metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di-μ-aqua-bis­­[aqua­(2,2′-bi­pyridine)(4-nitro­benzoato)cobalt(II)] bis­­(4-nitro­benzoate)

CROSSMARK_Color_square_no_text.svg

aSchool of Chemical Sciences, Goa University, Goa 403206, India
*Correspondence e-mail: sndhuri@unigoa.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 27 May 2020; accepted 13 June 2020; online 19 June 2020)

The title compound, [Co2(C7H4NO4)2(C10H8N2)2(H2O)4](C7H4NO4)2, consists of a centrosymmetric bimetallic complex charge-balanced by free 4-nitro­benzoate anions. The CoII ion exhibits a distorted cis-CoN2O4 octa­hedral coordination environment and the Co⋯Co separation is 3.326 (2) Å. In the crystal, the dications and anions are linked by O—H⋯O and C—H⋯O hydrogen bonds.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

As part of an ongoing research program we are investigating the structural aspects of mixed-ligand compounds of divalent-metal 4-nitro­benzoates. Recently we described the structure of [Co(H2O)2(DMSO)2(C7H4NO4)](C7H4NO4) 2 (DMSO = di­methyl­sulfoxide; C7H4NO4 = 4-nitro­benzoate) containing a bidentate as well as a free 4-nitro­benzoate anion (Srinivasan et al., 2020[Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J. Chem. Sect A, 59, 51-56.]). Our attempts to replace the cis-aqua ligands of 2 with 2,2′-bi­pyridine has resulted in the isolation of the di­aqua-bridged title dinuclear compound. The Cambridge Structural Database (CSD, version 5.40, update September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) lists the structures of several cobalt 4-nitro­benzoates: of these, more than a dozen are mononuclear cobalt compounds (Srinivasan et al., 2004[Srinivasan, B. R., Sawant, S. C. & Das, S. K. (2004). Indian J. Chem. Sect A, 43, 1066-1075.], 2020[Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J. Chem. Sect A, 59, 51-56.]; Chakravorty et al., 2011[Chakravorty, S., Platts, J. A. & Das, B. K. (2011). Dalton Trans. 40, 11605-11612.]) while only four dinuclear compounds of 4-nitro­benzoate are known to date (Singh et al., 2007[Singh, U. P., Aggarwal, V. & Sharma, A. K. (2007). Inorg. Chim. Acta, 360, 3226-3232.]; Jung et al., 2009[Jung, M., Sharma, A., Hinderberger, D., Braun, S., Schatzschneider, U. & Rentschler, E. (2009). Eur. J. Inorg. Chem. 2009, 1495-1502.]; Yang et al., 2011[Yang, E. C., Liu, Z. Y., Liu, T. Y., Li, L. L. & Zhao, X. J. (2011). Dalton Trans. 40, 8132-8139.]; Wang & Qi, 2014[Wang, Y. & Qi, Y. (2014). Z. Anorg. Allg. Chem. 640, 2609-2615.]). The title compound is a new addition to the list of dimeric cobalt 4-nitro­benzoates.

The structure of the title compound, 1, consists of a crystallographically unique cobaltous ion and a 2,2′-bi­pyridine mol­ecule, two crystallographically independent 4-nitro­benzoate ions and two unique aqua ligands (one terminal, one bridging). The CoII ion, one 4-nitro­benzoate ion, one 2,2′-bi­pyridine mol­ecule and each of a terminal and bridging water mol­ecule build up one half of a dimeric dicationic species [Co2(H2O)2(C10H8N2)2(C7H4NO4)2(μ2-H2O)2]2+, the other half being generated by inversion symmetry (Fig. 1[link]). The crystallographic inversion centre is situated at the midpoint of the line connecting the CoII atoms in the dimer. A charge-balancing 4-nitro­benzoate ion completes the structure.

[Figure 1]
Figure 1
The dinuclear dication in 1 with displacement ellipsoids drawn at the 50% probability level. Intramolecular hydrogen bonds are shown as broken lines [Symmetry code: (i) 1 – x, 1 – y, 1 – z.]

In the centrosymmetric dimer, each CoII ion exhibits a distorted octa­hedral environment and is bonded to a terminal aqua ligand, a monodentate 4-nitro­benzoate ligand disposed cis to the terminal aqua ligand and a bidentate 2,2′-bi­pyridine mol­ecule. A pair of cis-aqua ligands bridges the metal centres and completes the hexa-coordination around the metal ions resulting in a Co⋯Co(1 – x, 1 – y, 1 – z) separation of 3.326 (2) Å. It is inter­esting to note that in three of the four known dinuclear cobalt compounds (Singh et al., 2007[Singh, U. P., Aggarwal, V. & Sharma, A. K. (2007). Inorg. Chim. Acta, 360, 3226-3232.]; Yang et al., 2011[Yang, E. C., Liu, Z. Y., Liu, T. Y., Li, L. L. & Zhao, X. J. (2011). Dalton Trans. 40, 8132-8139.]; Wang & Qi, 2014[Wang, Y. & Qi, Y. (2014). Z. Anorg. Allg. Chem. 640, 2609-2615.]), the 4-nitro­benzoate anion functions as a monodentate ligand as in the title compound. One example each of a dinuclear (Jung et al., 2009[Jung, M., Sharma, A., Hinderberger, D., Braun, S., Schatzschneider, U. & Rentschler, E. (2009). Eur. J. Inorg. Chem. 2009, 1495-1502.]) and a tetra­nuclear cobalt compound (Dimitrou et al., 2001[Dimitrou, K., Brown, A. D., Christou, G., Concolino, T. E. & Rheingold, A. L. (2001). Chem. Commun. pp. 1284-1285.]) is known where the 4-nitro­benzoate ion functions as a symmetric bridging ligand.

The geometric parameters of 1 are in their normal ranges and are in agreement with reported data (Srinivasan et al., 2020[Srinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J. Chem. Sect A, 59, 51-56.]). The Co—Ow (w = water) bonds [2.0743 (10) and 2.1617 (9) Å] are elongated as compared to the Co—Oc (c = carboxyl­ate) distance, which is the shortest at 2.0494 (9) Å. The cis-O—Co—O and N—Co—N bond angles range between 77.97 (4) and 100.02 (4)°, while the trans bond angles deviate from ideal values, indicating a distortion of the {CoN2O4} octa­hedron.

All of the H atoms attached to the aqua ligands, and five of the other H atoms viz. H9, H14, H16, H17 and H21 bonded to C9, C14, C16, C17 and C21, respectively, function as hydrogen-bond donors, while the oxygen atoms O2, O3, O5, O6 and O7 of the 4-nitro­benzoate ions function as acceptors, resulting in a total of four O—H⋯O and five C—H⋯O hydrogen bonds (Table 1[link]). Each free 4-nitro­benzoate anion is linked with four symmetry-related dications with the aid of two O—H⋯O hydrogen bonds and four C—H⋯O hydrogen bonds (Figs. 2[link] and 3[link]). Each of the dinuclear dicobalt dicationic species is linked with two symmetry-related dications and eight symmetry-generated anions (Fig. 4[link]), resulting in a three-dimensional supra­molecular network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2W—H2B⋯O5i 0.84 (2) 1.67 (2) 2.5101 (13) 173 (2)
O2W—H2A⋯O3 0.79 (2) 1.88 (2) 2.6483 (13) 164 (2)
O1W—H1B⋯O3ii 0.82 (2) 2.04 (2) 2.8477 (14) 174 (2)
O1W—H1A⋯O6iii 0.81 (2) 1.88 (2) 2.6803 (14) 171 (2)
C21—H21⋯O2iv 0.93 2.48 3.2219 (17) 137
C17—H17⋯O5i 0.93 2.24 3.1679 (16) 172
C16—H16⋯O2v 0.93 2.57 3.4644 (17) 160
C14—H14⋯O6vi 0.93 2.41 3.3126 (16) 164
C9—H9⋯O7vii 0.93 2.64 3.5467 (18) 164
Symmetry codes: (i) x-1, y, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z-1; (v) x, y, z-1; (vi) x, y+1, z; (vii) x, y+1, z+1.
[Figure 2]
Figure 2
The hydrogen-bonding scheme around the 4-nitro­benzoate anion showing the O—H⋯O and C—H⋯O hydrogen bonds as dashed lines. For symmetry codes see Table 1[link].
[Figure 3]
Figure 3
Environment of the anion, showing its hydrogen bonds to four symmetrically related dications via O—H⋯O and C—H⋯O bonds.
[Figure 4]
Figure 4
The hydrogen-bonding scheme around the dication showing its linking with eight anions and two cations via O—H⋯O and C—H⋯O hydrogen bonds.

Synthesis and crystallization

Crystals of 2 (0.0292 g, 0.05 mmol) were taken in DMSO (3 ml) to obtain a purple solution. 2,2′-Bi­pyridine (0.0078 g, 0.05 mmol) was dissolved in DMSO (3 ml) in a separate beaker and then was added dropwise to the cobalt solution with continuous swirling. The pale-orange solution thus obtained was left undisturbed at room temperature. After to days, dark-orange blocks of 1 started forming in the solution, which were isolated by filtration and air dried. Yield 60%.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula [Co2(C7H4NO4)2(C10H8N2)2(H2O)4](C7H4NO4)2
Mr 1166.74
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.2747 (5), 10.4927 (8), 16.3560 (12)
α, β, γ (°) 97.735 (2), 102.840 (2), 102.607 (2)
V3) 1165.70 (15)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.45 × 0.32 × 0.21
 
Data collection
Diffractometer Bruker D8 Quest eco
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
No. of measured, independent and observed [I > 2σ(I)] reflections 26747, 5763, 5312
Rint 0.025
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.05
No. of reflections 5763
No. of parameters 368
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2019[Bruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 20015a[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2019); cell refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: shelXle (Hübschle et al., 2011).

Di-µ-aqua-bis[aqua(2,2'-bipyridine)(4-nitrobenzoato)cobalt(II)] bis(4-nitrobenzoate) top
Crystal data top
[Co2(C7H4NO4)2(C10H8N2)2(H2O)4](C7H4NO4)2Z = 1
Mr = 1166.74F(000) = 598
Triclinic, P1Dx = 1.662 Mg m3
a = 7.2747 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4927 (8) ÅCell parameters from 9978 reflections
c = 16.3560 (12) Åθ = 2.9–28.2°
α = 97.735 (2)°µ = 0.81 mm1
β = 102.840 (2)°T = 296 K
γ = 102.607 (2)°Block, orange
V = 1165.70 (15) Å30.45 × 0.32 × 0.21 mm
Data collection top
Bruker D8 Quest eco
diffractometer
5312 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.025
φ and ω scansθmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
k = 1313
26747 measured reflectionsl = 2121
5763 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0255P)2 + 0.6838P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
5763 reflectionsΔρmax = 0.36 e Å3
368 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.43361 (2)0.63922 (2)0.52457 (2)0.01063 (5)
O10.43137 (17)0.71403 (11)1.06326 (6)0.0261 (2)
N10.32901 (17)0.60682 (12)1.01984 (7)0.0180 (2)
C10.32850 (19)0.57702 (13)0.92928 (8)0.0147 (2)
O20.22558 (18)0.52407 (11)1.04780 (7)0.0289 (2)
N20.61203 (16)0.83416 (10)0.57038 (7)0.0131 (2)
C20.45366 (19)0.66787 (13)0.89966 (8)0.0168 (3)
H20.5397770.7429600.9364660.020*
O30.19021 (13)0.40968 (9)0.61539 (6)0.01502 (18)
N30.44762 (16)0.70799 (11)0.41050 (7)0.0130 (2)
C30.44682 (19)0.64358 (13)0.81350 (8)0.0161 (2)
H30.5297350.7031000.7920830.019*
O40.43133 (13)0.59742 (9)0.64323 (6)0.01478 (18)
N40.82411 (18)0.08005 (12)0.06413 (8)0.0207 (2)
C40.31743 (18)0.53122 (12)0.75861 (8)0.0129 (2)
C50.1950 (2)0.44082 (13)0.79086 (8)0.0169 (3)
H50.1097750.3650500.7544050.020*
O51.07575 (15)0.36007 (10)0.32867 (6)0.0211 (2)
C60.1994 (2)0.46313 (13)0.87707 (8)0.0180 (3)
H60.1180410.4034050.8990360.022*
O60.85644 (15)0.18061 (9)0.33776 (6)0.0203 (2)
C70.31025 (18)0.51044 (12)0.66454 (8)0.0127 (2)
O70.91826 (18)0.15271 (12)0.10126 (7)0.0317 (3)
C80.6889 (2)0.89288 (13)0.65249 (8)0.0167 (3)
H80.6507560.8489930.6941040.020*
O80.70001 (17)0.02340 (11)0.10076 (7)0.0297 (2)
C90.8231 (2)1.01652 (13)0.67843 (9)0.0188 (3)
H90.8745471.0543020.7361120.023*
C100.8785 (2)1.08205 (13)0.61629 (9)0.0191 (3)
H100.9679021.1649880.6317000.023*
C110.79935 (19)1.02285 (13)0.53093 (9)0.0165 (2)
H110.8344911.0656960.4883780.020*
C120.66666 (18)0.89850 (12)0.50973 (8)0.0131 (2)
C130.57188 (18)0.82847 (12)0.41994 (8)0.0130 (2)
C140.6047 (2)0.88285 (13)0.34951 (9)0.0176 (3)
H140.6918020.9654140.3569460.021*
C150.5048 (2)0.81138 (14)0.26838 (9)0.0206 (3)
H150.5258610.8450410.2205210.025*
C160.3734 (2)0.68944 (14)0.25880 (9)0.0188 (3)
H160.3029490.6410700.2048040.023*
C170.34957 (19)0.64140 (13)0.33163 (8)0.0155 (2)
H170.2618270.5595000.3254890.019*
C180.95292 (19)0.24975 (13)0.29757 (8)0.0146 (2)
C190.92261 (19)0.20072 (13)0.20274 (8)0.0149 (2)
C201.03275 (19)0.27527 (13)0.15766 (9)0.0173 (3)
H201.1275070.3526940.1864070.021*
O1W0.16527 (15)0.68171 (11)0.51582 (7)0.0186 (2)
C211.0024 (2)0.23507 (14)0.07020 (9)0.0189 (3)
H211.0751680.2848460.0398780.023*
C220.8611 (2)0.11911 (13)0.02938 (9)0.0178 (3)
C230.7511 (2)0.04133 (14)0.07225 (9)0.0218 (3)
H230.6580490.0368270.0433950.026*
C240.7839 (2)0.08360 (14)0.15973 (9)0.0203 (3)
H240.7120920.0328180.1899300.024*
O2W0.30828 (13)0.43132 (9)0.47476 (6)0.01185 (17)
H1A0.148 (3)0.718 (2)0.5594 (15)0.042 (6)*
H1B0.066 (3)0.650 (2)0.4773 (14)0.039 (6)*
H2A0.264 (3)0.410 (2)0.5123 (15)0.045 (6)*
H2B0.223 (3)0.404 (2)0.4276 (14)0.039 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01158 (9)0.01116 (8)0.00889 (8)0.00091 (6)0.00424 (6)0.00170 (6)
O10.0363 (6)0.0240 (5)0.0128 (5)0.0000 (5)0.0064 (4)0.0016 (4)
N10.0228 (6)0.0209 (6)0.0115 (5)0.0064 (5)0.0061 (4)0.0034 (4)
C10.0187 (6)0.0180 (6)0.0092 (6)0.0061 (5)0.0056 (5)0.0031 (5)
O20.0405 (6)0.0285 (6)0.0170 (5)0.0013 (5)0.0154 (5)0.0056 (4)
N20.0144 (5)0.0128 (5)0.0126 (5)0.0034 (4)0.0045 (4)0.0024 (4)
C20.0173 (6)0.0177 (6)0.0128 (6)0.0004 (5)0.0037 (5)0.0011 (5)
O30.0163 (4)0.0161 (4)0.0111 (4)0.0010 (3)0.0048 (3)0.0008 (3)
N30.0136 (5)0.0141 (5)0.0118 (5)0.0033 (4)0.0047 (4)0.0025 (4)
C30.0166 (6)0.0180 (6)0.0130 (6)0.0003 (5)0.0061 (5)0.0032 (5)
O40.0174 (4)0.0162 (4)0.0112 (4)0.0019 (4)0.0065 (3)0.0032 (3)
N40.0239 (6)0.0204 (6)0.0168 (6)0.0057 (5)0.0054 (5)0.0002 (5)
C40.0139 (6)0.0156 (6)0.0108 (6)0.0051 (5)0.0049 (4)0.0028 (5)
C50.0200 (6)0.0154 (6)0.0135 (6)0.0003 (5)0.0063 (5)0.0008 (5)
O50.0234 (5)0.0185 (5)0.0136 (5)0.0051 (4)0.0005 (4)0.0027 (4)
C60.0230 (7)0.0176 (6)0.0141 (6)0.0014 (5)0.0092 (5)0.0041 (5)
O60.0241 (5)0.0161 (4)0.0205 (5)0.0001 (4)0.0116 (4)0.0012 (4)
C70.0139 (6)0.0154 (6)0.0109 (6)0.0056 (5)0.0053 (4)0.0037 (5)
O70.0416 (7)0.0307 (6)0.0202 (5)0.0008 (5)0.0134 (5)0.0028 (5)
C80.0194 (6)0.0161 (6)0.0143 (6)0.0047 (5)0.0046 (5)0.0016 (5)
O80.0345 (6)0.0258 (5)0.0202 (5)0.0017 (5)0.0046 (5)0.0046 (4)
C90.0200 (6)0.0174 (6)0.0156 (6)0.0047 (5)0.0011 (5)0.0023 (5)
C100.0165 (6)0.0137 (6)0.0240 (7)0.0017 (5)0.0038 (5)0.0003 (5)
C110.0163 (6)0.0135 (6)0.0199 (6)0.0024 (5)0.0065 (5)0.0036 (5)
C120.0126 (6)0.0133 (6)0.0141 (6)0.0038 (5)0.0042 (5)0.0026 (5)
C130.0125 (6)0.0130 (5)0.0134 (6)0.0027 (4)0.0041 (5)0.0022 (5)
C140.0194 (6)0.0159 (6)0.0173 (6)0.0008 (5)0.0069 (5)0.0047 (5)
C150.0271 (7)0.0216 (7)0.0138 (6)0.0032 (6)0.0079 (5)0.0064 (5)
C160.0234 (7)0.0194 (6)0.0125 (6)0.0036 (5)0.0050 (5)0.0025 (5)
C170.0174 (6)0.0138 (6)0.0135 (6)0.0009 (5)0.0045 (5)0.0014 (5)
C180.0140 (6)0.0137 (6)0.0155 (6)0.0039 (5)0.0030 (5)0.0024 (5)
C190.0137 (6)0.0146 (6)0.0161 (6)0.0037 (5)0.0033 (5)0.0024 (5)
C200.0149 (6)0.0162 (6)0.0178 (6)0.0001 (5)0.0036 (5)0.0013 (5)
O1W0.0149 (5)0.0254 (5)0.0154 (5)0.0058 (4)0.0049 (4)0.0004 (4)
C210.0190 (6)0.0185 (6)0.0188 (7)0.0015 (5)0.0071 (5)0.0039 (5)
C220.0199 (6)0.0178 (6)0.0153 (6)0.0055 (5)0.0047 (5)0.0003 (5)
C230.0242 (7)0.0156 (6)0.0194 (7)0.0032 (5)0.0044 (5)0.0018 (5)
C240.0235 (7)0.0159 (6)0.0183 (7)0.0019 (5)0.0068 (5)0.0013 (5)
O2W0.0120 (4)0.0137 (4)0.0085 (4)0.0000 (3)0.0036 (3)0.0012 (3)
Geometric parameters (Å, º) top
Co1—O42.0494 (9)C8—H80.9300
Co1—O1W2.0743 (10)C9—C101.385 (2)
Co1—N22.1038 (11)C9—H90.9300
Co1—N32.1039 (11)C10—C111.386 (2)
Co1—O2W2.1394 (9)C10—H100.9300
Co1—O2Wi2.1617 (9)C11—C121.3908 (17)
O1—N11.2282 (16)C11—H110.9300
N1—O21.2262 (15)C12—C131.4868 (18)
N1—C11.4712 (16)C13—C141.3960 (18)
C1—C21.3833 (18)C14—C151.3845 (19)
C1—C61.3851 (19)C14—H140.9300
N2—C81.3376 (17)C15—C161.3861 (19)
N2—C121.3550 (16)C15—H150.9300
C2—C31.3857 (18)C16—C171.3851 (18)
C2—H20.9300C16—H160.9300
O3—C71.2581 (16)C17—H170.9300
N3—C171.3386 (16)C18—C191.5176 (18)
N3—C131.3511 (16)C19—C241.3906 (18)
C3—C41.3918 (18)C19—C201.3934 (18)
C3—H30.9300C20—C211.3890 (19)
O4—C71.2655 (15)C20—H200.9300
N4—O71.2251 (16)O1W—H1A0.81 (2)
N4—O81.2284 (16)O1W—H1B0.82 (2)
N4—C221.4763 (17)C21—C221.3831 (19)
C4—C51.3951 (17)C21—H210.9300
C4—C71.5121 (17)C22—C231.3844 (19)
C5—C61.3900 (18)C23—C241.390 (2)
C5—H50.9300C23—H230.9300
O5—C181.2590 (16)C24—H240.9300
C6—H60.9300O2W—H2A0.79 (2)
O6—C181.2499 (16)O2W—H2B0.84 (2)
C8—C91.3897 (19)
O4—Co1—O1W88.78 (4)C9—C10—C11119.35 (12)
O4—Co1—N295.06 (4)C9—C10—H10120.3
O1W—Co1—N298.21 (4)C11—C10—H10120.3
O4—Co1—N3172.65 (4)C10—C11—C12119.11 (12)
O1W—Co1—N389.91 (4)C10—C11—H11120.4
N2—Co1—N377.97 (4)C12—C11—H11120.4
O4—Co1—O2W87.29 (4)N2—C12—C11121.70 (12)
O1W—Co1—O2W93.78 (4)N2—C12—C13115.43 (11)
N2—Co1—O2W167.83 (4)C11—C12—C13122.86 (12)
N3—Co1—O2W100.02 (4)N3—C13—C14121.59 (12)
O4—Co1—O2Wi91.60 (4)N3—C13—C12115.34 (11)
O1W—Co1—O2Wi172.46 (4)C14—C13—C12123.07 (11)
N2—Co1—O2Wi89.26 (4)C15—C14—C13118.67 (12)
N3—Co1—O2Wi90.64 (4)C15—C14—H14120.7
O2W—Co1—O2Wi78.72 (4)C13—C14—H14120.7
O2—N1—O1123.42 (12)C14—C15—C16119.70 (12)
O2—N1—C1118.33 (11)C14—C15—H15120.2
O1—N1—C1118.23 (11)C16—C15—H15120.2
C2—C1—C6123.04 (12)C17—C16—C15118.36 (13)
C2—C1—N1117.76 (12)C17—C16—H16120.8
C6—C1—N1119.15 (11)C15—C16—H16120.8
C8—N2—C12118.50 (11)N3—C17—C16122.72 (12)
C8—N2—Co1126.05 (9)N3—C17—H17118.6
C12—N2—Co1115.11 (8)C16—C17—H17118.6
C1—C2—C3117.98 (12)O6—C18—O5125.68 (12)
C1—C2—H2121.0O6—C18—C19119.05 (12)
C3—C2—H2121.0O5—C18—C19115.27 (11)
C17—N3—C13118.93 (11)C24—C19—C20119.42 (12)
C17—N3—Co1125.64 (9)C24—C19—C18120.96 (12)
C13—N3—Co1115.41 (8)C20—C19—C18119.60 (12)
C2—C3—C4120.82 (12)C21—C20—C19120.64 (12)
C2—C3—H3119.6C21—C20—H20119.7
C4—C3—H3119.6C19—C20—H20119.7
C7—O4—Co1129.34 (8)Co1—O1W—H1A116.9 (15)
O7—N4—O8123.35 (12)Co1—O1W—H1B127.0 (15)
O7—N4—C22118.32 (12)H1A—O1W—H1B114 (2)
O8—N4—C22118.33 (12)C22—C21—C20118.29 (13)
C3—C4—C5119.66 (12)C22—C21—H21120.9
C3—C4—C7119.19 (11)C20—C21—H21120.9
C5—C4—C7121.15 (11)C21—C22—C23122.70 (13)
C6—C5—C4120.51 (12)C21—C22—N4117.93 (12)
C6—C5—H5119.7C23—C22—N4119.34 (12)
C4—C5—H5119.7C22—C23—C24117.98 (13)
C1—C6—C5117.98 (12)C22—C23—H23121.0
C1—C6—H6121.0C24—C23—H23121.0
C5—C6—H6121.0C23—C24—C19120.94 (13)
O3—C7—O4126.09 (11)C23—C24—H24119.5
O3—C7—C4118.54 (11)C19—C24—H24119.5
O4—C7—C4115.36 (11)Co1—O2W—Co1i101.28 (4)
N2—C8—C9122.98 (12)Co1—O2W—H2A100.6 (16)
N2—C8—H8118.5Co1i—O2W—H2A110.0 (16)
C9—C8—H8118.5Co1—O2W—H2B121.6 (14)
C10—C9—C8118.37 (13)Co1i—O2W—H2B112.2 (14)
C10—C9—H9120.8H2A—O2W—H2B110 (2)
C8—C9—H9120.8
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—H2B···O5ii0.84 (2)1.67 (2)2.5101 (13)173 (2)
O2W—H2A···O30.79 (2)1.88 (2)2.6483 (13)164 (2)
O1W—H1B···O3iii0.82 (2)2.04 (2)2.8477 (14)174 (2)
O1W—H1A···O6i0.81 (2)1.88 (2)2.6803 (14)171 (2)
C21—H21···O2iv0.932.483.2219 (17)137
C17—H17···O5ii0.932.243.1679 (16)172
C16—H16···O2v0.932.573.4644 (17)160
C14—H14···O6vi0.932.413.3126 (16)164
C9—H9···O7vii0.932.643.5467 (18)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x+1, y, z1; (v) x, y, z1; (vi) x, y+1, z; (vii) x, y+1, z+1.
 

Funding information

We thank Council of Scientific and Industrial Research (CSIR) New Delhi, for financial support.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2019). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakravorty, S., Platts, J. A. & Das, B. K. (2011). Dalton Trans. 40, 11605–11612.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDimitrou, K., Brown, A. D., Christou, G., Concolino, T. E. & Rheingold, A. L. (2001). Chem. Commun. pp. 1284–1285.  CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJung, M., Sharma, A., Hinderberger, D., Braun, S., Schatzschneider, U. & Rentschler, E. (2009). Eur. J. Inorg. Chem. 2009, 1495–1502.  CSD CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, U. P., Aggarwal, V. & Sharma, A. K. (2007). Inorg. Chim. Acta, 360, 3226–3232.  CSD CrossRef CAS Google Scholar
First citationSrinivasan, B. R., Sawant, S. C. & Das, S. K. (2004). Indian J. Chem. Sect A, 43, 1066–1075.  Google Scholar
First citationSrinivasan, B. R., Tari, S. P., Parsekar, N. U. & Narvekar, K. U. (2020). Indian J. Chem. Sect A, 59, 51–56.  Google Scholar
First citationWang, Y. & Qi, Y. (2014). Z. Anorg. Allg. Chem. 640, 2609–2615.  CSD CrossRef CAS Google Scholar
First citationYang, E. C., Liu, Z. Y., Liu, T. Y., Li, L. L. & Zhao, X. J. (2011). Dalton Trans. 40, 8132–8139.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds