organic compounds
(E)-1-(5-Methylthiophen-2-yl)-N-(4-nitrophenyl)methanimine
aDepartment of Chemistry & Biochemistry, Central Connecticut State University, 1619 Stanley Street, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@ccsu.edu
The title compound, C12H10N2O2S, was synthesized via the acid-catalyzed condensation of 4-nitroaniline and 5-methyl-2-thiophenecarboxaldehyde in a methanol–water solution. The dihedral angle between the benzene and thiophene rings is 54.62 (3)°. No directional interactions could be identified in the extended structure.
Keywords: crystal structure; imine; thiophene.
CCDC reference: 1968444
Structure description
The molecular structure of the title compound is shown in Fig. 1. The methylthiophene group makes a dihedral angle of 54.62 (3)° with respect to the plane defined by the nitroaniline ring. Within the aniline ring, the nitro group is nearly coplanar with the phenyl ring [C9—C10—N2—O2 = 3.47 (4)°]. This slight twist of the nitro group is not as large as the 9.0 (3)° angle in (E)-N-(4-nitrophenyl)-1-(thiophen-2-yl)methanimine (Asiri et al., 2012). In the extended structure, no significant intermolecular interactions occur. A view of the along [010] is shown in Fig. 2.
Synthesis and crystallization
In a 50-ml Erlenmeyer flask, 1.26 g of 5-methyl-2-thiophene carboxaldehyde (10.0 mmol) were added to a solution of 10 ml of H2O and 20 ml of a 2.5 mmol l−1 solution of NH4HF2 in methanol (Lassagne et al., 2015). After swirling the solution to mix the liquids, 1.38 g (10.0 mmol) of 4-nitroaniline were added. The solution was stirred for 24 h even though a yellow precipitate had formed after 4 h. The resulting solid was filtered and washed with cold water then dried (2.03 g; 82%). Crystals were grown from CH2Cl2 solutions. Data: m.p. 429 K; 1H NMR (CDCl3, 300 MHz): δ = 2.59 (s, 3H), 6.86 (dd, 1H), 7.26 (m, 2H), 7.39 (d, 1H), 8.26 (m, 2H), 8.46 (s, 1H); 13C NMR (CDCl3, 300 MHz): δ = 16.1, 121.5, 125.0, 126.7, 134.6, 139.8, 145.4, 148.1, 155.1, 157.4; ATR FTIR (cm−1): 3398 (w), 2438 (s), 1610 (s), 1598 (s), 1503 (s), 1406 (s), 1198 (s), 1163 (s), 1106 (s), 1054 (s), 967 (s), 870 (s), 856 (s).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 1Structural data
CCDC reference: 1968444
https://doi.org/10.1107/S2414314619016018/hb4328sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619016018/hb4328Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2414314619016018/hb4328Isup3.cml
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: OLEX2 (Bourhis et al., 2015).C12H10N2O2S | Dx = 1.416 Mg m−3 |
Mr = 246.28 | Melting point: 429 K |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.5979 (7) Å | Cell parameters from 8567 reflections |
b = 7.3148 (3) Å | θ = 4.5–32.7° |
c = 12.5931 (6) Å | µ = 0.27 mm−1 |
β = 112.763 (5)° | T = 293 K |
V = 1155.04 (9) Å3 | Plate, yellow |
Z = 4 | 0.34 × 0.32 × 0.19 mm |
F(000) = 512 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 4318 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3467 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.1790 pixels mm-1 | θmax = 33.7°, θmin = 4.3° |
ω scans | h = −20→21 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −11→11 |
Tmin = 0.796, Tmax = 1.000 | l = −19→19 |
28914 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.056P)2 + 0.2252P] where P = (Fo2 + 2Fc2)/3 |
4318 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H atoms were included in calculated positions with C—H distances of 0.93 Å and 0.96 Å based upon type of carbon atom and were included in the refinement in riding motion approximation with Uiso = 1.2Ueq(carrier) or 1.5Ueq(methyl carrier). |
x | y | z | Uiso*/Ueq | ||
C1 | 0.86901 (12) | 0.5813 (3) | 0.40834 (15) | 0.0629 (4) | |
H1A | 0.9087 | 0.6247 | 0.4850 | 0.094* | |
H1B | 0.9003 | 0.6280 | 0.3574 | 0.094* | |
H1C | 0.8706 | 0.4501 | 0.4077 | 0.094* | |
C2 | 0.75619 (10) | 0.64523 (16) | 0.36931 (11) | 0.0420 (2) | |
C3 | 0.70532 (11) | 0.71403 (19) | 0.43482 (11) | 0.0472 (3) | |
H3 | 0.7381 | 0.7283 | 0.5142 | 0.057* | |
C4 | 0.59850 (11) | 0.76142 (18) | 0.37063 (11) | 0.0454 (3) | |
H4 | 0.5532 | 0.8095 | 0.4031 | 0.054* | |
C5 | 0.56820 (9) | 0.72928 (16) | 0.25515 (10) | 0.0383 (2) | |
C6 | 0.46547 (10) | 0.76359 (16) | 0.16459 (11) | 0.0399 (2) | |
H6 | 0.4091 | 0.8003 | 0.1840 | 0.048* | |
C7 | 0.34681 (10) | 0.76957 (16) | −0.02564 (10) | 0.0387 (2) | |
C8 | 0.25773 (11) | 0.68505 (19) | −0.01918 (11) | 0.0450 (3) | |
H8 | 0.2649 | 0.6153 | 0.0452 | 0.054* | |
C9 | 0.15877 (11) | 0.7036 (2) | −0.10729 (12) | 0.0485 (3) | |
H9 | 0.0991 | 0.6471 | −0.1031 | 0.058* | |
C10 | 0.15028 (11) | 0.80772 (18) | −0.20170 (11) | 0.0449 (3) | |
C11 | 0.23669 (12) | 0.89611 (19) | −0.20981 (11) | 0.0485 (3) | |
H11 | 0.2285 | 0.9684 | −0.2734 | 0.058* | |
C12 | 0.33524 (11) | 0.87551 (18) | −0.12212 (12) | 0.0465 (3) | |
H12 | 0.3945 | 0.9324 | −0.1271 | 0.056* | |
N1 | 0.44994 (9) | 0.74494 (15) | 0.05856 (9) | 0.0433 (2) | |
N2 | 0.04664 (11) | 0.8230 (2) | −0.29732 (11) | 0.0588 (3) | |
O1 | 0.04178 (11) | 0.9053 (2) | −0.38389 (10) | 0.0808 (4) | |
O2 | −0.03044 (10) | 0.7504 (3) | −0.28855 (12) | 0.0869 (4) | |
S1 | 0.67202 (2) | 0.63767 (4) | 0.22616 (3) | 0.04172 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0446 (7) | 0.0756 (10) | 0.0608 (9) | 0.0099 (7) | 0.0119 (6) | 0.0015 (8) |
C2 | 0.0425 (6) | 0.0397 (6) | 0.0415 (6) | −0.0008 (4) | 0.0138 (5) | 0.0025 (4) |
C3 | 0.0525 (7) | 0.0503 (7) | 0.0366 (6) | −0.0037 (5) | 0.0149 (5) | −0.0031 (5) |
C4 | 0.0483 (6) | 0.0487 (6) | 0.0429 (6) | −0.0010 (5) | 0.0217 (5) | −0.0063 (5) |
C5 | 0.0395 (5) | 0.0359 (5) | 0.0411 (5) | −0.0014 (4) | 0.0173 (4) | −0.0012 (4) |
C6 | 0.0392 (5) | 0.0362 (5) | 0.0448 (6) | −0.0008 (4) | 0.0167 (5) | −0.0014 (4) |
C7 | 0.0429 (6) | 0.0353 (5) | 0.0384 (5) | 0.0025 (4) | 0.0163 (4) | 0.0003 (4) |
C8 | 0.0466 (6) | 0.0471 (6) | 0.0396 (6) | −0.0020 (5) | 0.0150 (5) | 0.0058 (5) |
C9 | 0.0444 (6) | 0.0545 (7) | 0.0451 (6) | −0.0036 (5) | 0.0154 (5) | 0.0009 (6) |
C10 | 0.0472 (6) | 0.0467 (6) | 0.0360 (5) | 0.0078 (5) | 0.0108 (5) | −0.0034 (5) |
C11 | 0.0618 (8) | 0.0446 (6) | 0.0391 (6) | 0.0066 (6) | 0.0196 (6) | 0.0059 (5) |
C12 | 0.0517 (7) | 0.0456 (6) | 0.0450 (6) | −0.0013 (5) | 0.0218 (5) | 0.0047 (5) |
N1 | 0.0415 (5) | 0.0451 (5) | 0.0427 (5) | 0.0026 (4) | 0.0157 (4) | 0.0029 (4) |
N2 | 0.0564 (7) | 0.0685 (8) | 0.0422 (6) | 0.0143 (6) | 0.0088 (5) | −0.0060 (6) |
O1 | 0.0834 (9) | 0.0975 (10) | 0.0456 (6) | 0.0223 (7) | 0.0075 (6) | 0.0146 (6) |
O2 | 0.0499 (7) | 0.1314 (13) | 0.0642 (8) | 0.0002 (8) | 0.0054 (6) | 0.0030 (8) |
S1 | 0.04364 (17) | 0.04606 (17) | 0.03761 (15) | 0.00209 (12) | 0.01807 (12) | −0.00092 (11) |
C1—H1A | 0.9600 | C7—C8 | 1.3901 (18) |
C1—H1B | 0.9600 | C7—C12 | 1.3977 (17) |
C1—H1C | 0.9600 | C7—N1 | 1.4045 (16) |
C1—C2 | 1.4935 (19) | C8—H8 | 0.9300 |
C2—C3 | 1.3616 (19) | C8—C9 | 1.3801 (18) |
C2—S1 | 1.7222 (13) | C9—H9 | 0.9300 |
C3—H3 | 0.9300 | C9—C10 | 1.3788 (19) |
C3—C4 | 1.405 (2) | C10—C11 | 1.379 (2) |
C4—H4 | 0.9300 | C10—N2 | 1.4612 (18) |
C4—C5 | 1.3698 (17) | C11—H11 | 0.9300 |
C5—C6 | 1.4429 (17) | C11—C12 | 1.376 (2) |
C5—S1 | 1.7246 (12) | C12—H12 | 0.9300 |
C6—H6 | 0.9300 | N2—O1 | 1.2247 (19) |
C6—N1 | 1.2760 (17) | N2—O2 | 1.218 (2) |
H1A—C1—H1B | 109.5 | C8—C7—N1 | 122.47 (11) |
H1A—C1—H1C | 109.5 | C12—C7—N1 | 118.10 (11) |
H1B—C1—H1C | 109.5 | C7—C8—H8 | 119.7 |
C2—C1—H1A | 109.5 | C9—C8—C7 | 120.66 (12) |
C2—C1—H1B | 109.5 | C9—C8—H8 | 119.7 |
C2—C1—H1C | 109.5 | C8—C9—H9 | 120.7 |
C1—C2—S1 | 121.10 (11) | C10—C9—C8 | 118.54 (12) |
C3—C2—C1 | 127.90 (13) | C10—C9—H9 | 120.7 |
C3—C2—S1 | 111.01 (10) | C9—C10—C11 | 122.24 (12) |
C2—C3—H3 | 123.3 | C9—C10—N2 | 119.02 (13) |
C2—C3—C4 | 113.39 (12) | C11—C10—N2 | 118.73 (13) |
C4—C3—H3 | 123.3 | C10—C11—H11 | 120.6 |
C3—C4—H4 | 123.6 | C12—C11—C10 | 118.84 (12) |
C5—C4—C3 | 112.81 (12) | C12—C11—H11 | 120.6 |
C5—C4—H4 | 123.6 | C7—C12—H12 | 119.8 |
C4—C5—C6 | 127.64 (12) | C11—C12—C7 | 120.37 (13) |
C4—C5—S1 | 110.91 (10) | C11—C12—H12 | 119.8 |
C6—C5—S1 | 121.45 (9) | C6—N1—C7 | 119.28 (11) |
C5—C6—H6 | 119.1 | O1—N2—C10 | 118.28 (15) |
N1—C6—C5 | 121.75 (11) | O2—N2—C10 | 118.78 (14) |
N1—C6—H6 | 119.1 | O2—N2—O1 | 122.91 (14) |
C8—C7—C12 | 119.33 (11) | C2—S1—C5 | 91.88 (6) |
Acknowledgements
This research was funded by a CCSU-AAUP research grant.
References
Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2288. CSD CrossRef IUCr Journals Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Lassagne, F., Chevallier, F., Roisnel, T., Dorcet, V., Mongin, F. & Domingo, L. R. (2015). Synthesis, 47, 2680–2689. Web of Science CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.