.094*
O50.18961 (18)1.01996 (17)0.52486 (7)0.0685 (5)
C270.3001 (3)1.1009 (3)0.53203 (12)0.0764 (9)
H27A0.36821.04930.54760.115*
H27B0.34151.13780.49460.115*
H27C0.26731.17190.55890.115*
O60.64798 (16)0.05087 (16)0.74612 (6)0.0559 (5)
C280.5936 (3)0.0556 (2)0.77410 (10)0.0634 (7)
H28A0.50100.03410.77970.095*
H28B0.65130.07170.81160.095*
H28C0.59110.13420.75010.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0444 (14)0.0374 (13)0.0385 (13)0.0065 (11)0.0035 (11)0.0028 (11)
C20.0446 (14)0.0410 (14)0.0322 (13)0.0025 (12)0.0057 (11)0.0050 (11)
C30.0465 (14)0.0433 (14)0.0301 (13)0.0046 (12)0.0003 (11)0.0010 (10)
C40.0431 (14)0.0390 (14)0.0383 (14)0.0096 (11)0.0033 (11)0.0007 (11)
C50.0443 (14)0.0409 (14)0.0297 (13)0.0038 (11)0.0020 (11)0.0007 (10)
C60.0420 (13)0.0368 (13)0.0332 (13)0.0038 (11)0.0024 (11)0.0013 (10)
C70.0517 (15)0.0453 (14)0.0322 (13)0.0119 (12)0.0001 (11)0.0005 (11)
C80.0569 (16)0.0656 (17)0.0331 (14)0.0220 (14)0.0013 (12)0.0053 (12)
C90.0468 (15)0.0571 (16)0.0346 (14)0.0073 (13)0.0036 (12)0.0024 (12)
O10.0732 (12)0.0785 (13)0.0345 (10)0.0290 (10)0.0025 (9)0.0017 (9)
C100.0405 (14)0.0487 (15)0.0354 (13)0.0027 (12)0.0055 (11)0.0061 (11)
C110.0477 (15)0.0524 (16)0.0357 (14)0.0025 (13)0.0051 (12)0.0064 (12)
O20.0653 (12)0.0778 (13)0.0347 (9)0.0115 (10)0.0050 (9)0.0063 (9)
C120.0548 (16)0.0628 (17)0.0435 (15)0.0002 (14)0.0158 (13)0.0153 (13)
C130.0513 (16)0.0538 (17)0.0581 (17)0.0032 (13)0.0183 (14)0.0120 (14)
C140.0493 (15)0.0523 (16)0.0510 (16)0.0082 (13)0.0096 (13)0.0006 (13)
C150.0480 (15)0.0552 (16)0.0384 (14)0.0066 (13)0.0098 (12)0.0046 (12)
C160.0397 (13)0.0439 (14)0.0403 (14)0.0059 (11)0.0001 (11)0.0023 (11)
C170.0457 (15)0.0514 (15)0.0381 (14)0.0013 (12)0.0005 (12)0.0032 (12)
C180.0475 (14)0.0403 (14)0.0336 (13)0.0047 (12)0.0045 (11)0.0001 (11)
C190.0529 (15)0.0392 (14)0.0375 (14)0.0033 (12)0.0067 (12)0.0002 (11)
C200.0473 (15)0.0466 (15)0.0354 (14)0.0008 (12)0.0008 (12)0.0001 (11)
C210.0453 (14)0.0450 (15)0.0306 (13)0.0069 (12)0.0055 (11)0.0023 (11)
C220.0498 (15)0.0430 (14)0.0390 (14)0.0038 (12)0.0126 (12)0.0045 (12)
C230.0459 (14)0.0498 (15)0.0405 (14)0.0018 (12)0.0057 (12)0.0002 (12)
C240.0645 (18)0.0603 (17)0.0475 (16)0.0204 (14)0.0074 (14)0.0043 (13)
O30.0576 (11)0.0620 (11)0.0324 (9)0.0061 (9)0.0071 (8)0.0083 (8)
C250.0583 (16)0.0779 (19)0.0280 (13)0.0043 (14)0.0028 (12)0.0054 (13)
O40.0621 (11)0.0618 (11)0.0352 (9)0.0287 (9)0.0016 (8)0.0006 (8)
C260.0670 (18)0.0717 (19)0.0444 (16)0.0338 (15)0.0030 (13)0.0097 (14)
O50.0725 (13)0.0722 (13)0.0627 (12)0.0316 (11)0.0176 (10)0.0101 (10)
C270.0694 (19)0.073 (2)0.087 (2)0.0320 (17)0.0160 (17)0.0081 (17)
O60.0590 (11)0.0652 (12)0.0398 (10)0.0011 (9)0.0013 (8)0.0186 (9)
C280.0746 (19)0.0636 (18)0.0492 (16)0.0003 (15)0.0034 (14)0.0242 (14)
Geometric parameters (Å, º) top
C1—C21.393 (3)C17—C181.467 (3)
C1—C61.396 (3)C17—H170.9500
C1—C241.504 (3)C18—C231.383 (3)
C2—O31.368 (2)C18—C191.391 (3)
C2—C31.386 (3)C19—C201.379 (3)
C3—C41.383 (3)C19—H190.9500
C3—H30.9500C20—C211.388 (3)
C4—O41.364 (2)C20—H200.9500
C4—C51.408 (3)C21—O61.370 (2)
C5—C61.423 (3)C21—C221.374 (3)
C5—C71.454 (3)C22—C231.396 (3)
C6—C161.484 (3)C22—H220.9500
C7—C81.327 (3)C23—H230.9500
C7—H70.9500C24—H24A0.9800
C8—C91.464 (3)C24—H24B0.9800
C8—H80.9500C24—H24C0.9800
C9—O11.238 (3)O3—C251.424 (2)
C9—O11.238 (3)C25—H25A0.9800
C9—C101.476 (3)C25—H25B0.9800
C10—C151.395 (3)C25—H25C0.9800
C10—C111.407 (3)O4—C261.425 (2)
C11—O21.368 (3)C26—H26A0.9800
C11—C121.384 (3)C26—H26B0.9800
O2—H20.8400C26—H26C0.9800
C12—C131.379 (3)O5—C271.411 (3)
C12—H120.9500C27—H27A0.9800
C13—C141.386 (3)C27—H27B0.9800
C13—H130.9500C27—H27C0.9800
C14—C151.376 (3)O6—C281.429 (3)
C14—O51.377 (3)C28—H28A0.9800
C15—H150.9500C28—H28B0.9800
C16—C171.310 (3)C28—H28C0.9800
C16—H160.9500
C2—C1—C6118.1 (2)C18—C17—H17116.3
C2—C1—C24119.5 (2)C23—C18—C19117.4 (2)
C6—C1—C24122.4 (2)C23—C18—C17120.8 (2)
O3—C2—C3122.7 (2)C19—C18—C17121.8 (2)
O3—C2—C1115.3 (2)C20—C19—C18121.7 (2)
C3—C2—C1122.0 (2)C20—C19—H19119.2
C4—C3—C2119.3 (2)C18—C19—H19119.2
C4—C3—H3120.3C19—C20—C21119.8 (2)
C2—C3—H3120.3C19—C20—H20120.1
O4—C4—C3121.6 (2)C21—C20—H20120.1
O4—C4—C5116.66 (19)O6—C21—C22124.9 (2)
C3—C4—C5121.8 (2)O6—C21—C20115.4 (2)
C4—C5—C6117.02 (19)C22—C21—C20119.7 (2)
C4—C5—C7123.7 (2)C21—C22—C23119.7 (2)
C6—C5—C7119.2 (2)C21—C22—H22120.1
C1—C6—C5121.8 (2)C23—C22—H22120.1
C1—C6—C16118.8 (2)C18—C23—C22121.6 (2)
C5—C6—C16119.41 (19)C18—C23—H23119.2
C8—C7—C5130.2 (2)C22—C23—H23119.2
C8—C7—H7114.9C1—C24—H24A109.5
C5—C7—H7114.9C1—C24—H24B109.5
C7—C8—C9122.2 (2)H24A—C24—H24B109.5
C7—C8—H8118.9C1—C24—H24C109.5
C9—C8—H8118.9H24A—C24—H24C109.5
O1—C9—C8121.5 (2)H24B—C24—H24C109.5
O1—C9—C8121.5 (2)C2—O3—C25118.06 (17)
O1—C9—C10120.0 (2)O3—C25—H25A109.5
O1—C9—C10120.0 (2)O3—C25—H25B109.5
C8—C9—C10118.4 (2)H25A—C25—H25B109.5
C15—C10—C11118.1 (2)O3—C25—H25C109.5
C15—C10—C9121.3 (2)H25A—C25—H25C109.5
C11—C10—C9120.6 (2)H25B—C25—H25C109.5
O2—C11—C12118.3 (2)C4—O4—C26118.78 (17)
O2—C11—C10122.2 (2)O4—C26—H26A109.5
C12—C11—C10119.5 (2)O4—C26—H26B109.5
C11—O2—H2109.5H26A—C26—H26B109.5
C13—C12—C11121.1 (2)O4—C26—H26C109.5
C13—C12—H12119.5H26A—C26—H26C109.5
C11—C12—H12119.5H26B—C26—H26C109.5
C12—C13—C14120.0 (2)C14—O5—C27117.51 (19)
C12—C13—H13120.0O5—C27—H27A109.5
C14—C13—H13120.0O5—C27—H27B109.5
C15—C14—O5115.4 (2)H27A—C27—H27B109.5
C15—C14—C13119.2 (2)O5—C27—H27C109.5
O5—C14—C13125.4 (2)H27A—C27—H27C109.5
C14—C15—C10121.9 (2)H27B—C27—H27C109.5
C14—C15—H15119.0C21—O6—C28117.08 (18)
C10—C15—H15119.0O6—C28—H28A109.5
C17—C16—C6124.8 (2)O6—C28—H28B109.5
C17—C16—H16117.6H28A—C28—H28B109.5
C6—C16—H16117.6O6—C28—H28C109.5
C16—C17—C18127.4 (2)H28A—C28—H28C109.5
C16—C17—H17116.3H28B—C28—H28C109.5
C6—C1—C2—O3178.50 (18)C9—C10—C11—O25.1 (3)
C24—C1—C2—O30.5 (3)C15—C10—C11—C123.7 (3)
C6—C1—C2—C31.5 (3)C9—C10—C11—C12173.9 (2)
C24—C1—C2—C3179.5 (2)O2—C11—C12—C13178.2 (2)
O3—C2—C3—C4179.4 (2)C10—C11—C12—C132.8 (4)
C1—C2—C3—C40.6 (3)C11—C12—C13—C140.2 (4)
C2—C3—C4—O4177.77 (19)C12—C13—C14—C151.3 (4)
C2—C3—C4—C51.2 (3)C12—C13—C14—O5179.0 (2)
O4—C4—C5—C6179.35 (18)O5—C14—C15—C10179.9 (2)
C3—C4—C5—C60.3 (3)C13—C14—C15—C100.2 (4)
O4—C4—C5—C72.9 (3)C11—C10—C15—C142.3 (3)
C3—C4—C5—C7176.1 (2)C9—C10—C15—C14175.4 (2)
C2—C1—C6—C53.1 (3)C1—C6—C16—C17108.8 (3)
C24—C1—C6—C5179.0 (2)C5—C6—C16—C1770.8 (3)
C2—C1—C6—C16176.4 (2)C6—C16—C17—C18177.6 (2)
C24—C1—C6—C161.5 (3)C16—C17—C18—C23157.3 (2)
C4—C5—C6—C12.5 (3)C16—C17—C18—C1922.7 (4)
C7—C5—C6—C1174.1 (2)C23—C18—C19—C201.3 (3)
C4—C5—C6—C16177.0 (2)C17—C18—C19—C20178.7 (2)
C7—C5—C6—C166.4 (3)C18—C19—C20—C210.5 (3)
C4—C5—C7—C86.9 (4)C19—C20—C21—O6179.34 (19)
C6—C5—C7—C8176.8 (2)C19—C20—C21—C220.4 (3)
C5—C7—C8—C9178.8 (2)O6—C21—C22—C23179.4 (2)
C7—C8—C9—O19.8 (4)C20—C21—C22—C230.3 (3)
C7—C8—C9—O19.8 (4)C19—C18—C23—C221.4 (3)
C7—C8—C9—C10172.0 (2)C17—C18—C23—C22178.6 (2)
C8—C9—O1—O10.0 (3)C21—C22—C23—C180.6 (3)
C10—C9—O1—O10.0 (3)C3—C2—O3—C255.3 (3)
O1—C9—C10—C15171.1 (2)C1—C2—O3—C25174.72 (19)
O1—C9—C10—C15171.1 (2)C3—C4—O4—C260.8 (3)
C8—C9—C10—C1510.8 (3)C5—C4—O4—C26179.9 (2)
O1—C9—C10—C1111.4 (3)C15—C14—O5—C27169.4 (2)
O1—C9—C10—C1111.4 (3)C13—C14—O5—C2710.2 (4)
C8—C9—C10—C11166.8 (2)C22—C21—O6—C2810.6 (3)
C15—C10—C11—O2177.2 (2)C20—C21—O6—C28169.73 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.841.862.586 (2)144
C25—H25A···O2i0.982.633.556 (3)157
C28—H28B···O1ii0.982.643.247 (3)120
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+3/2.
 

Funding information

The authors acknowledge financial support from Dongduk Women's University, Republic of Korea.

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationGil, H. N., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2018). Bioorg. Med. Chem. Lett. 28, 2969–2975.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLee, D. H., Jung Jung, Y., Koh, D., Lim, Y., Lee, Y. H. & Shin, S. Y. (2016). Cancer Lett. 372, 1–9.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Lee, J., Park, J., Lee, Y., Ahn, S., Lee, J. H., Koh, D., Lee, Y. H. & Lim, Y. (2019). Bioorg. Chem. 83, 438–449.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTimperio, A. M., D'Alessandro, A., Fagioni, M., Magro, P. & Zolla, L. (2012). Plant Physiol. Biochem. 50, 65–71.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds