organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1′,3,3′-Tetra­mesitylquinobis(imidazole)-2,2′-di­thione

aDepartment of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
*Correspondence e-mail: kuppuswamy.arumugam@wright.edu

Edited by O. Blacque, University of Zürich, Switzerland (Received 4 September 2019; accepted 11 September 2019; online 27 September 2019)

The solid-state structural analysis of the title compound [systematic name: 5,11-disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-tetraazatricyclo[7.3.0.03,7]dodeca-1(9),3(7)-diene-2,8-dione], C44H44N4O2S2 [+solvent], reveals that the mol­ecule crystallizes in a highly symmetric cubic space group so that one quarter of the mol­ecule is crystallographically unique, the mol­ecule lying on special positions (two mirror planes, two twofold axes and a center of inversion). The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume. These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using a solvent mask and is not included in the reported mol­ecular weight. No classical hydrogen bonds are observed between the main mol­ecules.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

A variety of substituted imidazole-2-thio­nes have been synthesized and used as precursors for the generation of free N-heterocyclic carbenes (Kuhn & Kratz, 1993[Kuhn, N. & Kratz, T. (1993). Synthesis, 1993, 561-562.]). Other uses for these types of mol­ecules include the stabilization of gold nanoparticles (Moraes et al., 2017[Moraes, L. C., Lacroix, B., Figueiredo, R. C., Lara, P., Rojo, J. & Conejero, S. (2017). Dalton Trans. 46, 8367-8371.]; Okamoto et al., 2006[Okamoto, K., Kanbara, T., Yamamoto, T. & Wada, A. (2006). Organometallics, 25, 4026-4029.]) and as ligands for metal coordination studies (Parveen et al., 2019[Parveen, S., Tong, K. K. H., Khawar Rauf, M., Kubanik, M., Shaheen, M. A., Söhnel, T., Jamieson, S. M. F., Hanif, M. & Hartinger, C. G. (2019). Chem. Asian J. 14, 1262-1270.]). As part of our ongoing effort with bis­(N-heterocyclic carbene) and its transition-metal complexes (Tennyson et al., 2010[Tennyson, A. G., Ono, R. J., Hudnall, T. W., Khramov, D. M., Er, J. V., Kamplain, J. W., Lynch, V. M., Sessler, J. L. & Bielawski, C. W. (2010). Chem. Eur. J. 16, 304-315.]), the title compound (1,1′,3,3′-tetra­mesitylquinobis(imidazole)-2,2′-di­thione) was synthesized and its single-crystal X-ray analysis is reported here.

The mol­ecular structure of the title compound is presented in Fig. 1[link]. The mol­ecules crystallize in a rare cubic space group (Im[\overline{3}]) with Z = 6 and lie on special positions (two mirror planes, two twofold axes and a center of inversion). A search in the Cambridge Structural Database revealed that only 0.3% of the crystals were reported to crystallize in the Im[\overline{3}] space group. Three imidazolidine-thione structures closely related to the title compound were reported: 1-methyl-3-phenyl­imidazolidine-2-thione (Nor et al., 2014[Nor, N. A. M. M., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o334.]), 1,3-di­benzyl­imidazolidine-2-thione (Mietlarek-Kropidłowska et al., 2012[Mietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521.]), and 7-amino-1,2,3,4-tetra­hydro­quinazoline-2,4-di­thione, (Yang et al., 2006[Yang, K.-B., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2006). Acta Cryst. E62, o1938-o1940.]). The C1—S1 bond distance of 1.659 (3) Å falls well within the range observed for other reported thione-type compounds (1.653–1.686 Å). The N1—C1—N1′ bond angle of 105.3 (3)° is also very similar to those reported in other thione-type compounds (108–116°). The imidazole and mesityl rings are found to be perpendicular to each other. The two imidazole rings that are on the opposite side of the quino-bis­(imidazolidine)di­thione share the same plane with the mesityl units oriented perpendicular to it.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labeling. Displacement ellipsoids are drawn at the 50% probability level and all hydrogen atoms are omitted for clarity. Unlabeled atoms are generated by the symmetry operation (−x, −y, z), (−x, y, −z and (x, −y, −z).

The crystal structure exhibits large cavities of 193 Å3 accounting for 7.3% of the total unit-cell volume of 5933.5 (11) Å3 (Fig. 2[link]) These cavities contain residual density peaks but it was not possible to unambiguously identify the solvent therein. The contribution of the disordered solvent mol­ecules to the scattering was removed using the solvent mask in OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and was not included in the reported mol­ecular weight. No classical hydrogen bonds are observed between the main mol­ecules.

[Figure 2]
Figure 2
A three-dimensional packing diagram of the title compound viewed along the b axis.

Synthesis and crystallization

To the stirred solution of 1,1′,3,3′-tetra­mesitylquino­bis(imidazole) dichloride (73 mg, 1 mmol) (Tennyson et al., 2010[Tennyson, A. G., Ono, R. J., Hudnall, T. W., Khramov, D. M., Er, J. V., Kamplain, J. W., Lynch, V. M., Sessler, J. L. & Bielawski, C. W. (2010). Chem. Eur. J. 16, 304-315.]) in THF (10 mL), NaN(Si(CH3)3)2 (40 mg, 2.2 mmol) in THF (2 mL) was added drop wise at 25°C. After stirring for 60 min, elemental sulfur (76 mg, 2.4 mmol) was added as a solid and the solution was stirred for another 60 min. The resulting reaction mixture was filtered through a celite plug and the volatiles were removed under vacuum. The resulting residue was dissolved in a minimum amount of di­chloro­methane (3 ml) and precipitated with hexane (15 mL) to yield 1,1′,3,3′-tetra­mesitylquinobis(imidazole)-2,2′-di­thione as a fine yellow solid: 62 mg, 85% yield. Black-colored diffraction-quality single crystals were obtained by diffusing hexane into a saturated solution of the title compound in 1,2-di­chloro­ethane. FT–IR (NaCl): 3027, 2974, 2917, 2850, 1672, 1546, 1397, 1321, 1286, 1042, 1033, 849, 612; 1H NMR (CDCl3, 300 MHz): δ 6.98 (s, 8H), 2.31 (s, 12H), 2.07 (s, 24H); 13C NMR (CDCl3, 75 MHz): δ 169.31, 163.93, 139.70, 134.59, 131.24, 129.77, 126.78, 21.33, 21.97.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. A solvent mask was generated revealing voids at (0, 0, 0) and (½, ½, ½) with a volume of 192.6 Å3 and containing about 43 electrons. The solvent could not be unambiguously identified.

Table 1
Experimental details

Crystal data
Chemical formula C44H44N4O2S2
Mr 724.98
Crystal system, space group Cubic, Im[\overline{3}]
Temperature (K) 100
a (Å) 18.1038 (11)
V3) 5933.5 (11)
Z 6
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.25 × 0.15 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.969, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 82590, 1249, 1074
Rint 0.035
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.122, 1.11
No. of reflections 1246
No. of parameters 76
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5,11-Disulfanylidene-4,6,10,12-tetrakis(2,4,6-trimethylphenyl)-4,6,10,12-\ tetraazatricyclo[7.3.0.0{3,7}]dodeca-1(9),3(7)-diene-2,8-dione [+solvent] top
Crystal data top
C44H44N4O2S2Mo Kα radiation, λ = 0.71073 Å
Mr = 724.98Cell parameters from 9582 reflections
Cubic, Im3θ = 2.8–27.5°
a = 18.1038 (11) ŵ = 0.18 mm1
V = 5933.5 (11) Å3T = 100 K
Z = 6Needle, black
F(000) = 23040.25 × 0.15 × 0.1 mm
Dx = 1.217 Mg m3
Data collection top
Bruker APEXII CCD
diffractometer
1074 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 27.5°, θmin = 3.2°
Tmin = 0.969, Tmax = 0.983h = 2323
82590 measured reflectionsk = 2323
1249 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0406P)2 + 16.2491P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1246 reflectionsΔρmax = 0.49 e Å3
76 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Aromatic C–H hydrogen atoms were added as riding-model approximation with C–H bond length 0.95 Å. Methyl (CH3) H atoms were treated as a rotating group and added as riding-model approximation to the carbon atom to which they are attached, the methyl H atoms were fixed at a distance of 0.98 Å with Uiso (H) = 1.5Ueq(CH3).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.5000001.0000000.77751 (5)0.0225 (2)
O10.5000000.84916 (13)0.5000000.0217 (5)
N10.5000000.93936 (10)0.63961 (10)0.0155 (4)
C20.5000000.96233 (12)0.56706 (12)0.0152 (4)
C30.5000000.91602 (17)0.5000000.0160 (6)
C40.5000000.86372 (12)0.66431 (12)0.0154 (4)
C10.5000001.0000000.68589 (18)0.0170 (6)
C50.43245 (9)0.82885 (9)0.67454 (9)0.0191 (4)
C60.43410 (10)0.75514 (10)0.69637 (10)0.0231 (4)
H60.3897000.7303250.7035460.028*
C70.5000000.71749 (14)0.70777 (15)0.0262 (6)
C80.36117 (9)0.86931 (10)0.66228 (11)0.0273 (4)
H8B0.3583660.9106220.6954120.041*
H8A0.3204630.8365670.6713790.041*
H8C0.3590600.8866430.6122080.041*
C90.5000000.63900 (17)0.7330 (2)0.0495 (9)
H9B0.4853570.6368180.7839480.074*0.5
H9A0.5487190.6187370.7277630.074*0.5
H9C0.4659230.6109680.7036210.074*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0309 (5)0.0219 (4)0.0146 (4)0.0000.0000.000
O10.0315 (13)0.0132 (11)0.0203 (12)0.0000.0000.000
N10.0183 (9)0.0148 (9)0.0135 (9)0.0000.0000.0005 (7)
C20.0154 (10)0.0146 (11)0.0155 (10)0.0000.0000.0013 (8)
C30.0148 (14)0.0163 (15)0.0168 (14)0.0000.0000.000
C40.0189 (10)0.0148 (10)0.0125 (10)0.0000.0000.0019 (8)
C10.0177 (15)0.0156 (14)0.0177 (15)0.0000.0000.000
C50.0196 (8)0.0229 (8)0.0149 (7)0.0002 (6)0.0011 (6)0.0023 (6)
C60.0225 (8)0.0219 (8)0.0250 (8)0.0051 (7)0.0004 (7)0.0058 (7)
C70.0293 (13)0.0202 (12)0.0292 (13)0.0000.0000.0082 (10)
C80.0179 (8)0.0306 (9)0.0334 (10)0.0003 (7)0.0021 (7)0.0081 (8)
C90.0341 (16)0.0296 (15)0.085 (3)0.0000.0000.0253 (17)
Geometric parameters (Å, º) top
S1—C11.659 (3)C5—C81.500 (2)
O1—C31.210 (4)C6—H60.9300
N1—C21.378 (3)C6—C71.389 (2)
N1—C41.440 (3)C7—C91.493 (4)
N1—C11.381 (3)C8—H8B0.9600
C2—C2i1.364 (4)C8—H8A0.9600
C2—C31.475 (3)C8—H8C0.9600
C4—C51.3886 (19)C9—H9B0.9600
C4—C5ii1.3886 (19)C9—H9A0.9600
C5—C61.392 (2)C9—H9C0.9600
C2—N1—C4125.65 (18)C5—C6—H6119.0
C2—N1—C1109.79 (19)C7—C6—C5122.06 (17)
C1—N1—C4124.57 (19)C7—C6—H6119.0
N1—C2—C3127.8 (2)C6—C7—C6ii118.3 (2)
C2i—C2—N1107.56 (12)C6ii—C7—C9120.83 (11)
C2i—C2—C3124.63 (13)C6—C7—C9120.83 (11)
O1—C3—C2124.63 (13)C5—C8—H8B109.5
O1—C3—C2iii124.63 (13)C5—C8—H8A109.5
C2iii—C3—C2110.7 (3)C5—C8—H8C109.5
C5—C4—N1118.27 (10)H8B—C8—H8A109.5
C5ii—C4—N1118.27 (10)H8B—C8—H8C109.5
C5—C4—C5ii123.4 (2)H8A—C8—H8C109.5
N1—C1—S1127.35 (13)C7—C9—H9B109.5
N1i—C1—S1127.35 (13)C7—C9—H9A109.5
N1i—C1—N1105.3 (3)C7—C9—H9C109.5
C4—C5—C6117.05 (16)H9B—C9—H9A109.5
C4—C5—C8121.05 (15)H9B—C9—H9C109.5
C6—C5—C8121.90 (15)H9A—C9—H9C109.5
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x, y, z+1.
 

Acknowledgements

The authors would like to acknowledge support by funds from the Chemistry Department, Wright State University, College of Science and Mathematics. They also thank Dr Grossie, Wright State University for help with the low-temperature data collection.

Funding information

Funding for this research was provided by: National Institutes of Health, National Cancer Institute (grant No. CA232765 to KA); American Chemical Society Petroleum Research Fund (grant No. PRF-59893-UR7 to KA).

References

First citationBruker (2016). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKuhn, N. & Kratz, T. (1993). Synthesis, 1993, 561–562.  CrossRef Google Scholar
First citationMietlarek-Kropidłowska, A., Chojnacki, J. & Becker, B. (2012). Acta Cryst. E68, o2521.  CSD CrossRef IUCr Journals Google Scholar
First citationMoraes, L. C., Lacroix, B., Figueiredo, R. C., Lara, P., Rojo, J. & Conejero, S. (2017). Dalton Trans. 46, 8367–8371.  CrossRef CAS PubMed Google Scholar
First citationNor, N. A. M. M., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2014). Acta Cryst. E70, o334.  CrossRef IUCr Journals Google Scholar
First citationOkamoto, K., Kanbara, T., Yamamoto, T. & Wada, A. (2006). Organometallics, 25, 4026–4029.  CrossRef CAS Google Scholar
First citationParveen, S., Tong, K. K. H., Khawar Rauf, M., Kubanik, M., Shaheen, M. A., Söhnel, T., Jamieson, S. M. F., Hanif, M. & Hartinger, C. G. (2019). Chem. Asian J. 14, 1262–1270.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTennyson, A. G., Ono, R. J., Hudnall, T. W., Khramov, D. M., Er, J. V., Kamplain, J. W., Lynch, V. M., Sessler, J. L. & Bielawski, C. W. (2010). Chem. Eur. J. 16, 304–315.  CrossRef PubMed CAS Google Scholar
First citationYang, K.-B., Lin, L.-R., Huang, R.-B. & Zheng, L.-S. (2006). Acta Cryst. E62, o1938–o1940.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds