organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

7-Chloro-3-(4-methyl­benzene­sulfon­yl)pyrrolo[1,2-c]pyrimidine

aDepartment of Chemistry, Dartmouth College, Hanover, NH 03755 , USA, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435 , USA
*Correspondence e-mail: Gordon.W.Gribble@dartmouth.edu, jjasinski@keene.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 March 2020; accepted 15 March 2020; online 27 March 2020)

In the title compound, C14H11ClN2O2S, the dihedral angle between the pyrrolo­[1,2-c]pyrimidine ring system (r.m.s. deviation = 0.008 Å) and the benzene ring is 80.2 (9)°. In the crystal, inversion dimers linked by pairs of C—H⋯O inter­actions generate R22(16) loops. Several aromatic ππ stacking inter­actions between the pyrrolo­[1,2-c]pyrimidine rings, as well as separately between the pyrrolo and pyrimidine groups [shortest centroid–centroid separation = 3.5758 (14) Å], help to consolidate the packing.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrrolo­[1,2-c]pyrimidines are a class of fused heterocycles of inter­est for their biological activity, electrochemical properties, and as components of natural products (Tatu et al., 2018[Tatu, M. L., Harja, F., Ungureanu, E. M., Georgescu, E. & Popa, M. M. (2018). Rev. Chim. 69, 499-506.]). As part of our studies in this area, we now report the crystal structure of the title compound, C14H11N2O2SCl (Fig. 1[link]). We believe that this is the first crystal structure to be reported of a pyrrolo­[1,2-c]pyrimidine and one of the few unsymmetrical `diaryl sulfones' to be described.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability ellipsoids.

The dihedral angle between the C1–C7/N1/N2 pyrrolo­[1,2-c]pyrimidine ring system (r.m.s. deviation = 0.008 Å) and the C8–C13 benzene ring is 80.2 (9)°. The rings adopt a typical diaryl sulfone `open-book' conformation with respect to the sulfonyl group (Koch & Moffitt, 1951[Koch, H. P. & Moffitt, W. E. (1951). Trans. Faraday Soc. 47, 7-15.]; Sime & Woodhouse, 1974[Sime, J. G. & Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269-285.]; Bocelli & Rizzoli, 1990[Bocelli, G. & Rizzoli, C. (1990). Acta Cryst. C46, 2259-2260.]; Colquhoun, 1997[Colquhoun, H. M. (1997). Polymer, 38, 991-994.]; Colquhoun et al., 2002[Colquhoun, H. M., Aldred, P. L., Kohnke, F. H., Herbertson, P. L., Baxter, I. & Williams, D. J. (2002). Macromolecules, 35, 1685-1690.]; Rudolph et al., 2010[Rudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Crystallogr. 40, 253-265.]; Benhalima et al., 2012[Benhalima, A., Hudon, F., Koulibaly, F., Tessier, C. & Brisson, J. (2012). Can. J. Chem. 90, 880-890.]). Notably, the torsion angles differ from the ideal 90°. Thus, the torsion angles in the title compound reveal that the pd π overlap in the benzene ring between C8 and S1 [torsion angle C1—S1—C8—C9 = 105.19 (19)°], is favored over the p–d π overlap in the pyrrolo­[1,2-c]pyrimidine ring between C1 and S1 [C8—S1—C1—C2 = 110.70 (18)°], probably because the benzene ring is electron-rich relative to the pyrrolo­[1,2-c]pyrimidine ring. Consistent with this notion is the observation that the S1—C8 bond length [1.767 (2) Å] is slightly shorter than S1—C1 [1.773 (2) Å]. The O1—S1—O2 bond angle of 119.68 (11)° agrees with the literature values for diaryl sulfones (Sime & Woodhouse, 1974[Sime, J. G. & Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269-285.]; Colquhoun, 1997[Colquhoun, H. M. (1997). Polymer, 38, 991-994.]; Colquhoun et al., 2002[Colquhoun, H. M., Aldred, P. L., Kohnke, F. H., Herbertson, P. L., Baxter, I. & Williams, D. J. (2002). Macromolecules, 35, 1685-1690.]; Rudolph et al., 2010[Rudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Crystallogr. 40, 253-265.]; Benhalima et al., 2012[Benhalima, A., Hudon, F., Koulibaly, F., Tessier, C. & Brisson, J. (2012). Can. J. Chem. 90, 880-890.]). Likewise, the C1—S1—C8 bond angle of 105.03 (10)° is consistent with the literature data (Sime & Woodhouse, 1974[Sime, J. G. & Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269-285.]; Bocelli & Rizzoli, 1990[Bocelli, G. & Rizzoli, C. (1990). Acta Cryst. C46, 2259-2260.]; Colquhoun et al., 2002[Colquhoun, H. M., Aldred, P. L., Kohnke, F. H., Herbertson, P. L., Baxter, I. & Williams, D. J. (2002). Macromolecules, 35, 1685-1690.]).

In the crystal, a weak C14—H14B⋯O2 hydrogen bond (Table 1[link]) links two mol­ecules together in a ring face–ring face arrangement (Fig. 2[link]). This packing motif was also observed by Sime & Woodhouse (1974[Sime, J. G. & Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269-285.]) in the crystal structure of diphenyl sulfone and by Colquhoun et al. (2002[Colquhoun, H. M., Aldred, P. L., Kohnke, F. H., Herbertson, P. L., Baxter, I. & Williams, D. J. (2002). Macromolecules, 35, 1685-1690.]) in the crystal structure of poly(1,4-phenyl­ene­sulfone). Several aromatic ππ stacking inter­actions between the pyrrolo­[1,2-c]pyrimidine rings as well as separately between the pyrrolo and pyrimidine groups (Table 2[link]) are observed and help to consolidate the packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O2i 0.96 2.49 3.329 (3) 146
Symmetry code: (i) -x+1, -y+1, -z+2.

Table 2
π–π distances (Å) and angles (°) for the title compound

Cg(I)—Cg(J) is the distance between ring centroids, α is dihedral angle between planes Cg(I) and Cg(J) and slippage is the distance between Cg(I) and perpendicular the projection of Cg(J) on ring I. Cg(1), Cg(2) and Cg(4) are the centroids N2/C3–C6, N1/C1/C2/C3/N2/C7 and C1–C7/N1/N2 rings, respectively.

Cg(I)a Cg(J)b d[Cg(I)⋯Cg(J)] α slippage
Cg(1) Cg(1)i 3.5758 (14) 0.00 (13) 1.169
Cg(1) Cg(2)i 3.6261 (14) 0.73 (12) 1.348
Cg(1) Cg(2)ii 3.6495 (14) 0.73 (12) 1.092
Cg(1) Cg(4)i 3.4423 (13) 0.42 (11) 0.699
Cg(1) Cg(4)ii 3.8876 (13) 0.42 (11) 1.738
Cg(2) Cg(2)ii 3.9724 (13) 0.00 (10) 1.932
Cg(2) Cg(4)ii 3.6901 (12) 0.32 (9) 1.233
Cg(4) Cg(4)i 3.7241 (11) 0.00 (7) 1.586
Cg(4) Cg(4)ii 3.6280 (11) 0.00 (7) 1.010
Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, 1 − y, 1 − z.
[Figure 2]
Figure 2
Packing diagram of the title compound viewed along the a axis direction showing inversion dimers linked by pairs of weak C—H⋯O inter­actions.

Synthesis and crystallization

A stirred solution of 5-chloro­pyrrole-2-carbaldehyde (Leen et al., 2011[Leen, V., Leemans, T., Boens, N. & Dehaen, W. (2011). Eur. J. Org. Chem. pp. 4386-4396.]) (0.023 g, 0.18 mmol) in dioxane (10 ml) was cooled in an ice bath and toluene­sulfonyl­methyl isocyanide (TosMIC) (0.046 g, 0.26 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.04 ml) were added. The solution was then stirred for 20 h at 52°C. The reaction was quenched with 1M hydro­chloric acid (25 ml) and extracted with ethyl acetate (50 ml). The organic layer was washed once each with 1 M hydro­chloric acid (20 ml), saturated aqueous sodium bicarbonate solution (20 ml), and brine (20 ml). The organic layer was dried over anhydrous sodium sulfate, filtered over glass wool and concentrated in vacuo. The resulting crude product was purified by flash chromatography using 6:1 hexa­ne:ethyl acetate. Evaporation of the solvent afforded 0.036 g (66%) of 7-chloro-3-tosyl­pyrrolo­[1,2-c]pyrimidine as a light-yellow solid: mp 181–184°C; 1H NMR (500 MHz, CDCl3) δ 8.77 (s, 1H), 8.24 (d, J = 1 Hz, 1H), 7.95 (d, J = 8 Hz, 2H), 7.33 (d, J = 8 Hz, 2H), 6.92 (d, J = 4 Hz, 1H), 6.84 (d, J = 4 Hz, 1H), 2.42 (s, 3H); 13C NMR (500 MHz, CDCl3) δ 144.8, 141.2, 136.4, 135.9, 130.0, 129.60, 128.9, 116.9, 115.0, 110.7, 106.2, 21.8; HRMS m/z calculated for C14H12N2O2SCl: 307.0308, found: 307.0303. Colorless prisms suitable for X-ray crystal structure determination were recrystallized from ethanol solution. The reaction scheme is shown in Fig. 3[link].

[Figure 3]
Figure 3
Reaction scheme.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula C14H11ClN2O2S
Mr 306.76
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.2285 (5), 7.2385 (5), 13.7586 (11)
α, β, γ (°) 102.192 (7), 99.616 (6), 104.149 (6)
V3) 663.91 (9)
Z 2
Radiation type Cu Kα
μ (mm−1) 4.05
Crystal size (mm) 0.16 × 0.13 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction Eos, Gemini
Absorption correction Multi-scan
Tmin, Tmax 0.748, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 3839, 2498, 2177
Rint 0.036
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.04
No. of reflections 2498
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.53, −0.31
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2019); cell refinement: CrysAlis PRO (Rigaku OD, 2019); data reduction: CrysAlis PRO (Rigaku OD, 2019); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

7-Chloro-3-(4-methylbenzenesulfonyl)pyrrolo[1,2-c]pyrimidine top
Crystal data top
C14H11ClN2O2SZ = 2
Mr = 306.76F(000) = 316
Triclinic, P1Dx = 1.535 Mg m3
a = 7.2285 (5) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.2385 (5) ÅCell parameters from 1885 reflections
c = 13.7586 (11) Åθ = 6.5–71.4°
α = 102.192 (7)°µ = 4.05 mm1
β = 99.616 (6)°T = 173 K
γ = 104.149 (6)°Prism, colourless
V = 663.91 (9) Å30.16 × 0.13 × 0.08 mm
Data collection top
Rigaku-Oxford Diffraction Eos, Gemini
diffractometer
2498 independent reflections
Radiation source: fine-focus sealed X-ray tube2177 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.036
ω scansθmax = 71.2°, θmin = 3.4°
Absorption correction: multi-scanh = 58
Tmin = 0.748, Tmax = 1.000k = 88
3839 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.53 e Å3
2498 reflectionsΔρmin = 0.31 e Å3
183 parametersExtinction correction: SHELXL-2018/1 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0018 (6)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All of the H atoms were placed in their calculated positions and then refined with atom-H lengths of 0.93 Å (CH); 0.96 Å (CH3) using the riding model with Uiso (H) = 1.2 (CH) or 1.5 times Ueq (CH3) of the parent atom. The idealized methyl group was refined as a rotating group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01870 (9)0.02376 (9)0.27155 (4)0.03578 (19)
S10.40553 (8)0.62315 (7)0.76558 (4)0.02404 (18)
O10.5458 (3)0.7802 (2)0.74516 (13)0.0334 (4)
O20.2700 (3)0.6692 (3)0.82618 (13)0.0340 (4)
N10.3648 (3)0.4137 (3)0.57537 (14)0.0250 (4)
N20.0639 (3)0.2272 (3)0.46404 (13)0.0216 (4)
C10.2605 (3)0.4612 (3)0.64732 (16)0.0221 (4)
C20.0627 (3)0.3971 (3)0.63311 (16)0.0231 (4)
H20.0011440.4345210.6850340.028*
C30.0462 (3)0.2721 (3)0.53723 (17)0.0228 (4)
C40.2410 (3)0.1749 (3)0.49171 (18)0.0282 (5)
H40.3464530.1780470.5219720.034*
C50.2517 (3)0.0705 (3)0.39148 (18)0.0289 (5)
H50.3654770.0080630.3437100.035*
C60.0663 (3)0.1047 (3)0.37665 (16)0.0257 (5)
C70.2645 (3)0.3009 (3)0.48672 (16)0.0235 (4)
H70.3310040.2684210.4363250.028*
C80.5354 (3)0.4809 (3)0.82241 (16)0.0253 (4)
C90.7327 (4)0.5134 (3)0.82356 (17)0.0293 (5)
H90.7965400.6082660.7946150.035*
C100.8339 (4)0.4003 (4)0.86927 (19)0.0316 (5)
H100.9667520.4213780.8712070.038*
C110.7390 (4)0.2571 (3)0.91184 (16)0.0269 (5)
C120.5414 (4)0.2299 (4)0.90997 (19)0.0331 (5)
H120.4765880.1346920.9384460.040*
C130.4392 (4)0.3421 (4)0.86641 (19)0.0326 (5)
H130.3074870.3245080.8667060.039*
C140.8477 (4)0.1336 (4)0.95979 (18)0.0335 (5)
H14A0.7946940.0021900.9212960.050*
H14B0.8333610.1456281.0287890.050*
H14C0.9841040.1786700.9598590.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0431 (4)0.0340 (3)0.0238 (3)0.0029 (2)0.0081 (2)0.0033 (2)
S10.0260 (3)0.0219 (3)0.0216 (3)0.0068 (2)0.0011 (2)0.00387 (19)
O10.0329 (9)0.0238 (8)0.0372 (9)0.0025 (7)0.0034 (7)0.0107 (7)
O20.0357 (9)0.0376 (9)0.0269 (8)0.0160 (7)0.0033 (7)0.0016 (7)
N10.0239 (9)0.0272 (9)0.0235 (9)0.0050 (7)0.0050 (7)0.0091 (7)
N20.0240 (9)0.0212 (8)0.0200 (8)0.0054 (7)0.0031 (7)0.0089 (7)
C10.0240 (10)0.0209 (10)0.0214 (10)0.0054 (8)0.0040 (8)0.0080 (8)
C20.0271 (11)0.0234 (10)0.0228 (10)0.0108 (8)0.0080 (8)0.0090 (8)
C30.0220 (10)0.0247 (10)0.0263 (10)0.0093 (8)0.0067 (8)0.0124 (8)
C40.0207 (10)0.0310 (12)0.0338 (12)0.0076 (9)0.0030 (9)0.0128 (9)
C50.0276 (11)0.0257 (11)0.0302 (11)0.0044 (9)0.0018 (9)0.0109 (9)
C60.0309 (11)0.0210 (10)0.0230 (10)0.0050 (8)0.0021 (9)0.0070 (8)
C70.0230 (10)0.0236 (10)0.0244 (10)0.0056 (8)0.0069 (8)0.0077 (8)
C80.0275 (11)0.0241 (10)0.0216 (10)0.0063 (8)0.0004 (8)0.0065 (8)
C90.0342 (12)0.0299 (11)0.0278 (11)0.0096 (9)0.0111 (9)0.0124 (9)
C100.0262 (11)0.0391 (13)0.0331 (11)0.0120 (10)0.0091 (9)0.0124 (10)
C110.0331 (12)0.0260 (11)0.0193 (9)0.0095 (9)0.0011 (8)0.0038 (8)
C120.0322 (12)0.0326 (12)0.0360 (12)0.0064 (10)0.0074 (10)0.0161 (10)
C130.0248 (11)0.0350 (12)0.0375 (12)0.0047 (9)0.0054 (9)0.0145 (10)
C140.0435 (14)0.0328 (12)0.0275 (11)0.0179 (11)0.0058 (10)0.0088 (9)
Geometric parameters (Å, º) top
Cl1—C61.711 (2)C2—C31.407 (3)
S1—O11.4370 (18)C3—C41.380 (3)
S1—O21.4429 (18)C4—C51.405 (3)
S1—C11.773 (2)C5—C61.360 (3)
S1—C81.767 (2)C8—C91.384 (3)
N1—C11.378 (3)C8—C131.384 (3)
N1—C71.294 (3)C9—C101.399 (3)
N2—C31.417 (3)C10—C111.390 (3)
N2—C61.371 (3)C11—C121.389 (4)
N2—C71.373 (3)C11—C141.507 (3)
C1—C21.358 (3)C12—C131.384 (4)
O1—S1—O2119.68 (11)C3—C4—C5107.8 (2)
O1—S1—C1108.51 (10)C6—C5—C4108.0 (2)
O1—S1—C8107.90 (11)N2—C6—Cl1119.51 (18)
O2—S1—C1106.24 (11)C5—C6—Cl1130.89 (18)
O2—S1—C8108.56 (11)C5—C6—N2109.6 (2)
C8—S1—C1105.03 (10)N1—C7—N2122.67 (19)
C7—N1—C1116.87 (19)C9—C8—S1119.13 (17)
C6—N2—C3107.32 (18)C13—C8—S1119.48 (18)
C6—N2—C7131.24 (19)C13—C8—C9121.4 (2)
C7—N2—C3121.44 (18)C8—C9—C10118.5 (2)
N1—C1—S1114.68 (16)C11—C10—C9121.1 (2)
C2—C1—S1119.95 (16)C10—C11—C14121.0 (2)
C2—C1—N1125.37 (19)C12—C11—C10118.8 (2)
C1—C2—C3117.78 (19)C12—C11—C14120.2 (2)
C2—C3—N2115.87 (19)C13—C12—C11121.1 (2)
C4—C3—N2107.3 (2)C8—C13—C12119.2 (2)
C4—C3—C2136.8 (2)
S1—C1—C2—C3178.70 (15)C3—C4—C5—C60.2 (3)
S1—C8—C9—C10179.69 (17)C4—C5—C6—Cl1179.09 (17)
S1—C8—C13—C12179.40 (19)C4—C5—C6—N20.2 (2)
O1—S1—C1—N144.81 (18)C6—N2—C3—C2179.87 (17)
O1—S1—C1—C2134.12 (16)C6—N2—C3—C40.0 (2)
O1—S1—C8—C910.4 (2)C6—N2—C7—N1178.8 (2)
O1—S1—C8—C13168.42 (19)C7—N1—C1—S1177.86 (15)
O2—S1—C1—N1174.70 (15)C7—N1—C1—C21.0 (3)
O2—S1—C1—C24.23 (19)C7—N2—C3—C20.5 (3)
O2—S1—C8—C9141.51 (19)C7—N2—C3—C4179.37 (18)
O2—S1—C8—C1337.3 (2)C7—N2—C6—Cl11.5 (3)
N1—C1—C2—C30.1 (3)C7—N2—C6—C5179.1 (2)
N2—C3—C4—C50.2 (2)C8—S1—C1—N170.37 (17)
C1—S1—C8—C9105.19 (19)C8—S1—C1—C2110.70 (18)
C1—S1—C8—C1376.0 (2)C8—C9—C10—C110.6 (4)
C1—N1—C7—N21.1 (3)C9—C8—C13—C121.8 (4)
C1—C2—C3—N20.6 (3)C9—C10—C11—C121.1 (4)
C1—C2—C3—C4179.2 (2)C9—C10—C11—C14179.2 (2)
C2—C3—C4—C5179.7 (2)C10—C11—C12—C130.2 (4)
C3—N2—C6—Cl1179.28 (14)C11—C12—C13—C81.2 (4)
C3—N2—C6—C50.1 (2)C13—C8—C9—C100.9 (3)
C3—N2—C7—N10.4 (3)C14—C11—C12—C13179.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···O2i0.962.493.329 (3)146
Symmetry code: (i) x+1, y+1, z+2.
ππ distances (Å) and angles (°) for the title compound top
Cg(I)—Cg(J) is the distance between ring centroids, α is dihedral angle between planes Cg(I) and Cg(J) and slippage is the distance between Cg(I) and perpendicular the projection of Cg(J) on ring I. Cg(1), Cg(2) and Cg(4) are the centroids N2/C3–C6, N1/C1/C2/C3/N2/C7 and C1–C7/N1/N2 rings, respectively.
Cg(I)aCg(J)bd[Cg(I)···Cg(J)]αslippage
Cg(1)Cg(1)i3.5758 (14)0.00 (13)1.169
Cg(1)Cg(2)i3.6261 (14)0.73 (12)1.348
Cg(1)Cg(2)ii3.6495 (14)0.73 (12)1.092
Cg(1)Cg(4)i3.4423 (13)0.42 (11)0.699
Cg(1)Cg(4)ii3.8876 (13)0.42 (11)1.738
Cg(2)Cg(2)ii3.9724 (13)0.00 (10)1.932
Cg(2)Cg(4)ii3.6901 (12)0.32 (9)1.233
Cg(4)Cg(4)i3.7241 (11)0.00 (7)1.586
Cg(4)Cg(4)ii3.6280 (11)0.00 (7)1.010
Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, 1 - y, 1 - z.
 

Funding information

This work was supported by Dartmouth College. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationBenhalima, A., Hudon, F., Koulibaly, F., Tessier, C. & Brisson, J. (2012). Can. J. Chem. 90, 880–890.  Web of Science CSD CrossRef CAS Google Scholar
First citationBocelli, G. & Rizzoli, C. (1990). Acta Cryst. C46, 2259–2260.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationColquhoun, H. M. (1997). Polymer, 38, 991–994.  CrossRef CAS Web of Science Google Scholar
First citationColquhoun, H. M., Aldred, P. L., Kohnke, F. H., Herbertson, P. L., Baxter, I. & Williams, D. J. (2002). Macromolecules, 35, 1685–1690.  Web of Science CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoch, H. P. & Moffitt, W. E. (1951). Trans. Faraday Soc. 47, 7–15.  CrossRef CAS Web of Science Google Scholar
First citationLeen, V., Leemans, T., Boens, N. & Dehaen, W. (2011). Eur. J. Org. Chem. pp. 4386–4396.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Americas, The Woodlands, TX, USA.  Google Scholar
First citationRudolph, F. A. M., Fuller, A. L., Slawin, A. M. Z., Bühl, M., Aitken, R. A. & Woollins, J. D. (2010). J. Chem. Crystallogr. 40, 253–265.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSime, J. G. & Woodhouse, D. I. (1974). J. Cryst. Mol. Struct. 4, 269–285.  CSD CrossRef CAS Google Scholar
First citationTatu, M. L., Harja, F., Ungureanu, E. M., Georgescu, E. & Popa, M. M. (2018). Rev. Chim. 69, 499–506.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds