metal-organic compounds
Poly[1-ethyl-3-methylimidazolium [tri-μ-isothiocyanato-manganate(II)]]
aLeibniz-Institut für Katalyse e.V., Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and cDepartment Life, Light and Matter, Universität Rostock, 18051 Rostock, Germany
*Correspondence e-mail: tim.peppel@catalysis.de
The title compound, {(C9H11N2)[Mn(NCS)3]}n, has been obtained as a side product of the salt metathesis reaction of 1-ethyl-3-methylimidazolium bromide, (EMIm)Br, and K2[Mn(NCS)4]. The structure consists of discrete 1-ethyl-3-methylimidazolium cations and an anionic two-dimensional network of manganese(II)-based complex anions, interconnected by thiocyanate ions. Every Mn2+ ion is coordinated by three S atoms of three NCS− ions and three N atoms of further three NCS− ions in a meridional octahedral fashion.
Keywords: manganese; thiocyanate; ionic liquid; crystal structure; network structure.
CCDC reference: 1971102
Structure description
For many years, ionic liquids containing metal ions, especially those with paramagnetic properties have attracted great interest because of their unique properties and possible applications (Santos et al., 2014; Clark et al., 2016). Our ongoing efforts to investigate such low-melting metal-containing ionic liquids were first focused on compounds containing a cobalt ion (Kozlova et al., 2009, Geppert-Rybczyńska et al., 2010; Peppel et al., 2010). Later, Mn containing systems were included (Peppel et al., 2019).
The title compound has been obtained as a side product as a result of a slow 2[Mn(NCS)4].
of the ionic liquid (EMIm)Fig. 1 shows the molecular structure of the environment of the MnII ion, which is coordinated octahedrally by six thiocyanato ligands. Three are N-bonded and the other three S-bonded in a mer fashion. All thiocyanato ligands are bridging two Mn ions. Thereby two-dimensional layers are formed. Fig. 2 shows a cutout of the structure of this anionic layer. Whereas the N atoms have almost linear Mn—N—C angles (average of 172.0°), the S atoms are bonded with a Mn—S—C angle of 98.1° (average).
The anionic layers are stacked along the crystallographic a-axis direction and separated by layers of the EMIm+ cations (see Fig. 3).
A similar type of polymeric structural motive is found in CdII complexes containing SCN− ligands (Kuniyasu et al., 1987; Chen et al., 2002; Gao et al., 2008; Dang et al., 2011; Cao et al., 2019).
Synthesis and crystallization
The title compound, (EMIm)[Mn(NCS)3], was obtained as light-green single crystals directly from a charge of pure, liquid (EMIm)2[Mn(NCS)4] over a time period of several months. (EMIm)2[Mn(NCS)4] was prepared via a salt metathesis reaction from 2.05 mmol of (EMIm)Br (Nishida et al., 2003) and 1.00 mmol of K2[Mn(NCS)4] as a light-green liquid in moderate yield (>70%) (Peppel et al., 2019). Elemental analysis for C16H22MnN8S4 % (calc.): C 37.5 (37.7), H 4.1 (4.3), N 20.6 (21.9), S 22.3 (25.1).
Refinement
Crystal data, data collection and structure . One low angle reflection (100) was omitted in the structure because its intensity was affected by the beam stop.
details are summarized in Table 1Structural data
CCDC reference: 1971102
https://doi.org/10.1107/S2414314619016596/rz4036sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619016596/rz4036Isup2.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).(C6H11N2)[Mn(NCS)3] | F(000) = 692 |
Mr = 340.35 | Dx = 1.523 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.9355 (5) Å | Cell parameters from 5662 reflections |
b = 17.025 (1) Å | θ = 2.6–31.8° |
c = 9.7743 (6) Å | µ = 1.29 mm−1 |
β = 116.107 (1)° | T = 173 K |
V = 1484.7 (2) Å3 | Irregular block, light green |
Z = 4 | 0.45 × 0.25 × 0.20 mm |
Bruker APEX X8 CCD diffractometer | 4084 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.038 |
φ and ω scans | θmax = 32.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −14→14 |
k = −25→25 | |
20690 measured reflections | l = −14→14 |
5123 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.065 | All H-atom parameters refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0256P)2 + 0.2744P] where P = (Fo2 + 2Fc2)/3 |
5123 reflections | (Δ/σ)max = 0.001 |
207 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All H atoms were located in a difference Fourier map and refined freely. |
x | y | z | Uiso*/Ueq | ||
Mn | 0.46124 (2) | 0.33563 (2) | 0.56139 (2) | 0.02086 (5) | |
S1 | 0.67894 (4) | 0.54391 (2) | 0.37158 (4) | 0.02376 (7) | |
C1 | 0.6170 (1) | 0.46966 (7) | 0.4348 (1) | 0.0205 (2) | |
N1 | 0.5757 (1) | 0.41700 (7) | 0.4816 (1) | 0.0263 (2) | |
S2 | 0.69073 (4) | 0.15417 (2) | 0.34079 (4) | 0.02725 (8) | |
C2 | 0.6135 (1) | 0.20229 (7) | 0.4342 (1) | 0.0229 (2) | |
N2 | 0.5587 (1) | 0.23630 (7) | 0.4990 (1) | 0.0297 (2) | |
S3 | 0.21484 (4) | 0.15971 (2) | 0.78181 (4) | 0.02471 (7) | |
C3 | 0.2818 (1) | 0.21887 (7) | 0.6940 (1) | 0.0206 (2) | |
N3 | 0.3295 (1) | 0.26164 (7) | 0.6338 (1) | 0.0262 (2) | |
N4 | 0.2096 (1) | 0.43795 (7) | 0.9264 (1) | 0.0247 (2) | |
C4 | 0.1592 (2) | 0.37295 (8) | 0.8450 (1) | 0.0243 (3) | |
H4A | 0.209 (2) | 0.3268 (9) | 0.862 (2) | 0.029 (4)* | |
N5 | 0.0219 (1) | 0.38560 (7) | 0.7376 (1) | 0.0254 (2) | |
C5 | −0.0165 (2) | 0.46184 (9) | 0.7513 (2) | 0.0394 (4) | |
H5A | −0.108 (2) | 0.485 (1) | 0.685 (2) | 0.058 (6)* | |
C6 | 0.1005 (2) | 0.4941 (1) | 0.8692 (2) | 0.0369 (3) | |
H6A | 0.113 (2) | 0.542 (1) | 0.911 (2) | 0.048 (5)* | |
C7 | 0.3582 (2) | 0.4484 (1) | 1.0528 (2) | 0.0340 (3) | |
H7A | 0.419 (2) | 0.414 (1) | 1.052 (2) | 0.061 (7)* | |
H7B | 0.351 (2) | 0.449 (1) | 1.144 (3) | 0.069 (7)* | |
H7C | 0.392 (2) | 0.496 (1) | 1.039 (2) | 0.048 (5)* | |
C8 | −0.0702 (2) | 0.32934 (9) | 0.6187 (2) | 0.0290 (3) | |
H8A | −0.170 (2) | 0.3302 (9) | 0.610 (2) | 0.027 (4)* | |
H8B | −0.031 (2) | 0.2779 (9) | 0.653 (2) | 0.026 (4)* | |
C9 | −0.0690 (2) | 0.3471 (1) | 0.4682 (2) | 0.0363 (3) | |
H9A | −0.135 (2) | 0.311 (1) | 0.395 (2) | 0.045 (5)* | |
H9B | 0.035 (2) | 0.343 (1) | 0.476 (2) | 0.047 (5)* | |
H9C | −0.101 (2) | 0.398 (1) | 0.441 (2) | 0.048 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn | 0.0247 (1) | 0.01898 (9) | 0.02218 (9) | −0.00214 (7) | 0.01328 (8) | 0.00021 (7) |
S1 | 0.0270 (2) | 0.0216 (2) | 0.0291 (2) | −0.0018 (1) | 0.0182 (1) | 0.0014 (1) |
C1 | 0.0178 (5) | 0.0237 (6) | 0.0211 (5) | 0.0019 (5) | 0.0095 (5) | −0.0006 (4) |
N1 | 0.0267 (6) | 0.0243 (5) | 0.0336 (6) | 0.0027 (4) | 0.0186 (5) | 0.0037 (5) |
S2 | 0.0265 (2) | 0.0290 (2) | 0.0260 (2) | 0.0055 (1) | 0.0112 (1) | −0.0003 (1) |
C2 | 0.0239 (6) | 0.0192 (6) | 0.0214 (5) | −0.0007 (5) | 0.0061 (5) | 0.0017 (4) |
N2 | 0.0347 (6) | 0.0271 (6) | 0.0258 (5) | 0.0037 (5) | 0.0119 (5) | −0.0010 (5) |
S3 | 0.0267 (2) | 0.0252 (2) | 0.0250 (2) | −0.0042 (1) | 0.0138 (1) | 0.0024 (1) |
C3 | 0.0214 (6) | 0.0203 (6) | 0.0191 (5) | 0.0005 (5) | 0.0079 (5) | −0.0018 (4) |
N3 | 0.0288 (6) | 0.0263 (6) | 0.0231 (5) | −0.0038 (5) | 0.0110 (4) | 0.0013 (4) |
N4 | 0.0256 (5) | 0.0252 (5) | 0.0225 (5) | −0.0018 (4) | 0.0099 (4) | 0.0006 (4) |
C4 | 0.0243 (6) | 0.0235 (6) | 0.0251 (6) | 0.0019 (5) | 0.0109 (5) | 0.0020 (5) |
N5 | 0.0229 (5) | 0.0239 (5) | 0.0273 (5) | 0.0005 (4) | 0.0091 (4) | −0.0022 (4) |
C5 | 0.0337 (8) | 0.0302 (8) | 0.0414 (8) | 0.0109 (6) | 0.0047 (7) | −0.0072 (6) |
C6 | 0.0388 (8) | 0.0269 (7) | 0.0366 (8) | 0.0051 (6) | 0.0089 (7) | −0.0070 (6) |
C7 | 0.0294 (8) | 0.0363 (8) | 0.0298 (7) | −0.0072 (7) | 0.0073 (6) | −0.0003 (6) |
C8 | 0.0230 (7) | 0.0269 (7) | 0.0330 (7) | −0.0023 (5) | 0.0086 (6) | −0.0057 (6) |
C9 | 0.0337 (8) | 0.0393 (9) | 0.0347 (8) | −0.0055 (7) | 0.0140 (7) | −0.0098 (7) |
Mn—N1 | 2.145 (1) | N4—C7 | 1.460 (2) |
Mn—N3 | 2.149 (1) | C4—N5 | 1.322 (2) |
Mn—N2 | 2.165 (1) | C4—H4A | 0.90 (2) |
Mn—S2i | 2.6845 (4) | N5—C5 | 1.376 (2) |
Mn—S1ii | 2.7163 (4) | N5—C8 | 1.473 (2) |
Mn—S3iii | 2.7530 (4) | C5—C6 | 1.343 (2) |
S1—C1 | 1.641 (1) | C5—H5A | 0.94 (2) |
S1—Mnii | 2.7163 (4) | C6—H6A | 0.89 (2) |
C1—N1 | 1.161 (2) | C7—H7A | 0.84 (2) |
S2—C2 | 1.646 (1) | C7—H7B | 0.92 (2) |
S2—Mniii | 2.6846 (4) | C7—H7C | 0.91 (2) |
C2—N2 | 1.156 (2) | C8—C9 | 1.506 (2) |
S3—C3 | 1.643 (1) | C8—H8A | 0.96 (2) |
S3—Mni | 2.7530 (4) | C8—H8B | 0.96 (2) |
C3—N3 | 1.160 (2) | C9—H9A | 0.96 (2) |
N4—C4 | 1.326 (2) | C9—H9B | 1.00 (2) |
N4—C6 | 1.367 (2) | C9—H9C | 0.93 (2) |
N1—Mn—N3 | 174.68 (4) | N4—C4—H4A | 126 (1) |
N1—Mn—N2 | 91.59 (4) | C4—N5—C5 | 108.0 (1) |
N3—Mn—N2 | 92.73 (5) | C4—N5—C8 | 125.9 (1) |
N1—Mn—S2i | 88.82 (3) | C5—N5—C8 | 126.0 (1) |
N3—Mn—S2i | 94.04 (3) | C6—C5—N5 | 107.3 (1) |
N2—Mn—S2i | 92.99 (3) | C6—C5—H5A | 129 (1) |
N1—Mn—S1ii | 90.58 (3) | N5—C5—H5A | 124 (1) |
N3—Mn—S1ii | 84.94 (3) | C5—C6—N4 | 107.2 (1) |
N2—Mn—S1ii | 176.25 (3) | C5—C6—H6A | 131 (1) |
S2i—Mn—S1ii | 90.11 (1) | N4—C6—H6A | 122 (1) |
N1—Mn—S3iii | 90.14 (3) | N4—C7—H7A | 112 (1) |
N3—Mn—S3iii | 86.53 (3) | N4—C7—H7B | 110 (1) |
N2—Mn—S3iii | 93.18 (3) | H7A—C7—H7B | 112 (2) |
S2i—Mn—S3iii | 173.77 (1) | N4—C7—H7C | 106 (1) |
S1ii—Mn—S3iii | 83.76 (1) | H7A—C7—H7C | 108 (2) |
C1—S1—Mnii | 100.02 (4) | H7B—C7—H7C | 109 (2) |
N1—C1—S1 | 178.8 (1) | N5—C8—C9 | 111.8 (1) |
C1—N1—Mn | 168.1 (1) | N5—C8—H8A | 108.5 (9) |
C2—S2—Mniii | 97.91 (5) | C9—C8—H8A | 111.5 (9) |
N2—C2—S2 | 179.6 (1) | N5—C8—H8B | 107.5 (9) |
C2—N2—Mn | 157.2 (1) | C9—C8—H8B | 110.7 (9) |
C3—S3—Mni | 96.51 (4) | H8A—C8—H8B | 107 (1) |
N3—C3—S3 | 178.8 (1) | C8—C9—H9A | 108 (1) |
C3—N3—Mn | 168.2 (1) | C8—C9—H9B | 111 (1) |
C4—N4—C6 | 108.4 (1) | H9A—C9—H9B | 111 (2) |
C4—N4—C7 | 125.7 (1) | C8—C9—H9C | 109 (1) |
C6—N4—C7 | 125.8 (1) | H9A—C9—H9C | 111 (2) |
N5—C4—N4 | 109.0 (1) | H9B—C9—H9C | 107 (2) |
N5—C4—H4A | 125 (1) | ||
C6—N4—C4—N5 | 0.1 (2) | N5—C5—C6—N4 | 0.3 (2) |
C7—N4—C4—N5 | −178.2 (1) | C4—N4—C6—C5 | −0.2 (2) |
N4—C4—N5—C5 | 0.1 (2) | C7—N4—C6—C5 | 178.0 (1) |
N4—C4—N5—C8 | 176.8 (1) | C4—N5—C8—C9 | −100.8 (2) |
C4—N5—C5—C6 | −0.2 (2) | C5—N5—C8—C9 | 75.3 (2) |
C8—N5—C5—C6 | −176.9 (1) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2. |
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft, SPP 1191 (grant No. KO 1616/4-1 und 4-2).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, Y.-J., Zhou, L., Shi, P.-P., Ye, Q. & Fu, D.-W. (2019). Chem. Commun. 55, 8418–8421. CSD CrossRef CAS Google Scholar
Chen, W., Liu, F. & You, X. (2002). J. Solid State Chem. 167, 119–125. Web of Science CSD CrossRef CAS Google Scholar
Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21. Web of Science CrossRef CAS PubMed Google Scholar
Dang, D.-B., Hu, X.-F., Bai, Y., Qi, Z.-Y. & Yang, F. (2011). Inorg. Chim. Acta, 377, 20–25. CSD CrossRef CAS Google Scholar
Gao, C., Wu, Y., Gong, H., Hao, X., Xu, X. & Jiang, M. (2008). Inorg. Chem. Commun. 11, 985–987. CSD CrossRef CAS Google Scholar
Geppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534–5538. Google Scholar
Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528. Web of Science CSD CrossRef CAS Google Scholar
Kuniyasu, Y., Suzuki, Y., Taniguchi, M. & Ouchi, A. (1987). Bull. Chem. Soc. Jpn, 60, 179–183. CSD CrossRef ICSD CAS Web of Science Google Scholar
Nishida, T., Tashiro, Y. & Yamamoto, M. (2003). J. Fluor. Chem. 120, 135–141. CrossRef CAS Google Scholar
Peppel, T., Geppert-Rybczyńska, M., Neise, C., Kragl, U. & Köckerling, M. (2019). Materials 12, 3764. CrossRef Google Scholar
Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116–7119. Web of Science CSD CrossRef CAS Google Scholar
Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.