organic compounds
Ethyl (3S)-3-[(3aR,5R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-d][1,3]dioxol-5-yl]-3-{(3S)-3-[(3aR,5R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-d][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propanoate chloroform monosolvate
aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur Esq. Av. San Claudio, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com
The title compound, C22H33NO12·CHCl3, was obtained as a product of a double aza-Michael addition of hydroxylamine on a Chiron with a known The enantiopure compound crystallized as a chloroform solvate, in P1, and diffraction data were collected at room temperature with Ag Kα radiation. The refined to x = −0.01 (16); however, the Flack and Watkin 2AD plot clearly shows that differences between Friedel opposites (the D component of the plot) do not carry any reliable information about of Cl atoms, and are rather dominated by random and systematic errors. The RD factor calculated using 1941 acentric Friedel pairs is RD = 0.995. On the other hand, the 2A component of the plot, related to average intensities of Friedel pairs, shows that data are of good quality (RA = 0.069). This example illustrates that while using Ag Kα radiation (λ = 0.56083 Å), scatterers heavier than Cl should be present in a chiral crystal in order to determine confidently the of the crystal.
Keywords: crystal structure; solvate; absolute structure; Flack parameter; 2AD plot.
CCDC reference: 2009153
Structure description
The Chiron known as 7,3-LXF (7,3-lactone-xylofuranose derivative; Ramírez et al., 2017), derived from D-glucose, is a versatile starting material for the synthesis of natural products, for example the metabolites produced by Trichoderma spp and Penicillium isolates (Pérez-Bautista et al., 2016). In a work aimed at the synthesis of 1-deoxynojirimycin (DNJ), an azasugar alkaloid presenting α-glucosidase inhibitor properties, the title compound was obtained (Amaro Hernández, 2019). The total synthesis of DNJ has been reported, for example starting from D-glucose (Khobare et al., 2016). However, the stereochemistry of 7,3-LXF matches the stereochemistry of the target molecule, and 7,3-LXF is thus considered to be an ideal Chiron for the synthesis of DNJ. Moreover, we developed an efficient procedure for the preparation of 7,3-LXF at the gram scale.
The title compound was obtained while attempting an aza-Michael addition of hydroxylamine to 7,3-LXF, at pH 7. Under our experimental conditions, a double aza-Michael addition was observed, followed by a transesterification in ethanol, affording a disubstituted isoxazolidinone, which was characterized by X-ray diffraction. This compound is also closely related to other isoxazolidinone derivatives obtained through an Amadori rearrangement, which were studied for their potential antioxidant properties, and their application as flood flavouring agents (Hodge, 1955; Mills & Hodge, 1976; Mills, 1979).
The enantiopure molecule was crystallized as a chloroform solvate, in P1 (Fig. 1). The core isoxazolidinone ring has the expected with C5 as the flap. The ring is, however, close to being flat, with a puckering parameter q2 = 0.190 (5) Å. The ring is substituted at C5 and N1 by the bicyclic groups provided by the Chiron. The at C5 is imposed as 5S, while the stereochemistry at N1 is not imposed by the Michael addition. Substituents at C5 and N1 are thus arranged trans with respect to the isoxazolidinone plane, avoiding in this way any In the only weak intermolecular O—H⋯O hydrogen bonds are formed, involving hydroxy groups O10 and O19 (Table 1). The chloroform lattice molecule does not interact with the organic molecule.
|
For this Cl-containing crystal, intensities were collected at room temperature using Ag Kα radiation. With such an experimental setup, the refined Flack (1983) parameter converges to x = −0.01 (16) for the correct and x = 0.85 (16) for the inverted structure, giving the false impression that chlorine allows the reliable determination of the for the molecule. Similar metrics are obtained using the Parsons intensity quotients method (Parsons et al., 2013), or by refining the structure as an (Sheldrick, 2015b). However, the 2AD graphs devised by David Watkin and Howard Flack are a valuable tool for estimating whether real information about is present in the measured intensities (Flack et al., 2011; Parsons et al., 2012). The average (A) and difference (D) intensities for Friedel opposites are defined by A(h) = ½[|F(h)|2 + |F(−h)|2] and D(h) = |F(h)|2 − |F(−h)|2. In a 2AD graph, Dobs against Dmodel of the acentric reflections is plotted, as well as 2Aobs against 2Amodel for weak reflections. For the 2A plot, a distribution of points spread around a straight line of slope 1 passing through the origin indicates that diffraction data are of good quality, and this is indeed the case for the title compound (Fig. 2). The D plot is much more instructive regarding the accuracy of data for measuring the greater the slope of this distribution deviates from 1, the more the effects of are overwhelmed by random uncertainty and systematic errors. This is clearly the case for the title compound, despite the presence of three Cl atoms in the for the D distribution, all data points are placed close to Dmodel = 0 on the Dobs axis, as is the case for any centrosymmetric structure (Fig. 2). Classical R unweighted factors can also be computed for A and D, which reflect the deviation from the unity-slope distribution: RA = Σ|Aobs(h) − Amodel(h)|/Σ|Aobs(h)| and RD = Σ|Dobs(h) − Dmodel(h)|/Σ|Dobs(h)|, where the summations are over paired acentric reflections h and −h (note that in P1, all reflections are acentric, and that RA is then conceptually close to Rint). For the title compound, RA = 0.069 and RD = 0.995. The large RD factor is obviously in line with the large of the refined u(x) = 0.16. In the crystal studied here, undue reliance should not be placed on the and the of the molecule should instead be assigned by relying on the chemistry.
In conclusion, we have shown that a CHCl3 molecule is certainly not sufficient for determining the of a chiral crystal if Ag Kα radiation is used for collecting intensities. On a broader front, it is worth reminding that the in the u(x), is the key to its correct interpretation (Flack & Bernardinelli, 2000; Thompson & Watkin, 2009). The use of 2AD plots is thus strongly advised for the validation of absolute-structure determinations (Flack, 2012), together with Flack x and Hooft y parameters. Unfortunately, these plots are not yet used on a routine basis in chemical crystallography.
Synthesis and crystallization
A solution of NH2OH·HCl (85 mg, 0.025 mmol) in water (1 ml) was neutralized with a solution of NaHCO3 (pH 7). After 10 min., a solution of 7,3-LXF (50 mg, 0.23 mmol) in ethanol (3 ml) was added over 30 s. and the mixture was left under stirring at room temperature. The reaction was complete after one h. The mixture was filtered over celite/Na2SO4, and the filtrate was reduced to give yellow solids, which were purified by (hexane:ethyl acetate, 1:1), to afford 95 mg of the title compound (yield: 80%). Colourless single crystals were obtained by slow evaporation of a MeOH/CHCl3 solution.
Refinement
Crystal data, data collection and structure . The ethyl group C26–C27 is disordered over two positions, C26A/C27A [occupancy: 0.58 (5)] and C26B/C27B [occupancy: 0.42 (5)].
details are summarized in Table 2Structural data
CCDC reference: 2009153
https://doi.org/10.1107/S2414314620007889/bx4018sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314620007889/bx4018Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314620007889/bx4018Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2018); cell
X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C22H33NO12·CHCl3 | F(000) = 326 |
Mr = 622.86 | Dx = 1.433 Mg m−3 |
Triclinic, P1 | Melting point: 472 K |
a = 5.5734 (4) Å | Ag Kα radiation, λ = 0.56083 Å |
b = 9.2537 (9) Å | Cell parameters from 12914 reflections |
c = 14.2547 (12) Å | θ = 2.8–22.1° |
α = 91.995 (7)° | µ = 0.20 mm−1 |
β = 99.103 (6)° | T = 296 K |
γ = 95.567 (7)° | Prism, colourless |
V = 721.56 (11) Å3 | 0.37 × 0.35 × 0.15 mm |
Z = 1 |
Stoe Stadivari diffractometer | 4682 independent reflections |
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source | 3696 reflections with I > 2σ(I) |
Graded multilayer mirror monochromator | Rint = 0.038 |
Detector resolution: 5.81 pixels mm-1 | θmax = 20.0°, θmin = 2.8° |
ω scans | h = −6→6 |
Absorption correction: multi-scan (X-AREA; Stoe & Cie, 2018) | k = −11→11 |
Tmin = 0.435, Tmax = 1.000 | l = −17→17 |
14451 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: mixed |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0893P)2] where P = (Fo2 + 2Fc2)/3 |
4682 reflections | (Δ/σ)max < 0.001 |
383 parameters | Δρmax = 0.30 e Å−3 |
5 restraints | Δρmin = −0.24 e Å−3 |
0 constraints |
Refinement. H atoms bonded to C atoms were placed in calculated positions and the hydroxy H atoms H10/H19 were refined with free coordinates and O—H bond lengths restrained to 0.85 (1) Å. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.4192 (6) | 0.3430 (4) | 0.5695 (3) | 0.0344 (8) | |
O2 | 0.5788 (5) | 0.2914 (4) | 0.5055 (2) | 0.0427 (8) | |
C3 | 0.4543 (9) | 0.1909 (6) | 0.4400 (3) | 0.0439 (11) | |
O3 | 0.5583 (9) | 0.1395 (6) | 0.3811 (3) | 0.0753 (13) | |
C4 | 0.1949 (8) | 0.1629 (5) | 0.4547 (3) | 0.0385 (10) | |
H4A | 0.146436 | 0.059472 | 0.455717 | 0.046* | |
H4B | 0.085767 | 0.203684 | 0.405008 | 0.046* | |
C5 | 0.1936 (7) | 0.2394 (5) | 0.5516 (3) | 0.0325 (9) | |
H5A | 0.049758 | 0.293233 | 0.548463 | 0.039* | |
C6 | 0.2096 (7) | 0.1456 (5) | 0.6367 (3) | 0.0325 (9) | |
H6A | 0.182642 | 0.205556 | 0.691308 | 0.039* | |
O7 | 0.0169 (5) | 0.0254 (3) | 0.6205 (2) | 0.0383 (7) | |
C8 | 0.0764 (8) | −0.0827 (5) | 0.6869 (4) | 0.0401 (10) | |
H8A | 0.051856 | −0.180065 | 0.655473 | 0.048* | |
O8 | −0.0546 (6) | −0.0761 (5) | 0.7624 (3) | 0.0591 (11) | |
C9 | 0.3446 (8) | −0.0429 (5) | 0.7322 (3) | 0.0395 (10) | |
H9A | 0.438964 | −0.127142 | 0.737062 | 0.047* | |
O9 | 0.3312 (6) | 0.0235 (4) | 0.8219 (2) | 0.0507 (9) | |
C10 | 0.4372 (7) | 0.0710 (5) | 0.6671 (3) | 0.0331 (9) | |
H10A | 0.570310 | 0.138973 | 0.701591 | 0.040* | |
O10 | 0.5094 (5) | −0.0006 (4) | 0.5884 (2) | 0.0392 (7) | |
H10 | 0.663 (3) | 0.018 (7) | 0.595 (4) | 0.059* | |
C11 | 0.0999 (10) | −0.0210 (7) | 0.8482 (4) | 0.0556 (14) | |
C12 | 0.1196 (18) | −0.1414 (13) | 0.9156 (7) | 0.110 (3) | |
H12A | 0.153220 | −0.227703 | 0.882906 | 0.164* | |
H12B | −0.031500 | −0.159948 | 0.939536 | 0.164* | |
H12C | 0.249583 | −0.113622 | 0.967635 | 0.164* | |
C13 | −0.0003 (15) | 0.1123 (11) | 0.8849 (6) | 0.092 (2) | |
H13A | −0.003399 | 0.184682 | 0.838227 | 0.138* | |
H13B | 0.101958 | 0.150507 | 0.942771 | 0.138* | |
H13C | −0.163125 | 0.086339 | 0.897110 | 0.138* | |
C14 | 0.3958 (8) | 0.4978 (5) | 0.5519 (3) | 0.0341 (9) | |
H14A | 0.275126 | 0.530272 | 0.588829 | 0.041* | |
C15 | 0.3155 (8) | 0.5318 (5) | 0.4486 (3) | 0.0358 (10) | |
H15A | 0.417651 | 0.485722 | 0.408769 | 0.043* | |
O16 | 0.0651 (6) | 0.4747 (4) | 0.4186 (2) | 0.0431 (8) | |
C17 | −0.0249 (9) | 0.5423 (6) | 0.3350 (3) | 0.0431 (11) | |
H17A | −0.190930 | 0.567791 | 0.336470 | 0.052* | |
O17 | −0.0169 (7) | 0.4560 (4) | 0.2531 (3) | 0.0559 (10) | |
C18 | 0.1501 (10) | 0.6781 (6) | 0.3303 (3) | 0.0458 (11) | |
H18A | 0.065765 | 0.764689 | 0.315529 | 0.055* | |
O18 | 0.2886 (7) | 0.6389 (4) | 0.2598 (3) | 0.0537 (9) | |
C19 | 0.3149 (9) | 0.6928 (5) | 0.4266 (3) | 0.0416 (11) | |
H19A | 0.478703 | 0.739458 | 0.423355 | 0.050* | |
O19 | 0.1960 (8) | 0.7677 (4) | 0.4926 (3) | 0.0553 (9) | |
H19 | 0.285 (12) | 0.846 (5) | 0.510 (5) | 0.083* | |
C20 | 0.1496 (10) | 0.5257 (6) | 0.1982 (4) | 0.0501 (12) | |
C21 | 0.0011 (17) | 0.5882 (9) | 0.1133 (5) | 0.088 (2) | |
H21A | −0.096745 | 0.658066 | 0.135300 | 0.132* | |
H21B | −0.103333 | 0.511294 | 0.076155 | 0.132* | |
H21C | 0.109420 | 0.634776 | 0.074853 | 0.132* | |
C22 | 0.3192 (14) | 0.4193 (9) | 0.1729 (5) | 0.0780 (19) | |
H22A | 0.398296 | 0.380374 | 0.229878 | 0.117* | |
H22B | 0.440117 | 0.467836 | 0.140609 | 0.117* | |
H22C | 0.227581 | 0.341646 | 0.132050 | 0.117* | |
C23 | 0.6434 (9) | 0.5822 (6) | 0.5916 (4) | 0.0448 (11) | |
H23A | 0.758166 | 0.567412 | 0.548500 | 0.054* | |
H23B | 0.625021 | 0.685251 | 0.596046 | 0.054* | |
C24 | 0.7432 (9) | 0.5331 (6) | 0.6887 (4) | 0.0493 (12) | |
O24 | 0.9310 (8) | 0.4794 (7) | 0.7079 (3) | 0.0849 (15) | |
O25 | 0.5936 (8) | 0.5557 (6) | 0.7498 (3) | 0.0674 (12) | |
C26A | 0.658 (3) | 0.478 (3) | 0.8403 (10) | 0.057 (6) | 0.58 (5) |
H26A | 0.664087 | 0.375099 | 0.825648 | 0.069* | 0.58 (5) |
H26B | 0.816300 | 0.517989 | 0.874147 | 0.069* | 0.58 (5) |
C27A | 0.462 (4) | 0.498 (5) | 0.9003 (15) | 0.104 (11) | 0.58 (5) |
H27A | 0.481627 | 0.435909 | 0.952970 | 0.156* | 0.58 (5) |
H27B | 0.304371 | 0.473354 | 0.862377 | 0.156* | 0.58 (5) |
H27C | 0.476913 | 0.597468 | 0.923689 | 0.156* | 0.58 (5) |
C26B | 0.640 (7) | 0.552 (5) | 0.850 (2) | 0.086 (9) | 0.42 (5) |
H26C | 0.593631 | 0.639463 | 0.879415 | 0.104* | 0.42 (5) |
H26D | 0.811343 | 0.544653 | 0.872685 | 0.104* | 0.42 (5) |
C27B | 0.492 (7) | 0.426 (3) | 0.872 (2) | 0.079 (9) | 0.42 (5) |
H27D | 0.554422 | 0.397414 | 0.934526 | 0.119* | 0.42 (5) |
H27E | 0.497246 | 0.348130 | 0.826281 | 0.119* | 0.42 (5) |
H27F | 0.326809 | 0.448081 | 0.869704 | 0.119* | 0.42 (5) |
C28 | 0.7434 (11) | 0.0620 (7) | 0.1880 (4) | 0.0593 (14) | |
H28A | 0.720244 | 0.127719 | 0.240495 | 0.071* | |
Cl1 | 1.0534 (3) | 0.0408 (2) | 0.19859 (17) | 0.0881 (6) | |
Cl2 | 0.6390 (4) | 0.1396 (3) | 0.08089 (14) | 0.0907 (6) | |
Cl3 | 0.5806 (3) | −0.1062 (2) | 0.19867 (17) | 0.0876 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0274 (16) | 0.038 (2) | 0.0385 (19) | 0.0029 (14) | 0.0079 (14) | 0.0036 (15) |
O2 | 0.0276 (15) | 0.0475 (19) | 0.057 (2) | 0.0075 (14) | 0.0166 (14) | 0.0068 (16) |
C3 | 0.042 (2) | 0.055 (3) | 0.039 (3) | 0.013 (2) | 0.012 (2) | 0.008 (2) |
O3 | 0.077 (3) | 0.099 (4) | 0.060 (3) | 0.027 (3) | 0.034 (2) | −0.007 (2) |
C4 | 0.036 (2) | 0.045 (3) | 0.034 (2) | 0.0087 (19) | 0.0007 (18) | −0.0011 (19) |
C5 | 0.0218 (18) | 0.035 (2) | 0.042 (2) | 0.0052 (16) | 0.0053 (16) | 0.0030 (18) |
C6 | 0.0201 (18) | 0.038 (2) | 0.038 (2) | 0.0008 (16) | 0.0049 (16) | −0.0001 (18) |
O7 | 0.0206 (14) | 0.0443 (18) | 0.0483 (18) | −0.0026 (12) | 0.0028 (12) | 0.0098 (14) |
C8 | 0.029 (2) | 0.040 (3) | 0.050 (3) | −0.0023 (18) | 0.0055 (18) | 0.007 (2) |
O8 | 0.0375 (18) | 0.093 (3) | 0.047 (2) | −0.0056 (19) | 0.0126 (15) | 0.011 (2) |
C9 | 0.032 (2) | 0.045 (3) | 0.043 (3) | 0.0077 (19) | 0.0056 (18) | 0.005 (2) |
O9 | 0.0381 (17) | 0.074 (2) | 0.0380 (19) | 0.0017 (17) | 0.0033 (14) | 0.0078 (17) |
C10 | 0.0237 (19) | 0.033 (2) | 0.041 (2) | −0.0010 (16) | 0.0028 (16) | −0.0006 (18) |
O10 | 0.0225 (13) | 0.0476 (19) | 0.0476 (18) | 0.0058 (13) | 0.0057 (12) | −0.0001 (15) |
C11 | 0.043 (3) | 0.081 (4) | 0.045 (3) | 0.001 (3) | 0.011 (2) | 0.016 (3) |
C12 | 0.092 (6) | 0.139 (8) | 0.088 (6) | −0.026 (5) | −0.004 (4) | 0.057 (6) |
C13 | 0.067 (4) | 0.127 (7) | 0.088 (5) | 0.018 (4) | 0.032 (4) | −0.016 (5) |
C14 | 0.0297 (19) | 0.036 (2) | 0.036 (2) | −0.0022 (17) | 0.0063 (16) | 0.0001 (18) |
C15 | 0.035 (2) | 0.034 (2) | 0.038 (3) | −0.0013 (18) | 0.0085 (18) | 0.0020 (19) |
O16 | 0.0374 (17) | 0.0467 (19) | 0.0411 (18) | −0.0065 (14) | −0.0014 (14) | 0.0110 (15) |
C17 | 0.039 (2) | 0.054 (3) | 0.037 (2) | 0.011 (2) | 0.0043 (19) | 0.005 (2) |
O17 | 0.058 (2) | 0.067 (2) | 0.041 (2) | −0.0131 (19) | 0.0138 (16) | −0.0052 (17) |
C18 | 0.059 (3) | 0.043 (3) | 0.038 (3) | 0.011 (2) | 0.009 (2) | 0.007 (2) |
O18 | 0.068 (2) | 0.054 (2) | 0.0394 (19) | −0.0106 (18) | 0.0182 (16) | 0.0038 (16) |
C19 | 0.051 (3) | 0.038 (2) | 0.037 (3) | 0.002 (2) | 0.011 (2) | 0.004 (2) |
O19 | 0.065 (2) | 0.043 (2) | 0.058 (2) | 0.0053 (17) | 0.0159 (19) | −0.0085 (17) |
C20 | 0.054 (3) | 0.056 (3) | 0.039 (3) | −0.004 (2) | 0.011 (2) | 0.007 (2) |
C21 | 0.116 (7) | 0.092 (5) | 0.049 (4) | 0.001 (5) | −0.004 (4) | 0.016 (4) |
C22 | 0.068 (4) | 0.089 (5) | 0.080 (5) | 0.006 (4) | 0.027 (4) | −0.012 (4) |
C23 | 0.038 (2) | 0.047 (3) | 0.046 (3) | −0.008 (2) | 0.002 (2) | 0.002 (2) |
C24 | 0.036 (3) | 0.060 (3) | 0.048 (3) | −0.004 (2) | 0.002 (2) | 0.000 (2) |
O24 | 0.047 (2) | 0.138 (5) | 0.070 (3) | 0.023 (3) | 0.000 (2) | 0.017 (3) |
O25 | 0.053 (2) | 0.107 (4) | 0.040 (2) | 0.007 (2) | 0.0025 (17) | 0.000 (2) |
C26A | 0.052 (7) | 0.092 (14) | 0.028 (6) | 0.015 (8) | 0.005 (5) | 0.001 (7) |
C27A | 0.064 (8) | 0.21 (3) | 0.052 (10) | 0.042 (14) | 0.020 (7) | 0.011 (14) |
C26B | 0.098 (17) | 0.079 (19) | 0.076 (15) | 0.007 (14) | 0.001 (11) | −0.022 (13) |
C27B | 0.087 (19) | 0.099 (17) | 0.049 (13) | 0.010 (13) | 0.004 (12) | −0.003 (10) |
C28 | 0.062 (3) | 0.066 (4) | 0.054 (3) | 0.009 (3) | 0.021 (3) | 0.004 (3) |
Cl1 | 0.0489 (8) | 0.0974 (14) | 0.1159 (15) | 0.0029 (8) | 0.0069 (8) | 0.0215 (11) |
Cl2 | 0.0906 (13) | 0.1116 (16) | 0.0762 (12) | 0.0305 (11) | 0.0160 (9) | 0.0255 (10) |
Cl3 | 0.0649 (10) | 0.0747 (11) | 0.1271 (17) | 0.0010 (8) | 0.0295 (10) | 0.0133 (10) |
N1—O2 | 1.470 (5) | C17—C18 | 1.524 (8) |
N1—C14 | 1.477 (6) | C17—H17A | 0.9800 |
N1—C5 | 1.488 (5) | O17—C20 | 1.428 (6) |
O2—C3 | 1.352 (6) | C18—O18 | 1.418 (6) |
C3—O3 | 1.203 (6) | C18—C19 | 1.521 (7) |
C3—C4 | 1.493 (7) | C18—H18A | 0.9800 |
C4—C5 | 1.531 (7) | O18—C20 | 1.426 (7) |
C4—H4A | 0.9700 | C19—O19 | 1.430 (6) |
C4—H4B | 0.9700 | C19—H19A | 0.9800 |
C5—C6 | 1.512 (6) | O19—H19 | 0.848 (14) |
C5—H5A | 0.9800 | C20—C22 | 1.502 (9) |
C6—O7 | 1.454 (5) | C20—C21 | 1.519 (9) |
C6—C10 | 1.513 (6) | C21—H21A | 0.9600 |
C6—H6A | 0.9800 | C21—H21B | 0.9600 |
O7—C8 | 1.428 (6) | C21—H21C | 0.9600 |
C8—O8 | 1.395 (6) | C22—H22A | 0.9600 |
C8—C9 | 1.536 (6) | C22—H22B | 0.9600 |
C8—H8A | 0.9800 | C22—H22C | 0.9600 |
O8—C11 | 1.427 (7) | C23—C24 | 1.510 (8) |
C9—O9 | 1.415 (6) | C23—H23A | 0.9700 |
C9—C10 | 1.535 (6) | C23—H23B | 0.9700 |
C9—H9A | 0.9800 | C24—O24 | 1.199 (7) |
O9—C11 | 1.425 (6) | C24—O25 | 1.322 (7) |
C10—O10 | 1.415 (6) | O25—C26B | 1.41 (3) |
C10—H10A | 0.9800 | O25—C26A | 1.510 (17) |
O10—H10 | 0.846 (14) | C26A—C27A | 1.51 (3) |
C11—C12 | 1.497 (10) | C26A—H26A | 0.9700 |
C11—C13 | 1.513 (11) | C26A—H26B | 0.9700 |
C12—H12A | 0.9600 | C27A—H27A | 0.9600 |
C12—H12B | 0.9600 | C27A—H27B | 0.9600 |
C12—H12C | 0.9600 | C27A—H27C | 0.9600 |
C13—H13A | 0.9600 | C26B—C27B | 1.43 (4) |
C13—H13B | 0.9600 | C26B—H26C | 0.9700 |
C13—H13C | 0.9600 | C26B—H26D | 0.9700 |
C14—C15 | 1.523 (6) | C27B—H27D | 0.9600 |
C14—C23 | 1.532 (6) | C27B—H27E | 0.9600 |
C14—H14A | 0.9800 | C27B—H27F | 0.9600 |
C15—O16 | 1.436 (5) | C28—Cl1 | 1.741 (6) |
C15—C19 | 1.533 (7) | C28—Cl3 | 1.747 (7) |
C15—H15A | 0.9800 | C28—Cl2 | 1.750 (6) |
O16—C17 | 1.410 (6) | C28—H28A | 0.9800 |
C17—O17 | 1.400 (7) | ||
O2—N1—C14 | 107.2 (3) | O17—C17—C18 | 105.8 (4) |
O2—N1—C5 | 105.5 (3) | O16—C17—C18 | 106.5 (4) |
C14—N1—C5 | 118.0 (3) | O17—C17—H17A | 110.8 |
C3—O2—N1 | 111.0 (3) | O16—C17—H17A | 110.8 |
O3—C3—O2 | 119.3 (5) | C18—C17—H17A | 110.8 |
O3—C3—C4 | 130.1 (5) | C17—O17—C20 | 110.2 (4) |
O2—C3—C4 | 110.6 (4) | O18—C18—C19 | 108.8 (4) |
C3—C4—C5 | 103.6 (4) | O18—C18—C17 | 103.7 (4) |
C3—C4—H4A | 111.0 | C19—C18—C17 | 104.7 (4) |
C5—C4—H4A | 111.0 | O18—C18—H18A | 113.0 |
C3—C4—H4B | 111.0 | C19—C18—H18A | 113.0 |
C5—C4—H4B | 111.0 | C17—C18—H18A | 113.0 |
H4A—C4—H4B | 109.0 | C18—O18—C20 | 108.8 (4) |
N1—C5—C6 | 105.2 (3) | O19—C19—C18 | 108.6 (4) |
N1—C5—C4 | 105.5 (3) | O19—C19—C15 | 110.4 (4) |
C6—C5—C4 | 116.9 (4) | C18—C19—C15 | 99.5 (4) |
N1—C5—H5A | 109.6 | O19—C19—H19A | 112.5 |
C6—C5—H5A | 109.6 | C18—C19—H19A | 112.5 |
C4—C5—H5A | 109.6 | C15—C19—H19A | 112.5 |
O7—C6—C5 | 110.2 (3) | C19—O19—H19 | 107 (5) |
O7—C6—C10 | 103.1 (3) | O18—C20—O17 | 105.4 (4) |
C5—C6—C10 | 120.0 (3) | O18—C20—C22 | 108.6 (5) |
O7—C6—H6A | 107.7 | O17—C20—C22 | 109.2 (5) |
C5—C6—H6A | 107.7 | O18—C20—C21 | 110.8 (5) |
C10—C6—H6A | 107.7 | O17—C20—C21 | 108.0 (5) |
C8—O7—C6 | 108.8 (3) | C22—C20—C21 | 114.6 (6) |
O8—C8—O7 | 111.6 (4) | C20—C21—H21A | 109.5 |
O8—C8—C9 | 104.9 (4) | C20—C21—H21B | 109.5 |
O7—C8—C9 | 106.6 (3) | H21A—C21—H21B | 109.5 |
O8—C8—H8A | 111.2 | C20—C21—H21C | 109.5 |
O7—C8—H8A | 111.2 | H21A—C21—H21C | 109.5 |
C9—C8—H8A | 111.2 | H21B—C21—H21C | 109.5 |
C8—O8—C11 | 111.3 (4) | C20—C22—H22A | 109.5 |
O9—C9—C10 | 110.0 (4) | C20—C22—H22B | 109.5 |
O9—C9—C8 | 104.1 (4) | H22A—C22—H22B | 109.5 |
C10—C9—C8 | 103.3 (4) | C20—C22—H22C | 109.5 |
O9—C9—H9A | 112.9 | H22A—C22—H22C | 109.5 |
C10—C9—H9A | 112.9 | H22B—C22—H22C | 109.5 |
C8—C9—H9A | 112.9 | C24—C23—C14 | 111.2 (4) |
C9—O9—C11 | 109.4 (4) | C24—C23—H23A | 109.4 |
O10—C10—C6 | 111.1 (3) | C14—C23—H23A | 109.4 |
O10—C10—C9 | 109.2 (4) | C24—C23—H23B | 109.4 |
C6—C10—C9 | 101.4 (3) | C14—C23—H23B | 109.4 |
O10—C10—H10A | 111.6 | H23A—C23—H23B | 108.0 |
C6—C10—H10A | 111.6 | O24—C24—O25 | 124.4 (5) |
C9—C10—H10A | 111.6 | O24—C24—C23 | 124.8 (5) |
C10—O10—H10 | 106 (4) | O25—C24—C23 | 110.8 (5) |
O9—C11—O8 | 105.9 (4) | C24—O25—C26B | 128.4 (18) |
O9—C11—C12 | 110.9 (6) | C24—O25—C26A | 111.8 (8) |
O8—C11—C12 | 108.2 (6) | C27A—C26A—O25 | 107.4 (18) |
O9—C11—C13 | 108.1 (6) | C27A—C26A—H26A | 110.2 |
O8—C11—C13 | 108.6 (5) | O25—C26A—H26A | 110.2 |
C12—C11—C13 | 114.8 (7) | C27A—C26A—H26B | 110.2 |
C11—C12—H12A | 109.5 | O25—C26A—H26B | 110.2 |
C11—C12—H12B | 109.5 | H26A—C26A—H26B | 108.5 |
H12A—C12—H12B | 109.5 | C26A—C27A—H27A | 109.5 |
C11—C12—H12C | 109.5 | C26A—C27A—H27B | 109.5 |
H12A—C12—H12C | 109.5 | H27A—C27A—H27B | 109.5 |
H12B—C12—H12C | 109.5 | C26A—C27A—H27C | 109.5 |
C11—C13—H13A | 109.5 | H27A—C27A—H27C | 109.5 |
C11—C13—H13B | 109.5 | H27B—C27A—H27C | 109.5 |
H13A—C13—H13B | 109.5 | O25—C26B—C27B | 105 (2) |
C11—C13—H13C | 109.5 | O25—C26B—H26C | 110.7 |
H13A—C13—H13C | 109.5 | C27B—C26B—H26C | 110.7 |
H13B—C13—H13C | 109.5 | O25—C26B—H26D | 110.7 |
N1—C14—C15 | 115.7 (3) | C27B—C26B—H26D | 110.7 |
N1—C14—C23 | 106.9 (4) | H26C—C26B—H26D | 108.8 |
C15—C14—C23 | 110.5 (4) | C26B—C27B—H27D | 109.5 |
N1—C14—H14A | 107.8 | C26B—C27B—H27E | 109.5 |
C15—C14—H14A | 107.8 | H27D—C27B—H27E | 109.5 |
C23—C14—H14A | 107.8 | C26B—C27B—H27F | 109.5 |
O16—C15—C14 | 109.5 (3) | H27D—C27B—H27F | 109.5 |
O16—C15—C19 | 103.1 (4) | H27E—C27B—H27F | 109.5 |
C14—C15—C19 | 116.8 (4) | Cl1—C28—Cl3 | 109.3 (4) |
O16—C15—H15A | 109.0 | Cl1—C28—Cl2 | 110.9 (3) |
C14—C15—H15A | 109.0 | Cl3—C28—Cl2 | 111.9 (4) |
C19—C15—H15A | 109.0 | Cl1—C28—H28A | 108.2 |
C17—O16—C15 | 108.1 (3) | Cl3—C28—H28A | 108.2 |
O17—C17—O16 | 111.9 (4) | Cl2—C28—H28A | 108.2 |
C14—N1—O2—C3 | −113.8 (4) | C5—N1—C14—C15 | −65.8 (5) |
C5—N1—O2—C3 | 12.8 (4) | O2—N1—C14—C23 | −70.7 (4) |
N1—O2—C3—O3 | 178.7 (5) | C5—N1—C14—C23 | 170.6 (4) |
N1—O2—C3—C4 | −0.8 (5) | N1—C14—C15—O16 | 69.4 (5) |
O3—C3—C4—C5 | 169.4 (5) | C23—C14—C15—O16 | −168.9 (4) |
O2—C3—C4—C5 | −11.0 (5) | N1—C14—C15—C19 | −173.9 (4) |
O2—N1—C5—C6 | 105.2 (3) | C23—C14—C15—C19 | −52.3 (5) |
C14—N1—C5—C6 | −135.1 (4) | C14—C15—O16—C17 | 163.1 (4) |
O2—N1—C5—C4 | −18.9 (4) | C19—C15—O16—C17 | 38.1 (5) |
C14—N1—C5—C4 | 100.7 (4) | C15—O16—C17—O17 | 97.5 (5) |
C3—C4—C5—N1 | 18.2 (4) | C15—O16—C17—C18 | −17.7 (5) |
C3—C4—C5—C6 | −98.3 (4) | O16—C17—O17—C20 | −115.1 (5) |
N1—C5—C6—O7 | −171.3 (3) | C18—C17—O17—C20 | 0.5 (5) |
C4—C5—C6—O7 | −54.6 (5) | O17—C17—C18—O18 | −15.0 (5) |
N1—C5—C6—C10 | −51.9 (5) | O16—C17—C18—O18 | 104.2 (4) |
C4—C5—C6—C10 | 64.7 (5) | O17—C17—C18—C19 | −129.1 (4) |
C5—C6—O7—C8 | 163.3 (3) | O16—C17—C18—C19 | −9.9 (5) |
C10—C6—O7—C8 | 34.1 (4) | C19—C18—O18—C20 | 135.3 (4) |
C6—O7—C8—O8 | 101.4 (4) | C17—C18—O18—C20 | 24.3 (5) |
C6—O7—C8—C9 | −12.6 (5) | O18—C18—C19—O19 | 165.1 (4) |
O7—C8—O8—C11 | −108.6 (5) | C17—C18—C19—O19 | −84.5 (5) |
C9—C8—O8—C11 | 6.4 (6) | O18—C18—C19—C15 | −79.5 (4) |
O8—C8—C9—O9 | −17.0 (5) | C17—C18—C19—C15 | 30.9 (5) |
O7—C8—C9—O9 | 101.5 (4) | O16—C15—C19—O19 | 72.3 (5) |
O8—C8—C9—C10 | −131.9 (4) | C14—C15—C19—O19 | −47.8 (5) |
O7—C8—C9—C10 | −13.5 (5) | O16—C15—C19—C18 | −41.7 (4) |
C10—C9—O9—C11 | 131.8 (4) | C14—C15—C19—C18 | −161.8 (4) |
C8—C9—O9—C11 | 21.7 (5) | C18—O18—C20—O17 | −24.5 (5) |
O7—C6—C10—O10 | 75.1 (4) | C18—O18—C20—C22 | −141.3 (5) |
C5—C6—C10—O10 | −47.8 (5) | C18—O18—C20—C21 | 92.1 (6) |
O7—C6—C10—C9 | −40.8 (4) | C17—O17—C20—O18 | 14.2 (6) |
C5—C6—C10—C9 | −163.7 (4) | C17—O17—C20—C22 | 130.7 (5) |
O9—C9—C10—O10 | 165.0 (3) | C17—O17—C20—C21 | −104.2 (6) |
C8—C9—C10—O10 | −84.4 (4) | N1—C14—C23—C24 | −44.9 (6) |
O9—C9—C10—C6 | −77.7 (4) | C15—C14—C23—C24 | −171.5 (4) |
C8—C9—C10—C6 | 32.9 (4) | C14—C23—C24—O24 | 118.4 (7) |
C9—O9—C11—O8 | −18.2 (6) | C14—C23—C24—O25 | −60.8 (6) |
C9—O9—C11—C12 | 98.9 (7) | O24—C24—O25—C26B | 15 (2) |
C9—O9—C11—C13 | −134.4 (5) | C23—C24—O25—C26B | −166 (2) |
C8—O8—C11—O9 | 6.6 (6) | O24—C24—O25—C26A | −12.2 (14) |
C8—O8—C11—C12 | −112.3 (7) | C23—C24—O25—C26A | 167.0 (12) |
C8—O8—C11—C13 | 122.5 (6) | C24—O25—C26A—C27A | −174 (3) |
O2—N1—C14—C15 | 52.9 (4) | C24—O25—C26B—C27B | −111 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4B···O16 | 0.97 | 2.52 | 3.083 (6) | 117 |
C5—H5A···O2i | 0.98 | 2.60 | 3.469 (5) | 148 |
C8—H8A···O19ii | 0.98 | 2.62 | 3.246 (6) | 122 |
O10—H10···O7iii | 0.85 (1) | 1.94 (2) | 2.778 (4) | 169 (6) |
O19—H19···O10iv | 0.85 (1) | 1.98 (3) | 2.798 (5) | 162 (7) |
C28—H28A···O3 | 0.98 | 2.33 | 3.172 (7) | 144 |
Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) x+1, y, z; (iv) x, y+1, z. |
Funding information
Funding for this research was provided by: Benemérita Universidad Autónoma de Puebla (grant No. 100317000-VIEP2018); Consejo Nacional de Ciencia y Tecnología (scholarship No. 304678; scholarship No. 429355; grant No. 268178).
References
Amaro Hernández, A. G. (2019). Thesis, Benemérita Universidad Autónoma de Puebla, Puebla, México. https://repositorioinstitucional.buap.mx/handle/20.500.12371/4902. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (2012). Acta Cryst. C68, e13–e14. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D., Sadki, M., Thompson, A. L. & Watkin, D. J. (2011). Acta Cryst. A67, 21–34. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205. CrossRef PubMed CAS Web of Science Google Scholar
Khobare, S. R., Gajare, V., Reddy, E. V., Datrika, R., Banda, M., Siddaiah, V., Pachore, S. S., Timanna, U., Dahanukar, V. H. & Kumar, U. K. S. (2016). Carbohydr. Res. 435, 1–6. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mills, F. D. (1979). J. Agric. Food Chem. 27, 1136–1138. CrossRef CAS Web of Science Google Scholar
Mills, F. D. & Hodge, J. E. (1976). Carbohydr. Res. 51, 9–21. CrossRef CAS Web of Science Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736–749. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pérez-Bautista, J. A., Meza-León, R. L., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2016). Tetrahedron Lett. 57, 4560–4562. Google Scholar
Ramírez, E., Meza-León, R. L., Quintero, L., Höpfl, H., Cruz-Gregorio, S. & Sartillo-Piscil, F. (2017). ChemistrySelect, 2, 546–549. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany. Google Scholar
Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.