metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[1-ethyl-3-methyl­imidazolium [tri-μ-iso­thio­cyanato-manganate(II)]]

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e.V., Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and cDepartment Life, Light and Matter, Universität Rostock, 18051 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 November 2019; accepted 9 December 2019; online 17 December 2019)

The title compound, {(C9H11N2)[Mn(NCS)3]}n, has been obtained as a side product of the salt metathesis reaction of 1-ethyl-3-methyl­imidazolium bromide, (EMIm)Br, and K2[Mn(NCS)4]. The structure consists of discrete 1-ethyl-3-methyl­imidazolium cations and an anionic two-dimensional network of manganese(II)-based complex anions, inter­connected by thio­cyanate ions. Every Mn2+ ion is coordinated by three S atoms of three NCS ions and three N atoms of further three NCS ions in a meridional octa­hedral fashion.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

For many years, ionic liquids containing metal ions, especially those with paramagnetic properties have attracted great inter­est because of their unique properties and possible applications (Santos et al., 2014[Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008-40018.]; Clark et al., 2016[Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9-21.]). Our ongoing efforts to investigate such low-melting metal-containing ionic liquids were first focused on compounds containing a cobalt ion (Kozlova et al., 2009[Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524-1528.], Geppert-Rybczyńska et al., 2010[Geppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534-5538.]; Peppel et al., 2010[Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116-7119.]). Later, Mn containing systems were included (Peppel et al., 2019[Peppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials 12, 3764.]).

The title compound has been obtained as a side product as a result of a slow chemical decomposition of the ionic liquid (EMIm)2[Mn(NCS)4].

Fig. 1[link] shows the mol­ecular structure of the environment of the MnII ion, which is coordinated octa­hedrally by six thio­cyanato ligands. Three are N-bonded and the other three S-bonded in a mer fashion. All thio­cyanato ligands are bridging two Mn ions. Thereby two-dimensional layers are formed. Fig. 2[link] shows a cutout of the structure of this anionic layer. Whereas the N atoms have almost linear Mn—N—C angles (average of 172.0°), the S atoms are bonded with a Mn—S—C angle of 98.1° (average).

[Figure 1]
Figure 1
A view of the mol­ecular structure of the octa­hedrally coordinated [Mn(NCS)3(SCN)3] units of the polymeric complex anion and the EMIm+ cation of the title compound, with the atoms being presented as 50% displacement ellipsoids. Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, [{1\over 2}] − y, [{1\over 2}] + z; (iii) x, [{1\over 2}] − y, −[{1\over 2}] − z.
[Figure 2]
Figure 2
View of the structure of the anionic [Mn(NCS)3] layer.

The anionic layers are stacked along the crystallographic a-axis direction and separated by layers of the EMIm+ cations (see Fig. 3[link]).

[Figure 3]
Figure 3
The packing of anionic [Mn(NCS)3] and EMIM+ layers along a.

A similar type of polymeric structural motive is found in CdII complexes containing SCN ligands (Kuniyasu et al., 1987[Kuniyasu, Y., Suzuki, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179-183.]; Chen et al., 2002[Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119-125.]; Gao et al., 2008[Gao, C., Wu, Y., Gong, H., Hao, X., Xu, X. & Jiang, M. (2008). Inorg. Chem. Commun. 11, 985-987.]; Dang et al., 2011[Dang, D.-B., Hu, X.-F., Bai, Y., Qi, Z.-Y. & Yang, F. (2011). Inorg. Chim. Acta, 377, 20-25.]; Cao et al., 2019[Cao, Y.-J., Zhou, L., Shi, P.-P., Ye, Q. & Fu, D.-W. (2019). Chem. Commun. 55, 8418-8421.]).

Synthesis and crystallization

The title compound, (EMIm)[Mn(NCS)3], was obtained as light-green single crystals directly from a charge of pure, liquid (EMIm)2[Mn(NCS)4] over a time period of several months. (EMIm)2[Mn(NCS)4] was prepared via a salt metathesis reaction from 2.05 mmol of (EMIm)Br (Nishida et al., 2003[Nishida, T., Tashiro, Y. & Yamamoto, M. (2003). J. Fluor. Chem. 120, 135-141.]) and 1.00 mmol of K2[Mn(NCS)4] as a light-green liquid in moderate yield (>70%) (Peppel et al., 2019[Peppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials 12, 3764.]). Elemental analysis for C16H22MnN8S4 % (calc.): C 37.5 (37.7), H 4.1 (4.3), N 20.6 (21.9), S 22.3 (25.1).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. One low angle reflection (100) was omitted in the structure refinement because its intensity was affected by the beam stop.

Table 1
Experimental details

Crystal data
Chemical formula (C9H11N2)[Mn(NCS)3]
Mr 340.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 9.9355 (5), 17.025 (1), 9.7743 (6)
β (°) 116.107 (1)
V3) 1484.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.29
Crystal size (mm) 0.45 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker APEX X8 CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 20690, 5123, 4084
Rint 0.038
(sin θ/λ)max−1) 0.745
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.065, 1.00
No. of reflections 5123
No. of parameters 207
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.34, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[1-ethyl-3-methylimidazolium [tri-µ-isothiocyanato-manganate(II)]] top
Crystal data top
(C6H11N2)[Mn(NCS)3]F(000) = 692
Mr = 340.35Dx = 1.523 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.9355 (5) ÅCell parameters from 5662 reflections
b = 17.025 (1) Åθ = 2.6–31.8°
c = 9.7743 (6) ŵ = 1.29 mm1
β = 116.107 (1)°T = 173 K
V = 1484.7 (2) Å3Irregular block, light green
Z = 40.45 × 0.25 × 0.20 mm
Data collection top
Bruker APEX X8 CCD
diffractometer
4084 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.038
φ and ω scansθmax = 32.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
k = 2525
20690 measured reflectionsl = 1414
5123 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.065All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.2744P]
where P = (Fo2 + 2Fc2)/3
5123 reflections(Δ/σ)max = 0.001
207 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All H atoms were located in a difference Fourier map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.46124 (2)0.33563 (2)0.56139 (2)0.02086 (5)
S10.67894 (4)0.54391 (2)0.37158 (4)0.02376 (7)
C10.6170 (1)0.46966 (7)0.4348 (1)0.0205 (2)
N10.5757 (1)0.41700 (7)0.4816 (1)0.0263 (2)
S20.69073 (4)0.15417 (2)0.34079 (4)0.02725 (8)
C20.6135 (1)0.20229 (7)0.4342 (1)0.0229 (2)
N20.5587 (1)0.23630 (7)0.4990 (1)0.0297 (2)
S30.21484 (4)0.15971 (2)0.78181 (4)0.02471 (7)
C30.2818 (1)0.21887 (7)0.6940 (1)0.0206 (2)
N30.3295 (1)0.26164 (7)0.6338 (1)0.0262 (2)
N40.2096 (1)0.43795 (7)0.9264 (1)0.0247 (2)
C40.1592 (2)0.37295 (8)0.8450 (1)0.0243 (3)
H4A0.209 (2)0.3268 (9)0.862 (2)0.029 (4)*
N50.0219 (1)0.38560 (7)0.7376 (1)0.0254 (2)
C50.0165 (2)0.46184 (9)0.7513 (2)0.0394 (4)
H5A0.108 (2)0.485 (1)0.685 (2)0.058 (6)*
C60.1005 (2)0.4941 (1)0.8692 (2)0.0369 (3)
H6A0.113 (2)0.542 (1)0.911 (2)0.048 (5)*
C70.3582 (2)0.4484 (1)1.0528 (2)0.0340 (3)
H7A0.419 (2)0.414 (1)1.052 (2)0.061 (7)*
H7B0.351 (2)0.449 (1)1.144 (3)0.069 (7)*
H7C0.392 (2)0.496 (1)1.039 (2)0.048 (5)*
C80.0702 (2)0.32934 (9)0.6187 (2)0.0290 (3)
H8A0.170 (2)0.3302 (9)0.610 (2)0.027 (4)*
H8B0.031 (2)0.2779 (9)0.653 (2)0.026 (4)*
C90.0690 (2)0.3471 (1)0.4682 (2)0.0363 (3)
H9A0.135 (2)0.311 (1)0.395 (2)0.045 (5)*
H9B0.035 (2)0.343 (1)0.476 (2)0.047 (5)*
H9C0.101 (2)0.398 (1)0.441 (2)0.048 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0247 (1)0.01898 (9)0.02218 (9)0.00214 (7)0.01328 (8)0.00021 (7)
S10.0270 (2)0.0216 (2)0.0291 (2)0.0018 (1)0.0182 (1)0.0014 (1)
C10.0178 (5)0.0237 (6)0.0211 (5)0.0019 (5)0.0095 (5)0.0006 (4)
N10.0267 (6)0.0243 (5)0.0336 (6)0.0027 (4)0.0186 (5)0.0037 (5)
S20.0265 (2)0.0290 (2)0.0260 (2)0.0055 (1)0.0112 (1)0.0003 (1)
C20.0239 (6)0.0192 (6)0.0214 (5)0.0007 (5)0.0061 (5)0.0017 (4)
N20.0347 (6)0.0271 (6)0.0258 (5)0.0037 (5)0.0119 (5)0.0010 (5)
S30.0267 (2)0.0252 (2)0.0250 (2)0.0042 (1)0.0138 (1)0.0024 (1)
C30.0214 (6)0.0203 (6)0.0191 (5)0.0005 (5)0.0079 (5)0.0018 (4)
N30.0288 (6)0.0263 (6)0.0231 (5)0.0038 (5)0.0110 (4)0.0013 (4)
N40.0256 (5)0.0252 (5)0.0225 (5)0.0018 (4)0.0099 (4)0.0006 (4)
C40.0243 (6)0.0235 (6)0.0251 (6)0.0019 (5)0.0109 (5)0.0020 (5)
N50.0229 (5)0.0239 (5)0.0273 (5)0.0005 (4)0.0091 (4)0.0022 (4)
C50.0337 (8)0.0302 (8)0.0414 (8)0.0109 (6)0.0047 (7)0.0072 (6)
C60.0388 (8)0.0269 (7)0.0366 (8)0.0051 (6)0.0089 (7)0.0070 (6)
C70.0294 (8)0.0363 (8)0.0298 (7)0.0072 (7)0.0073 (6)0.0003 (6)
C80.0230 (7)0.0269 (7)0.0330 (7)0.0023 (5)0.0086 (6)0.0057 (6)
C90.0337 (8)0.0393 (9)0.0347 (8)0.0055 (7)0.0140 (7)0.0098 (7)
Geometric parameters (Å, º) top
Mn—N12.145 (1)N4—C71.460 (2)
Mn—N32.149 (1)C4—N51.322 (2)
Mn—N22.165 (1)C4—H4A0.90 (2)
Mn—S2i2.6845 (4)N5—C51.376 (2)
Mn—S1ii2.7163 (4)N5—C81.473 (2)
Mn—S3iii2.7530 (4)C5—C61.343 (2)
S1—C11.641 (1)C5—H5A0.94 (2)
S1—Mnii2.7163 (4)C6—H6A0.89 (2)
C1—N11.161 (2)C7—H7A0.84 (2)
S2—C21.646 (1)C7—H7B0.92 (2)
S2—Mniii2.6846 (4)C7—H7C0.91 (2)
C2—N21.156 (2)C8—C91.506 (2)
S3—C31.643 (1)C8—H8A0.96 (2)
S3—Mni2.7530 (4)C8—H8B0.96 (2)
C3—N31.160 (2)C9—H9A0.96 (2)
N4—C41.326 (2)C9—H9B1.00 (2)
N4—C61.367 (2)C9—H9C0.93 (2)
N1—Mn—N3174.68 (4)N4—C4—H4A126 (1)
N1—Mn—N291.59 (4)C4—N5—C5108.0 (1)
N3—Mn—N292.73 (5)C4—N5—C8125.9 (1)
N1—Mn—S2i88.82 (3)C5—N5—C8126.0 (1)
N3—Mn—S2i94.04 (3)C6—C5—N5107.3 (1)
N2—Mn—S2i92.99 (3)C6—C5—H5A129 (1)
N1—Mn—S1ii90.58 (3)N5—C5—H5A124 (1)
N3—Mn—S1ii84.94 (3)C5—C6—N4107.2 (1)
N2—Mn—S1ii176.25 (3)C5—C6—H6A131 (1)
S2i—Mn—S1ii90.11 (1)N4—C6—H6A122 (1)
N1—Mn—S3iii90.14 (3)N4—C7—H7A112 (1)
N3—Mn—S3iii86.53 (3)N4—C7—H7B110 (1)
N2—Mn—S3iii93.18 (3)H7A—C7—H7B112 (2)
S2i—Mn—S3iii173.77 (1)N4—C7—H7C106 (1)
S1ii—Mn—S3iii83.76 (1)H7A—C7—H7C108 (2)
C1—S1—Mnii100.02 (4)H7B—C7—H7C109 (2)
N1—C1—S1178.8 (1)N5—C8—C9111.8 (1)
C1—N1—Mn168.1 (1)N5—C8—H8A108.5 (9)
C2—S2—Mniii97.91 (5)C9—C8—H8A111.5 (9)
N2—C2—S2179.6 (1)N5—C8—H8B107.5 (9)
C2—N2—Mn157.2 (1)C9—C8—H8B110.7 (9)
C3—S3—Mni96.51 (4)H8A—C8—H8B107 (1)
N3—C3—S3178.8 (1)C8—C9—H9A108 (1)
C3—N3—Mn168.2 (1)C8—C9—H9B111 (1)
C4—N4—C6108.4 (1)H9A—C9—H9B111 (2)
C4—N4—C7125.7 (1)C8—C9—H9C109 (1)
C6—N4—C7125.8 (1)H9A—C9—H9C111 (2)
N5—C4—N4109.0 (1)H9B—C9—H9C107 (2)
N5—C4—H4A125 (1)
C6—N4—C4—N50.1 (2)N5—C5—C6—N40.3 (2)
C7—N4—C4—N5178.2 (1)C4—N4—C6—C50.2 (2)
N4—C4—N5—C50.1 (2)C7—N4—C6—C5178.0 (1)
N4—C4—N5—C8176.8 (1)C4—N5—C8—C9100.8 (2)
C4—N5—C5—C60.2 (2)C5—N5—C8—C975.3 (2)
C8—N5—C5—C6176.9 (1)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.
 

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft, SPP 1191 (grant No. KO 1616/4-1 und 4-2).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, Y.-J., Zhou, L., Shi, P.-P., Ye, Q. & Fu, D.-W. (2019). Chem. Commun. 55, 8418–8421.  CSD CrossRef CAS Google Scholar
First citationChen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationClark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDang, D.-B., Hu, X.-F., Bai, Y., Qi, Z.-Y. & Yang, F. (2011). Inorg. Chim. Acta, 377, 20–25.  CSD CrossRef CAS Google Scholar
First citationGao, C., Wu, Y., Gong, H., Hao, X., Xu, X. & Jiang, M. (2008). Inorg. Chem. Commun. 11, 985–987.  CSD CrossRef CAS Google Scholar
First citationGeppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534–5538.  Google Scholar
First citationKozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuniyasu, Y., Suzuki, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179–183.  CSD CrossRef ICSD CAS Web of Science Google Scholar
First citationNishida, T., Tashiro, Y. & Yamamoto, M. (2003). J. Fluor. Chem. 120, 135–141.  CrossRef CAS Google Scholar
First citationPeppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials 12, 3764.  CrossRef Google Scholar
First citationPeppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116–7119.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds