metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Bis(μ2-benzoato-κ2O,O′)bis­­(benzoato-κO)bis­(ethanol-κO)bis­­(μ3-hydroxido)hexa­kis­(μ-pyrazol­ato-κ2N,N′)hexa­copper(II) ethanol disolvate

CROSSMARK_Color_square_no_text.svg

aCentro de Electroquímica y Energía Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: leslie.pineda@ucr.ac.cr

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 August 2019; accepted 28 August 2019; online 3 September 2019)

Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supra­molecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexa­nuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a mol­ecule is present in the asymmetric unit that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxyl­ate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol mol­ecules are present in the asymmetric unit, one binding to one of the CuII atoms, one as a solvent mol­ecule. In the crystal, stabilization arises from inter­molecular O—H⋯O hydrogen-bonding inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Trinuclear copper–pyrazolate complexes find widespread applications as redox mediators in multicopper enzymes (e.g. in oxidases, oxygenases, or reductases) and as magnetic units to investigate spin-exchange inter­actions of metal cations (Kupcewicz et al., 2013[Kupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32-37.]; Viciano-Chumillas et al., 2007[Viciano-Chumillas, M., Tanase, S., Aromí, G., Smits, J. M. M., de Gelder, R., Solans, X., Bouwman, E. & Reedijk, J. (2007). Eur. J. Inorg. Chem. pp. 2635-2640.]). Moreover, they make up triangular arrangements of nanojars which consist of structurally diverse supra­molecular coordination complexes containing host frameworks that can trap small inorganic anions such as CO32–, SO42–, HPO42−, and HAsO42–, as well as NO3, and ClO4 (Hartman & Mezei, 2017[Hartman, C. K. & Mezei, G. (2017). Inorg. Chem. 56, 10609-10624.]; Mezei, 2016[Mezei, G. (2016). Acta Cryst. E72, 1064-1067.]; Al Isawi et al., 2018[Al Isawi, W. A., Ahmed, B. M., Hartman, C. K., Seybold, A. N. & Mezei, G. (2018). Inorg. Chim. Acta, 475, 65-72.]). Such supra­molecular motifs can also mimic the imidazole metal-binding properties in active sites of metalloenzymes (Kupcewicz et al., 2013[Kupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32-37.]; Viciano-Chumillas et al., 2007[Viciano-Chumillas, M., Tanase, S., Aromí, G., Smits, J. M. M., de Gelder, R., Solans, X., Bouwman, E. & Reedijk, J. (2007). Eur. J. Inorg. Chem. pp. 2635-2640.]; Mezei, 2016[Mezei, G. (2016). Acta Cryst. E72, 1064-1067.]; Al Isawi et al., 2018[Al Isawi, W. A., Ahmed, B. M., Hartman, C. K., Seybold, A. N. & Mezei, G. (2018). Inorg. Chim. Acta, 475, 65-72.]).

Coordination compounds can be synthesized under hydro- or solvothermal conditions by in situ metal/ligand reactions in the presence of transition-metal ions. In a few cases, unexpected chemical, structural and/or compositional changes in the organic ligands occur during the reaction process. In this context, microwave-assisted synthesis has become a rapidly developing synthetic method of importance since it greatly decreases the reaction time rendering fast reaction rates, along with high yields and high phase purity, so that the procedure is being regarded as an energy-efficient process. Although microwave-assisted methods apply for the preparation of several organic compounds, only a handful of coordination compounds prepared by this procedure have been reported (Delgado et al., 2011[Delgado, S., Gallego, A., Castillo, O. & Zamora, F. (2011). Dalton Trans. 40, 847-852.]). For example, various metal carboxyl­ate clusters of Co3, Ni3, Mn6, Fe8. Ni8, Ni9, Ni6, and Mn4, as well Mn7, and Mn2Ni2 have been isolated that could not be prepared by traditional bench-top synthesis (Milios et al., 2006a[Milios, C. J., Prescimone, A., Sánchez-Benítez, J., Parsons, S., Murrie, M. & Brechin, E. K. (2006a). Inorg. Chem. 45, 7053-7055.],b[Milios, C. J., Vinslava, A., Whittaker, G., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P. & Brechin, E. K. (2006b). Inorg. Chem. 45, 5272-5274.]; Gass et al., 2006[Gass, I. A., Milios, C. J., Whittaker, G., Fabiani, F. P. A., Parsons, S., Murrie, M., Perlepes, S. P. & Brechin, E. K. (2006). Inorg. Chem. 45, 5281-5283.]; Ledezma-Gairaud et al., 2013[Ledezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 64, 45-51.], 2015[Ledezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2015). Inorg. Chim. Acta, 434, 215-220.]; Pons-Balagué et al., 2011[Pons-Balagué, A., Ioanidis, N., Wernsdorfer, W., Yamaguchi, A. & Sañudo, E. C. (2011). Dalton Trans. 40, 11765-11769.], 2013[Pons-Balagué, A., Heras Ojea, M. J., Ledezma-Gairaud, M., Reta Mañeru, D., Teat, J. S., Sánchez Costa, J., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 52, 781-787.]).

In this work, we report the microwave-assisted synthesis and crystal structure of a carboxyl­ate-bridged CuII complex. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) in a mixture of ethanol/water (2:1) proceeds under microwave radiation to generate a neutral dimeric trinuclear copper(II) complex of formula [Cu(μ3-OH)(μ-pz)3(μ2-benz)(μ-benz)(EtOH)]2 that crystallized as the ethanol disolvate. Although strong bases such as sodium or tetra­butyl­ammonium hydroxide are commonly used for deprotonating pyrazole and as a source of hydroxide ions to self-assembled nanojars, we added instead a weak base like BenzNa to deprotonate the Hpz ligand. The IR spectrum of the title compound shows two similar sets of strong vibrations corresponding to υas(COO) (1605 and 1572 cm−1) and υs(COO) (1403 and 1364 cm−1). The Δυ values [υas(COO) − υs(COO)] are in accordance with a nearly symmetric bridging bidentate coordination of carboxyl­ate groups (Deacon & Phillips, 1980[Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227-250.]; Nakamoto, 1997[Nakamoto, K. (1997). Application in Organometallic Chemistry. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th ed., p. 271. New York: Wiley-Interscience.]).

The title compound crystallizes in the triclinic space group P[\overline{1}] with half a mol­ecule per asymmetric unit, the other half being generated by inversion symmetry. Relevant bond lengths and angles are collated in Table 1[link]. The core of the title compound comprises the trinuclear [Cu3(μ3-OH)(pz)3]2+ entity (Fig. 1[link]) in which the three CuII ions are bridged in a μ3 mode by oxygen atom (O7) of the hydroxyl group. Each of the three pyrazolate ligands, lying at the corners of an irregular Cu⋯Cu⋯Cu triangle, bridges two of the CuII ions of the triangle.

Table 1
Selected geometric parameters (Å, °)

Cu1—N6 1.9291 (12) Cu2—O1 1.9781 (10)
Cu1—N1 1.9392 (12) Cu2—O7 1.9827 (10)
Cu1—O7 1.9932 (10) Cu3—N5 1.9550 (12)
Cu1—O3 2.0103 (10) Cu3—N4 1.9591 (12)
Cu1—O4 2.6155 (10) Cu3—O7 1.9899 (10)
Cu2—N3 1.9366 (12) Cu3—O2i 2.0086 (10)
Cu2—N2 1.9471 (12) Cu3—O5 2.3168 (11)
       
N6—Cu1—N1 176.43 (5) O7—Cu3—O5 100.03 (4)
O7—Cu1—O3 170.42 (4) Cu2—O7—Cu3 117.22 (5)
N3—Cu2—N2 174.97 (5) Cu2—O7—Cu1 115.10 (5)
O1—Cu2—O7 173.24 (4) Cu3—O7—Cu1 116.42 (5)
N5—Cu3—N4 170.64 (5)    
Symmetry code: (i) -x+1, -y+2, -z+1.
[Figure 1]
Figure 1
[Cu3(μ3-OH)(pyz)3]2+ core of the title compound with displacement ellipsoids drawn at the 50% probability level. The H atoms and the solvent mol­ecule are omitted for clarity.

The carboxyl­ate groups of the two benzoate anions present in the asymmetric unit bind in different fashions. A chelating mode by carboxyl­ate atoms O3 and O4 is realised to bind to Cu1 whereas a syn, syn mode bridging Cu2 and Cu3 of the symmetry-related part is realised for O1 and O2. The latter connectivity is found in various polymeric copper(II) carboxyl­ates (Casarin et al., 2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]). A neutral ethanol mol­ecule completes the coordination sphere of Cu3 in the triangle (Fig. 2[link]). From the mean plane through Cu1, Cu2 and Cu3, the bridging O7 atom of the central μ3-OH ion is displaced by 0.390 (1) Å slightly out of the plane, a feature commonly found for nanojar compounds (Ferrer et al., 2000[Ferrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Biagini Cingi, M., Lanfranchi, M., Manotti Lanfredi, A. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859-1867.], 2002[Ferrer, S., Lloret, F., Bertomeu, I., Alzuet, G., Borrás, J., García-Granda, S., Liu-González, M. & Haasnoot, J. G. (2002). Inorg. Chem. 41, 5821-5830.]; Hulsbergen et al., 1983[Hulsbergen, F. B., ten Hoedt, R. W. M., Verschoor, G. C., Reedijk, J. & Spek, A. L. (1983). J. Chem. Soc. Dalton Trans. pp. 539-545.]: Angaroni et al., 1990[Angaroni, M., Ardizzoia, G. A., Beringhelli, T., La Monica, G., Gatteschi, D., Masciocchi, N. & Moret, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3305-3309.]; Sakai et al., 1996[Sakai, K., Yamada, Y., Tsubomura, T., Yabuki, M. & Yamaguchi, M. (1996). Inorg. Chem. 35, 542-544.]; Casarin et al., 2004[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C., Piccinelli, F. & Tagliatesta, P. (2004). Inorg. Chem. 43, 5865-5876.],2005[Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265-6276.]). The bond lengths between the three Cu ions and the μ3-OH ion are very similar; the same applies for the Cu—N distances (Table 1[link]).

[Figure 2]
Figure 2
Asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. The EtOH solvent mol­ecule is omitted for clarity.

The title mol­ecule is located around an inversion center, composed of two symmetry-related trinuclear copper(II) pyrazolate units (Fig. 3[link]) that are connected together by carboxyl­ate ions. The coordination environment of Cu1 is a distorted square pyramid in which the two bond lengths involving the chelating carboxyl­ate group are non-equivalent, Cu1—O3 = 2.010 (1) and Cu1—O4) = 2.616 (1) Å. Cu2 has a square-planar environment formed by two N atoms of two bridging μ-pyrazolate anions and the μ3-OH group, completed by an oxygen atom from a carboxyl­ate group, Cu2—O1 = 1.978 (1) Å. The Cu3 atom has a distorted square-pyramidal environment with the apical position occupied by the O atom of an ethanol mol­ecule.

[Figure 3]
Figure 3
Dimeric-bridged mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal structure of the title compound, further stabilization arises from inter­molecular O—H⋯O hydrogen bonds. This way, the μ3-OH group and the oxygen atom O8 of the solvate ethanol mol­ecule, the OH group of the solvate ethanol mol­ecule and the benzoate oxygen atom O4, and the OH group of the coordinating ethanol mol­ecule and the O4 atom of the benzoate ligand are connected (Table 2[link], Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H10⋯O4ii 0.73 (3) 2.00 (3) 2.7325 (18) 173 (3)
O7—H11⋯O8 0.76 (2) 1.87 (2) 2.6175 (17) 168 (2)
O5—H5A⋯O4ii 0.75 2.0 2.7393 (16) 170
Symmetry code: (ii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
Packing of the mol­ecules of the title compound. O—H⋯O hydrogen-bonding inter­actions are shown as green dashed lines.

Synthesis and crystallization

All chemicals and solvents were purchased from commercial sources and used as received; all preparation and manipulations were performed under aerobic conditions, except where otherwise noted. Microwave-assisted reactions were done in a Discover System (CEM Corp.) microwave reactor. FTIR spectra were recorded with a Perkin-Elmer System 2000 FTIR instrument from 4000 to 100 cm−1, KBr solid state.

CuCl2·2H2O (0.40 g; 2.35 mmol) was added to a solution with sodium benzoate (benzNa) (0.30 g, 2.10 mmol) and pyrazole (pzH) (0.20 g, 2.94 mmol) in EtOH/H2O (10:5 mL). The reaction mixture was put into a microwave tube in the reactor cavity applying a 150 W microwave pulse for 5 min at 373 K. The obtained jade-green solution was filtered off after cooling for 5 min. The resulting intense blue filtrate was allowed to stand for 4 d at ambient temperature resulting in light-blue block-shaped crystals obtained by slow evaporation of the solvent. The crystalline product was collected by filtration and washed with EtOH (5 × 5 mL). Yield: 0.20 g (11%). Selected FTIR data (KBr, cm−1): 3393 (br, m); 3215 (br, s); 3113 (m); 2969 (m); 1593 (s); 1542 (s); 1490 (w); 1445 (w); 1400 (br, s); 1381 (w); 1278 (m); 1176 (s); 1129 (m); 1063(s); 967 (w); 945 (w); 877 (w); 848 (m); 780 (s); 764 (s); 720 (s); 687 (m): 630 (m); 599 (m); 486 (br, m).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link].

Table 3
Experimental details

Crystal data
Chemical formula [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H6O)2]·2C2H6O
Mr 1486.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.4608 (5), 11.4064 (5), 13.0357 (6)
α, β, γ (°) 85.061 (1), 72.520 (1), 80.044 (1)
V3) 1460.29 (12)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.22
Crystal size (mm) 0.35 × 0.25 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.645, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 64647, 6754, 6300
Rint 0.022
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.050, 1.04
No. of reflections 6754
No. of parameters 400
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.00, −0.72
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(µ2-benzoato-κ2O,O')bis(benzoato-κO)bis(ethanol-κO)bis(µ3-hydroxido)hexakis(µ-pyrazolato-κ2N,N')hexacopper(II) ethanol disolvate top
Crystal data top
[Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H6O)2]·2C2H6OZ = 1
Mr = 1486.40F(000) = 758
Triclinic, P1Dx = 1.690 Mg m3
a = 10.4608 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4064 (5) ÅCell parameters from 9612 reflections
c = 13.0357 (6) Åθ = 3.0–27.6°
α = 85.061 (1)°µ = 2.22 mm1
β = 72.520 (1)°T = 100 K
γ = 80.044 (1)°Block, clear light blue
V = 1460.29 (12) Å30.35 × 0.25 × 0.15 mm
Data collection top
Bruker D8 Venture
diffractometer
6754 independent reflections
Radiation source: Incoatec microsource6300 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.022
Detector resolution: 10.4167 pixels mm-1θmax = 27.7°, θmin = 2.5°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 1414
Tmin = 0.645, Tmax = 0.746l = 1616
64647 measured reflections
Refinement top
Refinement on F2Primary atom site location: inferred from neighbouring sites
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0232P)2 + 1.2646P]
where P = (Fo2 + 2Fc2)/3
6754 reflections(Δ/σ)max = 0.002
400 parametersΔρmax = 1.00 e Å3
0 restraintsΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed geometrically and refined using a riding-atom model approximation, with C—H = 0.95–1.00 Å, with Uiso(H) = 1.2Ueq(C). A rotating model was used for the methyl groups. The H7 atom of the µ3-OH group was located in the final Fourier difference map and refined freely.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28967 (2)0.73986 (2)0.64822 (2)0.00957 (4)
Cu20.57945 (2)0.84981 (2)0.60585 (2)0.00910 (4)
Cu30.44372 (2)0.84872 (2)0.40022 (2)0.00903 (4)
O10.71009 (10)0.89817 (9)0.67045 (8)0.0126 (2)
O20.58170 (10)1.06869 (9)0.73631 (8)0.0132 (2)
O30.13205 (10)0.66939 (9)0.74774 (8)0.0126 (2)
O40.27501 (10)0.51209 (9)0.67280 (8)0.0152 (2)
O70.45907 (10)0.78176 (9)0.54287 (8)0.00978 (19)
N10.37824 (12)0.72985 (11)0.76044 (10)0.0120 (2)
N20.49920 (12)0.76972 (11)0.74229 (10)0.0117 (2)
N30.66477 (12)0.91576 (10)0.46482 (9)0.0106 (2)
N40.60854 (12)0.91744 (10)0.38259 (9)0.0109 (2)
N50.26458 (12)0.80068 (10)0.43446 (10)0.0112 (2)
N60.20228 (12)0.76028 (11)0.53554 (10)0.0117 (2)
C10.35158 (15)0.67042 (13)0.85560 (11)0.0147 (3)
H10.27310.63390.88720.018*
C20.45569 (16)0.67008 (13)0.90129 (12)0.0159 (3)
H20.46320.63430.96820.019*
C30.54640 (15)0.73377 (13)0.82703 (12)0.0138 (3)
H30.62920.74950.83490.017*
C40.78133 (14)0.96040 (12)0.42651 (12)0.0124 (3)
H40.84030.9690.46740.015*
C50.80270 (15)0.99204 (13)0.31813 (12)0.0141 (3)
H50.87661.02590.27090.017*
C60.69127 (15)0.96284 (12)0.29428 (11)0.0129 (3)
H60.67610.97350.22560.015*
C70.18136 (15)0.79900 (13)0.37370 (12)0.0134 (3)
H70.20060.82240.29960.016*
C80.06347 (15)0.75804 (13)0.43504 (12)0.0154 (3)
H80.01230.74810.41260.018*
O80.60791 (17)0.57097 (14)0.52992 (12)0.0421 (4)
C90.08100 (15)0.73499 (13)0.53626 (12)0.0143 (3)
H90.0170.70570.59720.017*
C100.67100 (14)0.97951 (12)0.73796 (11)0.0112 (3)
H100.644 (3)0.546 (2)0.477 (2)0.048 (8)*
C110.73560 (14)0.96907 (12)0.82770 (11)0.0114 (3)
H110.498 (2)0.720 (2)0.5324 (19)0.033 (6)*
C120.85067 (15)0.88498 (13)0.82471 (12)0.0139 (3)
H120.88860.83380.76570.017*
C130.90977 (15)0.87607 (14)0.90811 (12)0.0165 (3)
H130.98830.81910.9060.02*
C140.85389 (16)0.95059 (14)0.99447 (12)0.0163 (3)
H140.8940.94411.05160.02*
C150.73963 (16)1.03462 (13)0.99774 (12)0.0169 (3)
H150.70191.08561.05680.02*
C160.68035 (15)1.04405 (13)0.91430 (12)0.0147 (3)
H160.60231.10160.91640.018*
C170.16176 (14)0.55833 (13)0.73175 (11)0.0124 (3)
C180.05533 (15)0.48198 (13)0.78522 (11)0.0136 (3)
C190.07998 (16)0.36048 (13)0.76582 (12)0.0157 (3)
H190.16490.32590.720.019*
C200.01983 (17)0.29002 (14)0.81361 (13)0.0185 (3)
H200.00250.20710.80120.022*
C210.14445 (18)0.34064 (15)0.87923 (14)0.0236 (3)
H210.2130.29270.91080.028*
C220.16933 (18)0.46163 (16)0.89891 (15)0.0273 (4)
H220.25470.49610.94420.033*
C230.06960 (17)0.53216 (14)0.85243 (13)0.0214 (3)
H230.08650.61460.86640.026*
O50.54975 (12)0.68595 (10)0.29512 (9)0.0171 (2)
H5A0.601 (2)0.6366 (18)0.3077 (8)0.026*
C240.64511 (17)0.71837 (16)0.10209 (13)0.0223 (3)
H24A0.62920.71060.03280.033*
H24B0.7340.67370.10190.033*
H24C0.64290.80260.11350.033*
C250.53594 (16)0.66945 (13)0.19152 (12)0.0167 (3)
H25A0.44580.710.18760.02*
H25B0.54130.58340.18180.02*
C270.67313 (16)0.52015 (13)0.60771 (13)0.0170 (3)
H27A0.68960.43240.60310.02*
H27B0.61220.54010.68040.02*
C260.8050 (2)0.56271 (18)0.5932 (2)0.0415 (5)
H26A0.86680.54110.52220.062*
H26B0.84540.52540.64910.062*
H26C0.78930.64950.59880.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00918 (8)0.01126 (8)0.00869 (8)0.00253 (6)0.00274 (6)0.00020 (6)
Cu20.01051 (8)0.00998 (8)0.00809 (8)0.00296 (6)0.00396 (6)0.00012 (6)
Cu30.00953 (8)0.01005 (8)0.00861 (8)0.00248 (6)0.00404 (6)0.00070 (6)
O10.0131 (5)0.0153 (5)0.0117 (5)0.0038 (4)0.0056 (4)0.0016 (4)
O20.0143 (5)0.0144 (5)0.0118 (5)0.0017 (4)0.0061 (4)0.0021 (4)
O30.0113 (5)0.0131 (5)0.0127 (5)0.0026 (4)0.0020 (4)0.0008 (4)
O40.0127 (5)0.0166 (5)0.0141 (5)0.0006 (4)0.0016 (4)0.0009 (4)
O70.0106 (5)0.0099 (5)0.0094 (5)0.0018 (4)0.0036 (4)0.0001 (4)
N10.0122 (6)0.0129 (6)0.0110 (6)0.0037 (4)0.0028 (4)0.0004 (4)
N20.0128 (6)0.0121 (5)0.0114 (6)0.0030 (4)0.0047 (5)0.0005 (4)
N30.0109 (5)0.0111 (5)0.0108 (5)0.0017 (4)0.0048 (4)0.0006 (4)
N40.0118 (6)0.0124 (5)0.0094 (5)0.0021 (4)0.0043 (4)0.0002 (4)
N50.0128 (6)0.0108 (5)0.0110 (5)0.0019 (4)0.0047 (5)0.0001 (4)
N60.0114 (6)0.0119 (5)0.0121 (6)0.0028 (4)0.0032 (5)0.0001 (4)
C10.0176 (7)0.0154 (7)0.0108 (6)0.0053 (5)0.0026 (5)0.0009 (5)
C20.0208 (7)0.0170 (7)0.0117 (7)0.0052 (6)0.0066 (6)0.0018 (5)
C30.0166 (7)0.0142 (7)0.0128 (7)0.0040 (5)0.0068 (6)0.0002 (5)
C40.0110 (6)0.0111 (6)0.0153 (7)0.0014 (5)0.0038 (5)0.0020 (5)
C50.0127 (7)0.0140 (7)0.0141 (7)0.0029 (5)0.0013 (5)0.0006 (5)
C60.0146 (7)0.0127 (6)0.0102 (6)0.0024 (5)0.0019 (5)0.0001 (5)
C70.0147 (7)0.0130 (6)0.0147 (7)0.0025 (5)0.0077 (5)0.0005 (5)
C80.0124 (7)0.0165 (7)0.0193 (7)0.0024 (5)0.0078 (6)0.0006 (6)
O80.0558 (10)0.0408 (8)0.0249 (7)0.0325 (7)0.0222 (7)0.0175 (6)
C90.0108 (6)0.0159 (7)0.0166 (7)0.0030 (5)0.0038 (5)0.0009 (5)
C100.0116 (6)0.0123 (6)0.0109 (6)0.0063 (5)0.0035 (5)0.0027 (5)
C110.0135 (7)0.0112 (6)0.0112 (6)0.0044 (5)0.0051 (5)0.0020 (5)
C120.0139 (7)0.0149 (7)0.0137 (7)0.0027 (5)0.0046 (5)0.0009 (5)
C130.0136 (7)0.0188 (7)0.0181 (7)0.0022 (6)0.0069 (6)0.0014 (6)
C140.0194 (7)0.0207 (7)0.0130 (7)0.0081 (6)0.0096 (6)0.0036 (5)
C150.0251 (8)0.0145 (7)0.0125 (7)0.0037 (6)0.0069 (6)0.0015 (5)
C160.0181 (7)0.0121 (6)0.0143 (7)0.0009 (5)0.0064 (6)0.0009 (5)
C170.0125 (6)0.0156 (7)0.0102 (6)0.0021 (5)0.0051 (5)0.0005 (5)
C180.0148 (7)0.0151 (7)0.0119 (7)0.0038 (5)0.0047 (5)0.0010 (5)
C190.0162 (7)0.0162 (7)0.0155 (7)0.0021 (5)0.0054 (6)0.0020 (5)
C200.0248 (8)0.0144 (7)0.0178 (7)0.0060 (6)0.0069 (6)0.0008 (6)
C210.0246 (8)0.0217 (8)0.0229 (8)0.0123 (7)0.0001 (7)0.0010 (6)
C220.0214 (8)0.0217 (8)0.0296 (9)0.0064 (7)0.0085 (7)0.0032 (7)
C230.0212 (8)0.0147 (7)0.0232 (8)0.0040 (6)0.0019 (6)0.0012 (6)
O50.0203 (6)0.0151 (5)0.0155 (5)0.0042 (4)0.0077 (4)0.0029 (4)
C240.0227 (8)0.0292 (9)0.0161 (7)0.0059 (7)0.0064 (6)0.0009 (6)
C250.0205 (7)0.0152 (7)0.0161 (7)0.0029 (6)0.0071 (6)0.0026 (5)
C270.0198 (7)0.0130 (7)0.0181 (7)0.0004 (6)0.0064 (6)0.0011 (5)
C260.0208 (9)0.0276 (10)0.0754 (16)0.0017 (7)0.0088 (10)0.0209 (10)
Geometric parameters (Å, º) top
Cu1—N61.9291 (12)C8—H80.95
Cu1—N11.9392 (12)O8—C271.417 (2)
Cu1—O71.9932 (10)O8—H100.73 (3)
Cu1—O32.0103 (10)C9—H90.95
Cu1—O42.6155 (10)C10—C111.5041 (19)
Cu2—N31.9366 (12)C11—C161.394 (2)
Cu2—N21.9471 (12)C11—C121.396 (2)
Cu2—O11.9781 (10)C12—C131.392 (2)
Cu2—O71.9827 (10)C12—H120.95
Cu3—N51.9550 (12)C13—C141.389 (2)
Cu3—N41.9591 (12)C13—H130.95
Cu3—O71.9899 (10)C14—C151.389 (2)
Cu3—O2i2.0086 (10)C14—H140.95
Cu3—O52.3168 (11)C15—C161.393 (2)
O1—C101.2633 (17)C15—H150.95
O2—C101.2600 (17)C16—H160.95
O2—Cu3i2.0086 (10)C17—C181.499 (2)
O3—C171.2709 (18)C18—C231.394 (2)
O4—C171.2566 (18)C18—C191.396 (2)
O7—H110.76 (2)C19—C201.392 (2)
N1—C11.3374 (18)C19—H190.95
N1—N21.3654 (16)C20—C211.385 (2)
N2—C31.3460 (18)C20—H200.95
N3—C41.3418 (18)C21—C221.391 (2)
N3—N41.3663 (16)C21—H210.95
N4—C61.3402 (18)C22—C231.389 (2)
N5—C71.3446 (18)C22—H220.95
N5—N61.3626 (17)C23—H230.95
N6—C91.3461 (18)O5—C251.4320 (18)
C1—C21.389 (2)O5—H5A0.75 (2)
C1—H10.95C24—C251.511 (2)
C2—C31.389 (2)C24—H24A0.98
C2—H20.95C24—H24B0.98
C3—H30.95C24—H24C0.98
C4—C51.388 (2)C25—H25A0.99
C4—H40.95C25—H25B0.99
C5—C61.391 (2)C27—C261.495 (2)
C5—H50.95C27—H27A0.99
C6—H60.95C27—H27B0.99
C7—C81.386 (2)C26—H26A0.98
C7—H70.95C26—H26B0.98
C8—C91.383 (2)C26—H26C0.98
N6—Cu1—N1176.43 (5)C27—O8—H10110 (2)
N6—Cu1—O789.83 (5)N6—C9—C8109.81 (13)
N1—Cu1—O788.66 (5)N6—C9—H9125.1
N6—Cu1—O390.38 (5)C8—C9—H9125.1
N1—Cu1—O391.64 (5)O2—C10—O1125.14 (13)
O7—Cu1—O3170.42 (4)O2—C10—C11117.31 (12)
N3—Cu2—N2174.97 (5)O1—C10—C11117.55 (12)
N3—Cu2—O193.18 (5)C16—C11—C12119.80 (13)
N2—Cu2—O188.71 (5)C16—C11—C10119.76 (13)
N3—Cu2—O789.06 (5)C12—C11—C10120.44 (13)
N2—Cu2—O788.55 (5)C13—C12—C11120.01 (14)
O1—Cu2—O7173.24 (4)C13—C12—H12120.0
N5—Cu3—N4170.64 (5)C11—C12—H12120.0
N5—Cu3—O789.44 (4)C14—C13—C12119.95 (14)
N4—Cu3—O787.98 (4)C14—C13—H13120.0
N5—Cu3—O2i90.09 (5)C12—C13—H13120.0
N4—Cu3—O2i91.58 (5)C13—C14—C15120.29 (14)
O7—Cu3—O2i174.28 (4)C13—C14—H14119.9
N5—Cu3—O593.33 (5)C15—C14—H14119.9
N4—Cu3—O595.98 (5)C14—C15—C16119.95 (14)
O7—Cu3—O5100.03 (4)C14—C15—H15120.0
O2i—Cu3—O585.69 (4)C16—C15—H15120.0
C10—O1—Cu2119.78 (9)C15—C16—C11120.00 (14)
C10—O2—Cu3i123.31 (9)C15—C16—H16120.0
C17—O3—Cu1104.76 (9)C11—C16—H16120.0
Cu2—O7—Cu3117.22 (5)O4—C17—O3122.41 (13)
Cu2—O7—Cu1115.10 (5)O4—C17—C18119.97 (13)
Cu3—O7—Cu1116.42 (5)O3—C17—C18117.62 (13)
Cu2—O7—H1199.7 (18)C23—C18—C19119.67 (14)
Cu3—O7—H11105.3 (18)C23—C18—C17120.34 (13)
Cu1—O7—H1198.8 (18)C19—C18—C17119.97 (13)
C1—N1—N2108.23 (12)C20—C19—C18120.01 (14)
C1—N1—Cu1129.67 (10)C20—C19—H19120.0
N2—N1—Cu1121.21 (9)C18—C19—H19120.0
C3—N2—N1107.82 (12)C21—C20—C19120.08 (15)
C3—N2—Cu2131.65 (10)C21—C20—H20120.0
N1—N2—Cu2120.28 (9)C19—C20—H20120.0
C4—N3—N4108.19 (11)C20—C21—C22120.08 (15)
C4—N3—Cu2131.04 (10)C20—C21—H21120.0
N4—N3—Cu2120.71 (9)C22—C21—H21120.0
C6—N4—N3107.81 (11)C23—C22—C21120.12 (16)
C6—N4—Cu3130.08 (10)C23—C22—H22119.9
N3—N4—Cu3121.89 (9)C21—C22—H22119.9
C7—N5—N6107.68 (12)C22—C23—C18120.03 (15)
C7—N5—Cu3131.52 (10)C22—C23—H23120.0
N6—N5—Cu3120.80 (9)C18—C23—H23120.0
C9—N6—N5108.06 (12)C25—O5—Cu3124.88 (9)
C9—N6—Cu1129.94 (10)C25—O5—H5A109.5
N5—N6—Cu1121.93 (9)Cu3—O5—H5A125.5
N1—C1—C2109.86 (13)C25—C24—H24A109.5
N1—C1—H1125.1C25—C24—H24B109.5
C2—C1—H1125.1H24A—C24—H24B109.5
C1—C2—C3104.43 (13)C25—C24—H24C109.5
C1—C2—H2127.8H24A—C24—H24C109.5
C3—C2—H2127.8H24B—C24—H24C109.5
N2—C3—C2109.66 (13)O5—C25—C24111.55 (13)
N2—C3—H3125.2O5—C25—H25A109.3
C2—C3—H3125.2C24—C25—H25A109.3
N3—C4—C5109.74 (13)O5—C25—H25B109.3
N3—C4—H4125.1C24—C25—H25B109.3
C5—C4—H4125.1H25A—C25—H25B108.0
C4—C5—C6104.31 (13)O8—C27—C26112.79 (17)
C4—C5—H5127.8O8—C27—H27A109.0
C6—C5—H5127.8C26—C27—H27A109.0
N4—C6—C5109.95 (13)O8—C27—H27B109.0
N4—C6—H6125.0C26—C27—H27B109.0
C5—C6—H6125.0H27A—C27—H27B107.8
N5—C7—C8110.03 (13)C27—C26—H26A109.5
N5—C7—H7125.0C27—C26—H26B109.5
C8—C7—H7125.0H26A—C26—H26B109.5
C9—C8—C7104.41 (13)C27—C26—H26C109.5
C9—C8—H8127.8H26A—C26—H26C109.5
C7—C8—H8127.8H26B—C26—H26C109.5
C1—N1—N2—C30.21 (15)Cu3i—O2—C10—C11145.05 (10)
Cu1—N1—N2—C3169.96 (9)Cu2—O1—C10—O233.95 (18)
C1—N1—N2—Cu2175.10 (9)Cu2—O1—C10—C11145.80 (10)
Cu1—N1—N2—Cu24.94 (14)O2—C10—C11—C1611.01 (19)
C4—N3—N4—C60.16 (15)O1—C10—C11—C16168.77 (13)
Cu2—N3—N4—C6177.39 (9)O2—C10—C11—C12168.85 (13)
C4—N3—N4—Cu3175.24 (9)O1—C10—C11—C1211.38 (19)
Cu2—N3—N4—Cu32.31 (14)C16—C11—C12—C130.1 (2)
C7—N5—N6—C90.45 (15)C10—C11—C12—C13179.95 (13)
Cu3—N5—N6—C9179.42 (9)C11—C12—C13—C140.2 (2)
C7—N5—N6—Cu1176.74 (9)C12—C13—C14—C150.4 (2)
Cu3—N5—N6—Cu13.39 (14)C13—C14—C15—C160.2 (2)
N2—N1—C1—C20.25 (16)C14—C15—C16—C110.1 (2)
Cu1—N1—C1—C2168.82 (10)C12—C11—C16—C150.3 (2)
N1—C1—C2—C30.18 (17)C10—C11—C16—C15179.89 (13)
N1—N2—C3—C20.09 (16)Cu1—O3—C17—O46.52 (16)
Cu2—N2—C3—C2174.19 (10)Cu1—O3—C17—C18172.80 (10)
C1—C2—C3—N20.05 (17)O4—C17—C18—C23178.73 (14)
N4—N3—C4—C50.04 (16)O3—C17—C18—C231.9 (2)
Cu2—N3—C4—C5177.25 (10)O4—C17—C18—C192.8 (2)
N3—C4—C5—C60.22 (16)O3—C17—C18—C19176.59 (13)
N3—N4—C6—C50.31 (16)C23—C18—C19—C200.1 (2)
Cu3—N4—C6—C5174.84 (10)C17—C18—C19—C20178.63 (13)
C4—C5—C6—N40.32 (16)C18—C19—C20—C210.9 (2)
N6—N5—C7—C80.35 (16)C19—C20—C21—C221.1 (3)
Cu3—N5—C7—C8179.50 (10)C20—C21—C22—C230.3 (3)
N5—C7—C8—C90.12 (17)C21—C22—C23—C180.5 (3)
N5—N6—C9—C80.38 (16)C19—C18—C23—C220.6 (2)
Cu1—N6—C9—C8176.50 (10)C17—C18—C23—C22177.90 (16)
C7—C8—C9—N60.16 (17)Cu3—O5—C25—C2492.04 (14)
Cu3i—O2—C10—O135.20 (19)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H10···O4ii0.73 (3)2.00 (3)2.7325 (18)173 (3)
O7—H11···O80.76 (2)1.87 (2)2.6175 (17)168 (2)
O5—H5A···O4ii0.752.02.7393 (16)170
C27—H27A···N5ii0.992.683.6640 (19)173
Symmetry code: (ii) x+1, y+1, z+1.
 

Acknowledgements

The Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica, are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supplying liquid nitro­gen for the X-ray measurements.

Funding information

Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica; Escuela de Química, Universidad de Costa Rica.

References

First citationAl Isawi, W. A., Ahmed, B. M., Hartman, C. K., Seybold, A. N. & Mezei, G. (2018). Inorg. Chim. Acta, 475, 65–72.  Web of Science CSD CrossRef CAS Google Scholar
First citationAngaroni, M., Ardizzoia, G. A., Beringhelli, T., La Monica, G., Gatteschi, D., Masciocchi, N. & Moret, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3305–3309.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCasarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C., Piccinelli, F. & Tagliatesta, P. (2004). Inorg. Chem. 43, 5865–5876.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250.  CrossRef CAS Web of Science Google Scholar
First citationDelgado, S., Gallego, A., Castillo, O. & Zamora, F. (2011). Dalton Trans. 40, 847–852.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFerrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Biagini Cingi, M., Lanfranchi, M., Manotti Lanfredi, A. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859–1867.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFerrer, S., Lloret, F., Bertomeu, I., Alzuet, G., Borrás, J., García-Granda, S., Liu-González, M. & Haasnoot, J. G. (2002). Inorg. Chem. 41, 5821–5830.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGass, I. A., Milios, C. J., Whittaker, G., Fabiani, F. P. A., Parsons, S., Murrie, M., Perlepes, S. P. & Brechin, E. K. (2006). Inorg. Chem. 45, 5281–5283.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHartman, C. K. & Mezei, G. (2017). Inorg. Chem. 56, 10609–10624.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHulsbergen, F. B., ten Hoedt, R. W. M., Verschoor, G. C., Reedijk, J. & Spek, A. L. (1983). J. Chem. Soc. Dalton Trans. pp. 539–545.  CSD CrossRef Web of Science Google Scholar
First citationKupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationLedezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 64, 45–51.  CAS Google Scholar
First citationLedezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2015). Inorg. Chim. Acta, 434, 215–220.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMezei, G. (2016). Acta Cryst. E72, 1064–1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMilios, C. J., Prescimone, A., Sánchez-Benítez, J., Parsons, S., Murrie, M. & Brechin, E. K. (2006a). Inorg. Chem. 45, 7053–7055.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMilios, C. J., Vinslava, A., Whittaker, G., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P. & Brechin, E. K. (2006b). Inorg. Chem. 45, 5272–5274.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakamoto, K. (1997). Application in Organometallic Chemistry. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th ed., p. 271. New York: Wiley-Interscience.  Google Scholar
First citationPons-Balagué, A., Ioanidis, N., Wernsdorfer, W., Yamaguchi, A. & Sañudo, E. C. (2011). Dalton Trans. 40, 11765–11769.  Web of Science PubMed Google Scholar
First citationPons-Balagué, A., Heras Ojea, M. J., Ledezma-Gairaud, M., Reta Mañeru, D., Teat, J. S., Sánchez Costa, J., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 52, 781–787.  Google Scholar
First citationSakai, K., Yamada, Y., Tsubomura, T., Yabuki, M. & Yamaguchi, M. (1996). Inorg. Chem. 35, 542–544.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationViciano-Chumillas, M., Tanase, S., Aromí, G., Smits, J. M. M., de Gelder, R., Solans, X., Bouwman, E. & Reedijk, J. (2007). Eur. J. Inorg. Chem. pp. 2635–2640.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds