organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl (3S)-3-[(3aR,5R,6S,6aR)-6-hy­dr­oxy-2,2-di­methyl­tetra­hydro­furo[4,5-d][1,3]dioxol-5-yl]-3-{(3S)-3-[(3aR,5R,6S,6aR)-6-hy­dr­oxy-2,2-di­methyl­tetra­hydro­furo[4,5-d][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propano­ate chloro­form monosolvate

aFacultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, 14 Sur Esq. Av. San Claudio, 72570 Puebla, Pue., Mexico, and bInstituto de Física, Benemérita Universidad Autónoma de Puebla, Av. San Claudio y 18 Sur, 72570 Puebla, Pue., Mexico
*Correspondence e-mail: sylvain_bernes@hotmail.com

Edited by I. Brito, University of Antofagasta, Chile (Received 7 June 2020; accepted 10 June 2020; online 16 June 2020)

The title compound, C22H33NO12·CHCl3, was obtained as a product of a double aza-Michael addition of hydroxyl­amine on a Chiron with a known absolute configuration. The enanti­opure compound crystallized as a chloro­form solvate, in space group P1, and diffraction data were collected at room temperature with Ag Kα radiation. The Flack parameter refined to x = −0.01 (16); however, the Flack and Watkin 2AD plot clearly shows that differences between Friedel opposites (the D component of the plot) do not carry any reliable information about resonant scattering of Cl atoms, and are rather dominated by random and systematic errors. The RD factor calculated using 1941 acentric Friedel pairs is RD = 0.995. On the other hand, the 2A component of the plot, related to average intensities of Friedel pairs, shows that data are of good quality (RA = 0.069). This example illustrates that while using Ag Kα radiation (λ = 0.56083 Å), scatterers heavier than Cl should be present in a chiral crystal in order to determine confidently the absolute structure of the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Chiron known as 7,3-LXF (7,3-lactone-xylo­furan­ose derivative; Ramírez et al., 2017[Ramírez, E., Meza-León, R. L., Quintero, L., Höpfl, H., Cruz-Gregorio, S. & Sartillo-Piscil, F. (2017). ChemistrySelect, 2, 546-549.]), derived from D-glucose, is a versatile starting material for the synthesis of natural products, for example the metabolites produced by Trichoderma spp and Penicillium isolates (Pérez-Bautista et al., 2016[Pérez-Bautista, J. A., Meza-León, R. L., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2016). Tetrahedron Lett. 57, 4560-4562.]). In a work aimed at the synthesis of 1-de­oxy­nojirimycin (DNJ), an aza­sugar alkaloid presenting α-glucosidase inhibitor properties, the title compound was obtained (Amaro Hernández, 2019[Amaro Hernández, A. G. (2019). Thesis, Benemérita Universidad Autónoma de Puebla, Puebla, México. https://repositorioinstitucional.buap.mx/handle/20.500.12371/4902.]). The total synthesis of DNJ has been reported, for example starting from D-glucose (Khobare et al., 2016[Khobare, S. R., Gajare, V., Reddy, E. V., Datrika, R., Banda, M., Siddaiah, V., Pachore, S. S., Timanna, U., Dahanukar, V. H. & Kumar, U. K. S. (2016). Carbohydr. Res. 435, 1-6.]). However, the stereochemistry of 7,3-LXF matches the stereochemistry of the target mol­ecule, and 7,3-LXF is thus considered to be an ideal Chiron for the synthesis of DNJ. Moreover, we developed an efficient procedure for the preparation of 7,3-LXF at the gram scale.

The title compound was obtained while attempting an aza-Michael addition of hydroxyl­amine to 7,3-LXF, at pH 7. Under our experimental conditions, a double aza-Michael addition was observed, followed by a transesterification in ethanol, affording a disubstituted isoxazolidinone, which was characterized by X-ray diffraction. This compound is also closely related to other isoxazolidinone derivatives obtained through an Amadori rearrangement, which were studied for their potential anti­oxidant properties, and their application as flood flavouring agents (Hodge, 1955[Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.]; Mills & Hodge, 1976[Mills, F. D. & Hodge, J. E. (1976). Carbohydr. Res. 51, 9-21.]; Mills, 1979[Mills, F. D. (1979). J. Agric. Food Chem. 27, 1136-1138.]).

The enanti­opure mol­ecule was crystallized as a chloro­form solvate, in space group P1 (Fig. 1[link]). The core isoxazolidinone ring has the expected envelope conformation, with C5 as the flap. The ring is, however, close to being flat, with a puckering parameter q2 = 0.190 (5) Å. The ring is substituted at C5 and N1 by the bicyclic groups provided by the Chiron. The absolute configuration at C5 is imposed as 5S, while the stereochemistry at N1 is not imposed by the Michael addition. Substituents at C5 and N1 are thus arranged trans with respect to the isoxazolidinone plane, avoiding in this way any steric hindrance. In the crystal structure, only weak inter­molecular O—H⋯O hydrogen bonds are formed, involving hy­droxy groups O10 and O19 (Table 1[link]). The chloro­form lattice mol­ecule does not inter­act with the organic mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O7i 0.85 (1) 1.94 (2) 2.778 (4) 169 (6)
O19—H19⋯O10ii 0.85 (1) 1.98 (3) 2.798 (5) 162 (7)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
Structure of the title compound, with displacement ellipsoids for non-H atoms at the 30% probability level. For the disordered ethyl group in the ester functionality, only one disordered position is retained [A site, with occupancy of 0.58 (5)].

For this Cl-containing crystal, intensities were collected at room temperature using Ag Kα radiation. With such an experimental setup, the refined Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) parameter converges to x = −0.01 (16) for the correct absolute structure, and x = 0.85 (16) for the inverted structure, giving the false impression that chlorine anomalous dispersion allows the reliable determination of the absolute configuration for the mol­ecule. Similar metrics are obtained using the Parsons intensity quotients method (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]), or by refining the structure as an inversion twin (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). However, the 2AD graphs devised by David Watkin and Howard Flack are a valuable tool for estimating whether real information about resonant scattering is present in the measured intensities (Flack et al., 2011[Flack, H. D., Sadki, M., Thompson, A. L. & Watkin, D. J. (2011). Acta Cryst. A67, 21-34.]; Parsons et al., 2012[Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736-749.]). The average (A) and difference (D) intensities for Friedel opposites are defined by A(h) = ½[|F(h)|2 + |F(−h)|2] and D(h) = |F(h)|2 − |F(−h)|2. In a 2AD graph, Dobs against Dmodel of the acentric reflections is plotted, as well as 2Aobs against 2Amodel for weak reflections. For the 2A plot, a distribution of points spread around a straight line of slope 1 passing through the origin indicates that diffraction data are of good quality, and this is indeed the case for the title compound (Fig. 2[link]). The D plot is much more instructive regarding the accuracy of data for measuring anomalous dispersion: the greater the slope of this distribution deviates from 1, the more the effects of anomalous dispersion are overwhelmed by random uncertainty and systematic errors. This is clearly the case for the title compound, despite the presence of three Cl atoms in the asymmetric unit: for the D distribution, all data points are placed close to Dmodel = 0 on the Dobs axis, as is the case for any centrosymmetric structure (Fig. 2[link]). Classical R unweighted factors can also be computed for A and D, which reflect the deviation from the unity-slope distribution: RA = Σ|Aobs(h) − Amodel(h)|/Σ|Aobs(h)| and RD = Σ|Dobs(h) − Dmodel(h)|/Σ|Dobs(h)|, where the summations are over paired acentric reflections h and −h (note that in space group P1, all reflections are acentric, and that RA is then conceptually close to Rint). For the title compound, RA = 0.069 and RD = 0.995. The large RD factor is obviously in line with the large standard uncertainty of the refined Flack parameter, u(x) = 0.16. In the crystal studied here, undue reliance should not be placed on the Flack parameter, and the absolute configuration of the mol­ecule should instead be assigned by relying on the chemistry.

[Figure 2]
Figure 2
2AD plot for 1941 acentric Friedel pairs retrieved from the SHELXL fcf file for the last refinement cycle of the title compound (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]). The Dobs against Dmodel of all Friedel pairs (blue squares) and the 2Aobs against 2Amodel for weak Friedel pairs (red circles) are displayed. On the left, Dobs − Dmodel (green triangles) and 2Aobs − 2Amodel (violet triangles) of all Friedel pairs are displayed, at arbitrary fixed abscissa. The style of the 2AD plot follows that used in the articles of Flack et al. (see, for example, Fig. 3 in Parsons et al., 2012[Parsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736-749.]).

In conclusion, we have shown that a CHCl3 mol­ecule is certainly not sufficient for determining the absolute structure of a chiral crystal if Ag Kα radiation is used for collecting intensities. On a broader front, it is worth reminding that the standard uncertainty in the Flack parameter, u(x), is the key to its correct inter­pretation (Flack & Bernardinelli, 2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]; Thompson & Watkin, 2009[Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712-717.]). The use of 2AD plots is thus strongly advised for the validation of absolute-structure determinations (Flack, 2012[Flack, H. D. (2012). Acta Cryst. C68, e13-e14.]), together with Flack x and Hooft y parameters. Unfortunately, these plots are not yet used on a routine basis in chemical crystallography.

Synthesis and crystallization

A solution of NH2OH·HCl (85 mg, 0.025 mmol) in water (1 ml) was neutralized with a solution of NaHCO3 (pH 7). After 10 min., a solution of 7,3-LXF (50 mg, 0.23 mmol) in ethanol (3 ml) was added over 30 s. and the mixture was left under stirring at room temperature. The reaction was complete after one h. The mixture was filtered over celite/Na2SO4, and the filtrate was reduced to give yellow solids, which were purified by column chromatography (hexa­ne:ethyl acetate, 1:1), to afford 95 mg of the title compound (yield: 80%). Colourless single crystals were obtained by slow evaporation of a MeOH/CHCl3 solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The ethyl group C26–C27 is disordered over two positions, C26A/C27A [occupancy: 0.58 (5)] and C26B/C27B [occupancy: 0.42 (5)].

Table 2
Experimental details

Crystal data
Chemical formula C22H33NO12·CHCl3
Mr 622.86
Crystal system, space group Triclinic, P1
Temperature (K) 296
a, b, c (Å) 5.5734 (4), 9.2537 (9), 14.2547 (12)
α, β, γ (°) 91.995 (7), 99.103 (6), 95.567 (7)
V3) 721.56 (11)
Z 1
Radiation type Ag Kα, λ = 0.56083 Å
μ (mm−1) 0.20
Crystal size (mm) 0.37 × 0.35 × 0.15
 
Data collection
Diffractometer Stoe Stadivari
Absorption correction Multi-scan (X-AREA; Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.435, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14451, 4682, 3696
Rint 0.038
(sin θ/λ)max−1) 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.134, 1.01
No. of reflections 4682
No. of parameters 383
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.30, −0.24
Computer programs: X-AREA (Stoe & Cie, 2018[Stoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 2018); cell refinement: X-AREA (Stoe & Cie, 2018); data reduction: X-AREA (Stoe & Cie, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

Ethyl (3S)-3-[(3aR,5R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-d][1,3]dioxol-5-yl]-3-{(3S)-3-[(3aR,5R,6S,6aR)-6-hydroxy-2,2-dimethyltetrahydrofuro[4,5-d][1,3]dioxol-5-yl]-5-oxoisoxazolidin-2-yl}propanoate chloroform monosolvate top
Crystal data top
C22H33NO12·CHCl3F(000) = 326
Mr = 622.86Dx = 1.433 Mg m3
Triclinic, P1Melting point: 472 K
a = 5.5734 (4) ÅAg Kα radiation, λ = 0.56083 Å
b = 9.2537 (9) ÅCell parameters from 12914 reflections
c = 14.2547 (12) Åθ = 2.8–22.1°
α = 91.995 (7)°µ = 0.20 mm1
β = 99.103 (6)°T = 296 K
γ = 95.567 (7)°Prism, colourless
V = 721.56 (11) Å30.37 × 0.35 × 0.15 mm
Z = 1
Data collection top
Stoe Stadivari
diffractometer
4682 independent reflections
Radiation source: Sealed X-ray tube, Axo Astix-f Microfocus source3696 reflections with I > 2σ(I)
Graded multilayer mirror monochromatorRint = 0.038
Detector resolution: 5.81 pixels mm-1θmax = 20.0°, θmin = 2.8°
ω scansh = 66
Absorption correction: multi-scan
(X-AREA; Stoe & Cie, 2018)
k = 1111
Tmin = 0.435, Tmax = 1.000l = 1717
14451 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0893P)2]
where P = (Fo2 + 2Fc2)/3
4682 reflections(Δ/σ)max < 0.001
383 parametersΔρmax = 0.30 e Å3
5 restraintsΔρmin = 0.24 e Å3
0 constraints
Special details top

Refinement. H atoms bonded to C atoms were placed in calculated positions and the hydroxy H atoms H10/H19 were refined with free coordinates and O—H bond lengths restrained to 0.85 (1) Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.4192 (6)0.3430 (4)0.5695 (3)0.0344 (8)
O20.5788 (5)0.2914 (4)0.5055 (2)0.0427 (8)
C30.4543 (9)0.1909 (6)0.4400 (3)0.0439 (11)
O30.5583 (9)0.1395 (6)0.3811 (3)0.0753 (13)
C40.1949 (8)0.1629 (5)0.4547 (3)0.0385 (10)
H4A0.1464360.0594720.4557170.046*
H4B0.0857670.2036840.4050080.046*
C50.1936 (7)0.2394 (5)0.5516 (3)0.0325 (9)
H5A0.0497580.2932330.5484630.039*
C60.2096 (7)0.1456 (5)0.6367 (3)0.0325 (9)
H6A0.1826420.2055560.6913080.039*
O70.0169 (5)0.0254 (3)0.6205 (2)0.0383 (7)
C80.0764 (8)0.0827 (5)0.6869 (4)0.0401 (10)
H8A0.0518560.1800650.6554730.048*
O80.0546 (6)0.0761 (5)0.7624 (3)0.0591 (11)
C90.3446 (8)0.0429 (5)0.7322 (3)0.0395 (10)
H9A0.4389640.1271420.7370620.047*
O90.3312 (6)0.0235 (4)0.8219 (2)0.0507 (9)
C100.4372 (7)0.0710 (5)0.6671 (3)0.0331 (9)
H10A0.5703100.1389730.7015910.040*
O100.5094 (5)0.0006 (4)0.5884 (2)0.0392 (7)
H100.663 (3)0.018 (7)0.595 (4)0.059*
C110.0999 (10)0.0210 (7)0.8482 (4)0.0556 (14)
C120.1196 (18)0.1414 (13)0.9156 (7)0.110 (3)
H12A0.1532200.2277030.8829060.164*
H12B0.0315000.1599480.9395360.164*
H12C0.2495830.1136220.9676350.164*
C130.0003 (15)0.1123 (11)0.8849 (6)0.092 (2)
H13A0.0033990.1846820.8382270.138*
H13B0.1019580.1505070.9427710.138*
H13C0.1631250.0863390.8971100.138*
C140.3958 (8)0.4978 (5)0.5519 (3)0.0341 (9)
H14A0.2751260.5302720.5888290.041*
C150.3155 (8)0.5318 (5)0.4486 (3)0.0358 (10)
H15A0.4176510.4857220.4087690.043*
O160.0651 (6)0.4747 (4)0.4186 (2)0.0431 (8)
C170.0249 (9)0.5423 (6)0.3350 (3)0.0431 (11)
H17A0.1909300.5677910.3364700.052*
O170.0169 (7)0.4560 (4)0.2531 (3)0.0559 (10)
C180.1501 (10)0.6781 (6)0.3303 (3)0.0458 (11)
H18A0.0657650.7646890.3155290.055*
O180.2886 (7)0.6389 (4)0.2598 (3)0.0537 (9)
C190.3149 (9)0.6928 (5)0.4266 (3)0.0416 (11)
H19A0.4787030.7394580.4233550.050*
O190.1960 (8)0.7677 (4)0.4926 (3)0.0553 (9)
H190.285 (12)0.846 (5)0.510 (5)0.083*
C200.1496 (10)0.5257 (6)0.1982 (4)0.0501 (12)
C210.0011 (17)0.5882 (9)0.1133 (5)0.088 (2)
H21A0.0967450.6580660.1353000.132*
H21B0.1033330.5112940.0761550.132*
H21C0.1094200.6347760.0748530.132*
C220.3192 (14)0.4193 (9)0.1729 (5)0.0780 (19)
H22A0.3982960.3803740.2298780.117*
H22B0.4401170.4678360.1406090.117*
H22C0.2275810.3416460.1320500.117*
C230.6434 (9)0.5822 (6)0.5916 (4)0.0448 (11)
H23A0.7581660.5674120.5485000.054*
H23B0.6250210.6852510.5960460.054*
C240.7432 (9)0.5331 (6)0.6887 (4)0.0493 (12)
O240.9310 (8)0.4794 (7)0.7079 (3)0.0849 (15)
O250.5936 (8)0.5557 (6)0.7498 (3)0.0674 (12)
C26A0.658 (3)0.478 (3)0.8403 (10)0.057 (6)0.58 (5)
H26A0.6640870.3750990.8256480.069*0.58 (5)
H26B0.8163000.5179890.8741470.069*0.58 (5)
C27A0.462 (4)0.498 (5)0.9003 (15)0.104 (11)0.58 (5)
H27A0.4816270.4359090.9529700.156*0.58 (5)
H27B0.3043710.4733540.8623770.156*0.58 (5)
H27C0.4769130.5974680.9236890.156*0.58 (5)
C26B0.640 (7)0.552 (5)0.850 (2)0.086 (9)0.42 (5)
H26C0.5936310.6394630.8794150.104*0.42 (5)
H26D0.8113430.5446530.8726850.104*0.42 (5)
C27B0.492 (7)0.426 (3)0.872 (2)0.079 (9)0.42 (5)
H27D0.5544220.3974140.9345260.119*0.42 (5)
H27E0.4972460.3481300.8262810.119*0.42 (5)
H27F0.3268090.4480810.8697040.119*0.42 (5)
C280.7434 (11)0.0620 (7)0.1880 (4)0.0593 (14)
H28A0.7202440.1277190.2404950.071*
Cl11.0534 (3)0.0408 (2)0.19859 (17)0.0881 (6)
Cl20.6390 (4)0.1396 (3)0.08089 (14)0.0907 (6)
Cl30.5806 (3)0.1062 (2)0.19867 (17)0.0876 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (16)0.038 (2)0.0385 (19)0.0029 (14)0.0079 (14)0.0036 (15)
O20.0276 (15)0.0475 (19)0.057 (2)0.0075 (14)0.0166 (14)0.0068 (16)
C30.042 (2)0.055 (3)0.039 (3)0.013 (2)0.012 (2)0.008 (2)
O30.077 (3)0.099 (4)0.060 (3)0.027 (3)0.034 (2)0.007 (2)
C40.036 (2)0.045 (3)0.034 (2)0.0087 (19)0.0007 (18)0.0011 (19)
C50.0218 (18)0.035 (2)0.042 (2)0.0052 (16)0.0053 (16)0.0030 (18)
C60.0201 (18)0.038 (2)0.038 (2)0.0008 (16)0.0049 (16)0.0001 (18)
O70.0206 (14)0.0443 (18)0.0483 (18)0.0026 (12)0.0028 (12)0.0098 (14)
C80.029 (2)0.040 (3)0.050 (3)0.0023 (18)0.0055 (18)0.007 (2)
O80.0375 (18)0.093 (3)0.047 (2)0.0056 (19)0.0126 (15)0.011 (2)
C90.032 (2)0.045 (3)0.043 (3)0.0077 (19)0.0056 (18)0.005 (2)
O90.0381 (17)0.074 (2)0.0380 (19)0.0017 (17)0.0033 (14)0.0078 (17)
C100.0237 (19)0.033 (2)0.041 (2)0.0010 (16)0.0028 (16)0.0006 (18)
O100.0225 (13)0.0476 (19)0.0476 (18)0.0058 (13)0.0057 (12)0.0001 (15)
C110.043 (3)0.081 (4)0.045 (3)0.001 (3)0.011 (2)0.016 (3)
C120.092 (6)0.139 (8)0.088 (6)0.026 (5)0.004 (4)0.057 (6)
C130.067 (4)0.127 (7)0.088 (5)0.018 (4)0.032 (4)0.016 (5)
C140.0297 (19)0.036 (2)0.036 (2)0.0022 (17)0.0063 (16)0.0001 (18)
C150.035 (2)0.034 (2)0.038 (3)0.0013 (18)0.0085 (18)0.0020 (19)
O160.0374 (17)0.0467 (19)0.0411 (18)0.0065 (14)0.0014 (14)0.0110 (15)
C170.039 (2)0.054 (3)0.037 (2)0.011 (2)0.0043 (19)0.005 (2)
O170.058 (2)0.067 (2)0.041 (2)0.0131 (19)0.0138 (16)0.0052 (17)
C180.059 (3)0.043 (3)0.038 (3)0.011 (2)0.009 (2)0.007 (2)
O180.068 (2)0.054 (2)0.0394 (19)0.0106 (18)0.0182 (16)0.0038 (16)
C190.051 (3)0.038 (2)0.037 (3)0.002 (2)0.011 (2)0.004 (2)
O190.065 (2)0.043 (2)0.058 (2)0.0053 (17)0.0159 (19)0.0085 (17)
C200.054 (3)0.056 (3)0.039 (3)0.004 (2)0.011 (2)0.007 (2)
C210.116 (7)0.092 (5)0.049 (4)0.001 (5)0.004 (4)0.016 (4)
C220.068 (4)0.089 (5)0.080 (5)0.006 (4)0.027 (4)0.012 (4)
C230.038 (2)0.047 (3)0.046 (3)0.008 (2)0.002 (2)0.002 (2)
C240.036 (3)0.060 (3)0.048 (3)0.004 (2)0.002 (2)0.000 (2)
O240.047 (2)0.138 (5)0.070 (3)0.023 (3)0.000 (2)0.017 (3)
O250.053 (2)0.107 (4)0.040 (2)0.007 (2)0.0025 (17)0.000 (2)
C26A0.052 (7)0.092 (14)0.028 (6)0.015 (8)0.005 (5)0.001 (7)
C27A0.064 (8)0.21 (3)0.052 (10)0.042 (14)0.020 (7)0.011 (14)
C26B0.098 (17)0.079 (19)0.076 (15)0.007 (14)0.001 (11)0.022 (13)
C27B0.087 (19)0.099 (17)0.049 (13)0.010 (13)0.004 (12)0.003 (10)
C280.062 (3)0.066 (4)0.054 (3)0.009 (3)0.021 (3)0.004 (3)
Cl10.0489 (8)0.0974 (14)0.1159 (15)0.0029 (8)0.0069 (8)0.0215 (11)
Cl20.0906 (13)0.1116 (16)0.0762 (12)0.0305 (11)0.0160 (9)0.0255 (10)
Cl30.0649 (10)0.0747 (11)0.1271 (17)0.0010 (8)0.0295 (10)0.0133 (10)
Geometric parameters (Å, º) top
N1—O21.470 (5)C17—C181.524 (8)
N1—C141.477 (6)C17—H17A0.9800
N1—C51.488 (5)O17—C201.428 (6)
O2—C31.352 (6)C18—O181.418 (6)
C3—O31.203 (6)C18—C191.521 (7)
C3—C41.493 (7)C18—H18A0.9800
C4—C51.531 (7)O18—C201.426 (7)
C4—H4A0.9700C19—O191.430 (6)
C4—H4B0.9700C19—H19A0.9800
C5—C61.512 (6)O19—H190.848 (14)
C5—H5A0.9800C20—C221.502 (9)
C6—O71.454 (5)C20—C211.519 (9)
C6—C101.513 (6)C21—H21A0.9600
C6—H6A0.9800C21—H21B0.9600
O7—C81.428 (6)C21—H21C0.9600
C8—O81.395 (6)C22—H22A0.9600
C8—C91.536 (6)C22—H22B0.9600
C8—H8A0.9800C22—H22C0.9600
O8—C111.427 (7)C23—C241.510 (8)
C9—O91.415 (6)C23—H23A0.9700
C9—C101.535 (6)C23—H23B0.9700
C9—H9A0.9800C24—O241.199 (7)
O9—C111.425 (6)C24—O251.322 (7)
C10—O101.415 (6)O25—C26B1.41 (3)
C10—H10A0.9800O25—C26A1.510 (17)
O10—H100.846 (14)C26A—C27A1.51 (3)
C11—C121.497 (10)C26A—H26A0.9700
C11—C131.513 (11)C26A—H26B0.9700
C12—H12A0.9600C27A—H27A0.9600
C12—H12B0.9600C27A—H27B0.9600
C12—H12C0.9600C27A—H27C0.9600
C13—H13A0.9600C26B—C27B1.43 (4)
C13—H13B0.9600C26B—H26C0.9700
C13—H13C0.9600C26B—H26D0.9700
C14—C151.523 (6)C27B—H27D0.9600
C14—C231.532 (6)C27B—H27E0.9600
C14—H14A0.9800C27B—H27F0.9600
C15—O161.436 (5)C28—Cl11.741 (6)
C15—C191.533 (7)C28—Cl31.747 (7)
C15—H15A0.9800C28—Cl21.750 (6)
O16—C171.410 (6)C28—H28A0.9800
C17—O171.400 (7)
O2—N1—C14107.2 (3)O17—C17—C18105.8 (4)
O2—N1—C5105.5 (3)O16—C17—C18106.5 (4)
C14—N1—C5118.0 (3)O17—C17—H17A110.8
C3—O2—N1111.0 (3)O16—C17—H17A110.8
O3—C3—O2119.3 (5)C18—C17—H17A110.8
O3—C3—C4130.1 (5)C17—O17—C20110.2 (4)
O2—C3—C4110.6 (4)O18—C18—C19108.8 (4)
C3—C4—C5103.6 (4)O18—C18—C17103.7 (4)
C3—C4—H4A111.0C19—C18—C17104.7 (4)
C5—C4—H4A111.0O18—C18—H18A113.0
C3—C4—H4B111.0C19—C18—H18A113.0
C5—C4—H4B111.0C17—C18—H18A113.0
H4A—C4—H4B109.0C18—O18—C20108.8 (4)
N1—C5—C6105.2 (3)O19—C19—C18108.6 (4)
N1—C5—C4105.5 (3)O19—C19—C15110.4 (4)
C6—C5—C4116.9 (4)C18—C19—C1599.5 (4)
N1—C5—H5A109.6O19—C19—H19A112.5
C6—C5—H5A109.6C18—C19—H19A112.5
C4—C5—H5A109.6C15—C19—H19A112.5
O7—C6—C5110.2 (3)C19—O19—H19107 (5)
O7—C6—C10103.1 (3)O18—C20—O17105.4 (4)
C5—C6—C10120.0 (3)O18—C20—C22108.6 (5)
O7—C6—H6A107.7O17—C20—C22109.2 (5)
C5—C6—H6A107.7O18—C20—C21110.8 (5)
C10—C6—H6A107.7O17—C20—C21108.0 (5)
C8—O7—C6108.8 (3)C22—C20—C21114.6 (6)
O8—C8—O7111.6 (4)C20—C21—H21A109.5
O8—C8—C9104.9 (4)C20—C21—H21B109.5
O7—C8—C9106.6 (3)H21A—C21—H21B109.5
O8—C8—H8A111.2C20—C21—H21C109.5
O7—C8—H8A111.2H21A—C21—H21C109.5
C9—C8—H8A111.2H21B—C21—H21C109.5
C8—O8—C11111.3 (4)C20—C22—H22A109.5
O9—C9—C10110.0 (4)C20—C22—H22B109.5
O9—C9—C8104.1 (4)H22A—C22—H22B109.5
C10—C9—C8103.3 (4)C20—C22—H22C109.5
O9—C9—H9A112.9H22A—C22—H22C109.5
C10—C9—H9A112.9H22B—C22—H22C109.5
C8—C9—H9A112.9C24—C23—C14111.2 (4)
C9—O9—C11109.4 (4)C24—C23—H23A109.4
O10—C10—C6111.1 (3)C14—C23—H23A109.4
O10—C10—C9109.2 (4)C24—C23—H23B109.4
C6—C10—C9101.4 (3)C14—C23—H23B109.4
O10—C10—H10A111.6H23A—C23—H23B108.0
C6—C10—H10A111.6O24—C24—O25124.4 (5)
C9—C10—H10A111.6O24—C24—C23124.8 (5)
C10—O10—H10106 (4)O25—C24—C23110.8 (5)
O9—C11—O8105.9 (4)C24—O25—C26B128.4 (18)
O9—C11—C12110.9 (6)C24—O25—C26A111.8 (8)
O8—C11—C12108.2 (6)C27A—C26A—O25107.4 (18)
O9—C11—C13108.1 (6)C27A—C26A—H26A110.2
O8—C11—C13108.6 (5)O25—C26A—H26A110.2
C12—C11—C13114.8 (7)C27A—C26A—H26B110.2
C11—C12—H12A109.5O25—C26A—H26B110.2
C11—C12—H12B109.5H26A—C26A—H26B108.5
H12A—C12—H12B109.5C26A—C27A—H27A109.5
C11—C12—H12C109.5C26A—C27A—H27B109.5
H12A—C12—H12C109.5H27A—C27A—H27B109.5
H12B—C12—H12C109.5C26A—C27A—H27C109.5
C11—C13—H13A109.5H27A—C27A—H27C109.5
C11—C13—H13B109.5H27B—C27A—H27C109.5
H13A—C13—H13B109.5O25—C26B—C27B105 (2)
C11—C13—H13C109.5O25—C26B—H26C110.7
H13A—C13—H13C109.5C27B—C26B—H26C110.7
H13B—C13—H13C109.5O25—C26B—H26D110.7
N1—C14—C15115.7 (3)C27B—C26B—H26D110.7
N1—C14—C23106.9 (4)H26C—C26B—H26D108.8
C15—C14—C23110.5 (4)C26B—C27B—H27D109.5
N1—C14—H14A107.8C26B—C27B—H27E109.5
C15—C14—H14A107.8H27D—C27B—H27E109.5
C23—C14—H14A107.8C26B—C27B—H27F109.5
O16—C15—C14109.5 (3)H27D—C27B—H27F109.5
O16—C15—C19103.1 (4)H27E—C27B—H27F109.5
C14—C15—C19116.8 (4)Cl1—C28—Cl3109.3 (4)
O16—C15—H15A109.0Cl1—C28—Cl2110.9 (3)
C14—C15—H15A109.0Cl3—C28—Cl2111.9 (4)
C19—C15—H15A109.0Cl1—C28—H28A108.2
C17—O16—C15108.1 (3)Cl3—C28—H28A108.2
O17—C17—O16111.9 (4)Cl2—C28—H28A108.2
C14—N1—O2—C3113.8 (4)C5—N1—C14—C1565.8 (5)
C5—N1—O2—C312.8 (4)O2—N1—C14—C2370.7 (4)
N1—O2—C3—O3178.7 (5)C5—N1—C14—C23170.6 (4)
N1—O2—C3—C40.8 (5)N1—C14—C15—O1669.4 (5)
O3—C3—C4—C5169.4 (5)C23—C14—C15—O16168.9 (4)
O2—C3—C4—C511.0 (5)N1—C14—C15—C19173.9 (4)
O2—N1—C5—C6105.2 (3)C23—C14—C15—C1952.3 (5)
C14—N1—C5—C6135.1 (4)C14—C15—O16—C17163.1 (4)
O2—N1—C5—C418.9 (4)C19—C15—O16—C1738.1 (5)
C14—N1—C5—C4100.7 (4)C15—O16—C17—O1797.5 (5)
C3—C4—C5—N118.2 (4)C15—O16—C17—C1817.7 (5)
C3—C4—C5—C698.3 (4)O16—C17—O17—C20115.1 (5)
N1—C5—C6—O7171.3 (3)C18—C17—O17—C200.5 (5)
C4—C5—C6—O754.6 (5)O17—C17—C18—O1815.0 (5)
N1—C5—C6—C1051.9 (5)O16—C17—C18—O18104.2 (4)
C4—C5—C6—C1064.7 (5)O17—C17—C18—C19129.1 (4)
C5—C6—O7—C8163.3 (3)O16—C17—C18—C199.9 (5)
C10—C6—O7—C834.1 (4)C19—C18—O18—C20135.3 (4)
C6—O7—C8—O8101.4 (4)C17—C18—O18—C2024.3 (5)
C6—O7—C8—C912.6 (5)O18—C18—C19—O19165.1 (4)
O7—C8—O8—C11108.6 (5)C17—C18—C19—O1984.5 (5)
C9—C8—O8—C116.4 (6)O18—C18—C19—C1579.5 (4)
O8—C8—C9—O917.0 (5)C17—C18—C19—C1530.9 (5)
O7—C8—C9—O9101.5 (4)O16—C15—C19—O1972.3 (5)
O8—C8—C9—C10131.9 (4)C14—C15—C19—O1947.8 (5)
O7—C8—C9—C1013.5 (5)O16—C15—C19—C1841.7 (4)
C10—C9—O9—C11131.8 (4)C14—C15—C19—C18161.8 (4)
C8—C9—O9—C1121.7 (5)C18—O18—C20—O1724.5 (5)
O7—C6—C10—O1075.1 (4)C18—O18—C20—C22141.3 (5)
C5—C6—C10—O1047.8 (5)C18—O18—C20—C2192.1 (6)
O7—C6—C10—C940.8 (4)C17—O17—C20—O1814.2 (6)
C5—C6—C10—C9163.7 (4)C17—O17—C20—C22130.7 (5)
O9—C9—C10—O10165.0 (3)C17—O17—C20—C21104.2 (6)
C8—C9—C10—O1084.4 (4)N1—C14—C23—C2444.9 (6)
O9—C9—C10—C677.7 (4)C15—C14—C23—C24171.5 (4)
C8—C9—C10—C632.9 (4)C14—C23—C24—O24118.4 (7)
C9—O9—C11—O818.2 (6)C14—C23—C24—O2560.8 (6)
C9—O9—C11—C1298.9 (7)O24—C24—O25—C26B15 (2)
C9—O9—C11—C13134.4 (5)C23—C24—O25—C26B166 (2)
C8—O8—C11—O96.6 (6)O24—C24—O25—C26A12.2 (14)
C8—O8—C11—C12112.3 (7)C23—C24—O25—C26A167.0 (12)
C8—O8—C11—C13122.5 (6)C24—O25—C26A—C27A174 (3)
O2—N1—C14—C1552.9 (4)C24—O25—C26B—C27B111 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···O160.972.523.083 (6)117
C5—H5A···O2i0.982.603.469 (5)148
C8—H8A···O19ii0.982.623.246 (6)122
O10—H10···O7iii0.85 (1)1.94 (2)2.778 (4)169 (6)
O19—H19···O10iv0.85 (1)1.98 (3)2.798 (5)162 (7)
C28—H28A···O30.982.333.172 (7)144
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z; (iv) x, y+1, z.
 

Funding information

Funding for this research was provided by: Benemérita Universidad Autónoma de Puebla (grant No. 100317000-VIEP2018); Consejo Nacional de Ciencia y Tecnología (scholarship No. 304678; scholarship No. 429355; grant No. 268178).

References

First citationAmaro Hernández, A. G. (2019). Thesis, Benemérita Universidad Autónoma de Puebla, Puebla, México. https://repositorioinstitucional.buap.mx/handle/20.500.12371/4902Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (2012). Acta Cryst. C68, e13–e14.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D., Sadki, M., Thompson, A. L. & Watkin, D. J. (2011). Acta Cryst. A67, 21–34.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKhobare, S. R., Gajare, V., Reddy, E. V., Datrika, R., Banda, M., Siddaiah, V., Pachore, S. S., Timanna, U., Dahanukar, V. H. & Kumar, U. K. S. (2016). Carbohydr. Res. 435, 1–6.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMills, F. D. (1979). J. Agric. Food Chem. 27, 1136–1138.  CrossRef CAS Web of Science Google Scholar
First citationMills, F. D. & Hodge, J. E. (1976). Carbohydr. Res. 51, 9–21.  CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Pattison, P. & Flack, H. D. (2012). Acta Cryst. A68, 736–749.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPérez-Bautista, J. A., Meza-León, R. L., Cruz-Gregorio, S., Quintero, L. & Sartillo-Piscil, F. (2016). Tetrahedron Lett. 57, 4560–4562.  Google Scholar
First citationRamírez, E., Meza-León, R. L., Quintero, L., Höpfl, H., Cruz-Gregorio, S. & Sartillo-Piscil, F. (2017). ChemistrySelect, 2, 546–549.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2018). X-AREA and X-RED32, Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds