organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

2,5-Bis[(E)-2-phenyl­ethen­yl]-3,6-bis­­(pyridin-2-yl)pyrazine

aJohannes Gutenberg University Mainz, Department of Chemistry, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

Edited by M. Bolte, Goethe-Universität Frankfurt, Germany (Received 12 March 2020; accepted 12 March 2020; online 17 March 2020)

The mol­ecule of the title compound, C30H22N4, exhibits inversion symmetry adopting the shape of a St Andrew's Cross. It shows dihedral angles between adjacent aryl units of around 50° whereas torsion angles of ca 10° are found along the aryl­ene vinyl­ene path.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound 2,5-(E,E)-distyryl-3,6-di-(2-pyrid­yl)pyrazine, C30H22N4, was prepared as a reference chromophore in a project on pyrazine-centered materials, solvatochromic dyes (Schmitt et al., 2008[Schmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sen Lett, 6, 524-530.], Wink & Detert, 2013[Wink, C. & Detert, H. (2013). J. Phys. Org. Chem. 26, 137-143.]) and liquid crystals (Röder et al., 2019[Röder, N., Marszalek, T., Limbach, D., Pisula, W. & Detert, H. (2019). ChemPhysChem, 20, 463-469.]; Schmitt et al., 2011[Schmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1553.]).

The mol­ecule has the shape of a centrosymmetrical St Andrew's cross (Fig. 1[link]). The central pyrazine ring as well as the vinyl­ene groups and the peripheral pyridine and phenyl rings are totally planar. A dihedral angle of 48.07 (6)° at the teraryl axis is nearly identical to those in a related compound with phenyl rings (50.8, 48.6°, Schmitt et al., 2013[Schmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. pp. 5655-5669.]). Torsion angles along the distyryl axis are −170.21 (15)°, (phenyl-vin­yl) and −169.56 (14)° (vinyl-pyrazine). The packing is shown in Fig. 2[link].

[Figure 1]
Figure 1
Perspective view of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The second part of the mol­ecule is generated by the symmetry operation 1 − x, 1 − y, 1 − z.
[Figure 2]
Figure 2
Partial packing diagram of the title compound. View along the a axis.

Synthesis and crystallization

The title compound was prepared from 2,5-dimethyl-3,6-di(2-pyrid­yl)pyrazine (Kolb, 1896[Kolb, A. (1896). Justus Liebigs Ann. Chem. 291, 253-297.]) (0.08 g) and benzaldehyde (0.13 g) in 35 ml of DMF by the action of 0.34 g potassium t-butyl­ate. The base was added in portions to the stirred and cooled (30 min at 273 K) solution. After 4 h at ambient temperature, the mixture was poured into water, extracted with ethyl acetate and the organic layers were washed, dried (Na2SO4) and concentrated. Purification by chromatography on solica gel with toluene/ethyl acetate (20/1) as eluent, Rf = 0.33. Yield: 40 mg, 30%.

1H NMR (CDCl3, 400 MHz): 8.83 (dd, J = 4.9 Hz, J = 1.5 Hz, 2 H), 8.23 (d, J = 7.8 Hz, 2 H), 8.03 (s = 2d, J = 16.1 Hz, 4 H), 7.95 (dt, J = 7.8 Hz, J = 1.9 Hz, 2 H), 7.58 (d, 4 H), 7.43 (ddd, J = 7.8 Hz, J = 4.9 Hz, J = 1.5 Hz, 2H), 7.36 (t, J = 7.3 Hz, 4 H), 7.29 (dt, J = 7.3 Hz, J = 1.4 Hz, 2H); 13C NMR (CDCl3, 100 MHz): 157.1, 148.9, 148.3, 145.9, 137.3, 137.0, 135.2, 128.7, 127.6, 125.4, 124.7, 123.6; IR (ATR): 3009, 2988, 2926, 2853, 2688, 1473, 1448, 1276, 1254, 1135, 1086, 1040, 962, 901, 89, 752, 699, 621; MS (APCI): calculated for C30H22N4+H+): 439.1917, found 439.1908.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula C30H22N4
Mr 438.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 7.0953 (8), 8.9310 (8), 18.219 (2)
β (°) 95.490 (9)
V3) 1149.2 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.53 × 0.32 × 0.06
 
Data collection
Diffractometer STOE IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 5878, 2718, 1622
Rint 0.029
(sin θ/λ)max−1) 0.659
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 0.99
No. of reflections 2718
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.14
Computer programs: X-AREA and X-RED (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Structural data


Computing details top

Data collection: X-AREA (Stoe & Cie, 1996); cell refinement: X-AREA (Stoe & Cie, 1996); data reduction: X-RED (Stoe & Cie, 1996); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

2,5-Bis[(E)-2-phenylethenyl]-3,6-bis(pyridin-2-yl)pyrazine top
Crystal data top
C30H22N4F(000) = 460
Mr = 438.51Dx = 1.267 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.0953 (8) ÅCell parameters from 3402 reflections
b = 8.9310 (8) Åθ = 2.5–28.2°
c = 18.219 (2) ŵ = 0.08 mm1
β = 95.490 (9)°T = 193 K
V = 1149.2 (2) Å3Plate, yellow
Z = 20.53 × 0.32 × 0.06 mm
Data collection top
STOE IPDS 2T
diffractometer
1622 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.029
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.5°
rotation method scansh = 99
5878 measured reflectionsk = 1011
2718 independent reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0551P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2718 reflectionsΔρmax = 0.17 e Å3
154 parametersΔρmin = 0.14 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbons were placed at calculated positions and were refined in the riding-model approximation with C–H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56710 (15)0.38847 (13)0.45640 (6)0.0371 (3)
C20.65303 (18)0.52229 (16)0.46177 (7)0.0356 (3)
C30.58305 (19)0.63537 (16)0.50618 (7)0.0349 (3)
C40.82169 (19)0.54154 (17)0.42232 (8)0.0377 (3)
H40.8983050.6273070.4334940.045*
C50.8747 (2)0.44665 (17)0.37180 (8)0.0394 (3)
H50.7961350.3617020.3613370.047*
C61.04162 (19)0.45956 (17)0.33065 (8)0.0385 (4)
C71.0601 (2)0.3624 (2)0.27172 (8)0.0524 (4)
H70.9654460.2889960.2594870.063*
C81.2135 (3)0.3716 (2)0.23111 (10)0.0691 (6)
H81.2231640.3050630.1909530.083*
C91.3524 (3)0.4758 (3)0.24812 (10)0.0697 (6)
H91.4581290.4816190.2199530.084*
C101.3377 (2)0.5724 (2)0.30648 (10)0.0585 (5)
H101.4337700.6448170.3185440.070*
C111.1840 (2)0.56400 (19)0.34735 (8)0.0444 (4)
H111.1756090.6307260.3875150.053*
C120.66436 (18)0.78758 (17)0.51362 (8)0.0364 (3)
N130.69586 (16)0.85842 (14)0.45085 (7)0.0415 (3)
C140.7551 (2)1.00017 (19)0.45675 (10)0.0487 (4)
H140.7747301.0525370.4127350.058*
C150.7892 (2)1.0746 (2)0.52227 (11)0.0545 (5)
H150.8314781.1755800.5234360.065*
C160.7610 (2)1.0003 (2)0.58648 (10)0.0555 (5)
H160.7865321.0482820.6328990.067*
C170.6949 (2)0.85434 (19)0.58234 (9)0.0467 (4)
H170.6710040.8012090.6256620.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0403 (6)0.0387 (7)0.0329 (6)0.0050 (5)0.0070 (5)0.0027 (5)
C20.0356 (7)0.0408 (9)0.0310 (7)0.0055 (6)0.0066 (6)0.0059 (6)
C30.0365 (7)0.0376 (8)0.0312 (7)0.0064 (6)0.0056 (5)0.0055 (6)
C40.0389 (7)0.0382 (8)0.0371 (7)0.0031 (6)0.0087 (6)0.0026 (7)
C50.0414 (7)0.0412 (8)0.0362 (8)0.0023 (7)0.0069 (6)0.0029 (7)
C60.0382 (7)0.0472 (9)0.0306 (7)0.0095 (6)0.0054 (5)0.0028 (7)
C70.0546 (10)0.0671 (12)0.0359 (8)0.0094 (8)0.0072 (7)0.0088 (8)
C80.0652 (12)0.1046 (17)0.0397 (9)0.0236 (12)0.0156 (8)0.0111 (10)
C90.0503 (10)0.1129 (18)0.0494 (10)0.0206 (12)0.0227 (8)0.0132 (12)
C100.0414 (8)0.0791 (13)0.0562 (10)0.0031 (9)0.0107 (7)0.0166 (10)
C110.0429 (8)0.0512 (10)0.0400 (8)0.0060 (7)0.0079 (6)0.0034 (7)
C120.0312 (7)0.0392 (8)0.0391 (8)0.0059 (6)0.0057 (6)0.0000 (7)
N130.0395 (7)0.0396 (7)0.0462 (7)0.0004 (6)0.0073 (5)0.0044 (6)
C140.0401 (8)0.0426 (10)0.0644 (11)0.0005 (7)0.0093 (7)0.0066 (8)
C150.0393 (8)0.0422 (10)0.0820 (13)0.0020 (7)0.0065 (8)0.0087 (10)
C160.0446 (9)0.0606 (11)0.0602 (11)0.0061 (8)0.0001 (8)0.0226 (9)
C170.0437 (8)0.0532 (10)0.0433 (9)0.0070 (7)0.0049 (6)0.0042 (8)
Geometric parameters (Å, º) top
N1—C3i1.3356 (17)C9—C101.381 (3)
N1—C21.3410 (18)C9—H90.9500
C2—C31.4136 (19)C10—C111.380 (2)
C2—C41.4638 (19)C10—H100.9500
C3—C121.478 (2)C11—H110.9500
C4—C51.332 (2)C12—N131.3442 (18)
C4—H40.9500C12—C171.385 (2)
C5—C61.4655 (19)N13—C141.335 (2)
C5—H50.9500C14—C151.368 (2)
C6—C111.387 (2)C14—H140.9500
C6—C71.396 (2)C15—C161.376 (3)
C7—C81.376 (2)C15—H150.9500
C7—H70.9500C16—C171.385 (2)
C8—C91.369 (3)C16—H160.9500
C8—H80.9500C17—H170.9500
C3i—N1—C2118.95 (12)C10—C9—H9120.2
N1—C2—C3119.76 (12)C11—C10—C9120.21 (17)
N1—C2—C4117.14 (13)C11—C10—H10119.9
C3—C2—C4123.06 (13)C9—C10—H10119.9
N1i—C3—C2121.29 (13)C10—C11—C6120.97 (16)
N1i—C3—C12115.04 (12)C10—C11—H11119.5
C2—C3—C12123.65 (12)C6—C11—H11119.5
C5—C4—C2124.26 (14)N13—C12—C17122.83 (15)
C5—C4—H4117.9N13—C12—C3116.76 (13)
C2—C4—H4117.9C17—C12—C3120.31 (14)
C4—C5—C6126.81 (14)C14—N13—C12117.03 (14)
C4—C5—H5116.6N13—C14—C15124.01 (16)
C6—C5—H5116.6N13—C14—H14118.0
C11—C6—C7117.79 (14)C15—C14—H14118.0
C11—C6—C5123.22 (13)C14—C15—C16118.66 (17)
C7—C6—C5118.99 (14)C14—C15—H15120.7
C8—C7—C6120.94 (17)C16—C15—H15120.7
C8—C7—H7119.5C15—C16—C17118.92 (16)
C6—C7—H7119.5C15—C16—H16120.5
C9—C8—C7120.52 (17)C17—C16—H16120.5
C9—C8—H8119.7C16—C17—C12118.51 (16)
C7—C8—H8119.7C16—C17—H17120.7
C8—C9—C10119.56 (16)C12—C17—H17120.7
C8—C9—H9120.2
C3i—N1—C2—C30.4 (2)C9—C10—C11—C60.2 (2)
C3i—N1—C2—C4177.52 (12)C7—C6—C11—C100.7 (2)
N1—C2—C3—N1i0.4 (2)C5—C6—C11—C10179.48 (14)
C4—C2—C3—N1i177.38 (12)N1i—C3—C12—N13130.40 (13)
N1—C2—C3—C12177.97 (12)C2—C3—C12—N1348.11 (17)
C4—C2—C3—C124.2 (2)N1i—C3—C12—C1746.03 (17)
N1—C2—C4—C512.6 (2)C2—C3—C12—C17135.47 (14)
C3—C2—C4—C5169.56 (13)C17—C12—N13—C141.5 (2)
C2—C4—C5—C6179.88 (13)C3—C12—N13—C14174.83 (12)
C4—C5—C6—C119.9 (2)C12—N13—C14—C151.6 (2)
C4—C5—C6—C7170.21 (15)N13—C14—C15—C160.1 (2)
C11—C6—C7—C80.8 (2)C14—C15—C16—C171.6 (2)
C5—C6—C7—C8179.34 (15)C15—C16—C17—C121.7 (2)
C6—C7—C8—C90.5 (3)N13—C12—C17—C160.1 (2)
C7—C8—C9—C100.1 (3)C3—C12—C17—C16176.32 (13)
C8—C9—C10—C110.1 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKolb, A. (1896). Justus Liebigs Ann. Chem. 291, 253–297.  CrossRef CAS Google Scholar
First citationRöder, N., Marszalek, T., Limbach, D., Pisula, W. & Detert, H. (2019). ChemPhysChem, 20, 463–469.  Web of Science PubMed Google Scholar
First citationSchmitt, V., Glang, S., Preis, J. & Detert, H. (2008). Sen Lett, 6, 524–530.  Web of Science CrossRef CAS Google Scholar
First citationSchmitt, V., Moschel, S. & Detert, H. (2013). Eur. J. Org. Chem. pp. 5655–5669.  Web of Science CSD CrossRef Google Scholar
First citationSchmitt, V., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1553.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWink, C. & Detert, H. (2013). J. Phys. Org. Chem. 26, 137–143.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds