metal-organic compounds
Bis(μ2-benzoato-κ2O,O′)bis(benzoato-κO)bis(ethanol-κO)bis(μ3-hydroxido)hexakis(μ-pyrazolato-κ2N,N′)hexacopper(II) ethanol disolvate
aCentro de Electroquímica y Energía Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: leslie.pineda@ucr.ac.cr
Trinuclear copper–pyrazolate entities are present in various Cu-based enzymes and nanojar supramolecular arrangements. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) assisted by microwave radiation afforded a neutral centrosymmetric hexanuclear copper(II) complex, [Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H5OH)2]·2C2H5OH. Half a molecule is present in the that comprises a [Cu3(μ3-OH)(pz)3]2+ core with the copper(II) atoms arranged in an irregular triangle. The three copper(II) atoms are bridged by an O atom of the central hydroxyl group and by three bridging pyrazolate ligands on each of the sides. The carboxylate groups show a chelating mode to one and a bridging syn,syn mode to the other two CuII atoms. The coordination environment of one CuII atom is square-planar while it is distorted square-pyramidal for the other two. Two ethanol molecules are present in the one binding to one of the CuII atoms, one as a solvent molecule. In the crystal, stabilization arises from intermolecular O—H⋯O hydrogen-bonding interactions.
Keywords: crystal structure; carboxylate groups; copper; microwave-assisted synthesis; pyrazolate; trinuclear complex.
CCDC reference: 1907854
Structure description
Trinuclear copper–pyrazolate complexes find widespread applications as redox mediators in multicopper enzymes (e.g. in oxidases, oxygenases, or reductases) and as magnetic units to investigate spin-exchange interactions of metal cations (Kupcewicz et al., 2013; Viciano-Chumillas et al., 2007). Moreover, they make up triangular arrangements of nanojars which consist of structurally diverse supramolecular coordination complexes containing host frameworks that can trap small inorganic anions such as CO32–, SO42–, HPO42−, and HAsO42–, as well as NO3−, and ClO4− (Hartman & Mezei, 2017; Mezei, 2016; Al Isawi et al., 2018). Such supramolecular motifs can also mimic the imidazole metal-binding properties in active sites of metalloenzymes (Kupcewicz et al., 2013; Viciano-Chumillas et al., 2007; Mezei, 2016; Al Isawi et al., 2018).
Coordination compounds can be synthesized under hydro- or solvothermal conditions by in situ metal/ligand reactions in the presence of transition-metal ions. In a few cases, unexpected chemical, structural and/or compositional changes in the organic ligands occur during the reaction process. In this context, microwave-assisted synthesis has become a rapidly developing synthetic method of importance since it greatly decreases the reaction time rendering fast reaction rates, along with high yields and high phase purity, so that the procedure is being regarded as an energy-efficient process. Although microwave-assisted methods apply for the preparation of several organic compounds, only a handful of coordination compounds prepared by this procedure have been reported (Delgado et al., 2011). For example, various metal carboxylate clusters of Co3, Ni3, Mn6, Fe8. Ni8, Ni9, Ni6, and Mn4, as well Mn7, and Mn2Ni2 have been isolated that could not be prepared by traditional bench-top synthesis (Milios et al., 2006a,b; Gass et al., 2006; Ledezma-Gairaud et al., 2013, 2015; Pons-Balagué et al., 2011, 2013).
In this work, we report the microwave-assisted synthesis and II complex. The reaction of copper(II) chloride with pyrazole (pzH) and sodium benzoate (benzNa) in a mixture of ethanol/water (2:1) proceeds under microwave radiation to generate a neutral dimeric trinuclear copper(II) complex of formula [Cu(μ3-OH)(μ-pz)3(μ2-benz)(μ-benz)(EtOH)]2 that crystallized as the ethanol disolvate. Although strong bases such as sodium or tetrabutylammonium hydroxide are commonly used for deprotonating pyrazole and as a source of hydroxide ions to self-assembled nanojars, we added instead a weak base like BenzNa to deprotonate the Hpz ligand. The IR spectrum of the title compound shows two similar sets of strong vibrations corresponding to υas(COO) (1605 and 1572 cm−1) and υs(COO) (1403 and 1364 cm−1). The Δυ values [υas(COO) − υs(COO)] are in accordance with a nearly symmetric bridging bidentate coordination of carboxylate groups (Deacon & Phillips, 1980; Nakamoto, 1997).
of a carboxylate-bridged CuThe title compound crystallizes in the triclinic P with half a molecule per the other half being generated by inversion symmetry. Relevant bond lengths and angles are collated in Table 1. The core of the title compound comprises the trinuclear [Cu3(μ3-OH)(pz)3]2+ entity (Fig. 1) in which the three CuII ions are bridged in a μ3 mode by oxygen atom (O7) of the hydroxyl group. Each of the three pyrazolate ligands, lying at the corners of an irregular Cu⋯Cu⋯Cu triangle, bridges two of the CuII ions of the triangle.
The carboxylate groups of the two benzoate anions present in the syn, syn mode bridging Cu2 and Cu3 of the symmetry-related part is realised for O1 and O2. The latter connectivity is found in various polymeric copper(II) carboxylates (Casarin et al., 2005). A neutral ethanol molecule completes the coordination sphere of Cu3 in the triangle (Fig. 2). From the mean plane through Cu1, Cu2 and Cu3, the bridging O7 atom of the central μ3-OH ion is displaced by 0.390 (1) Å slightly out of the plane, a feature commonly found for nanojar compounds (Ferrer et al., 2000, 2002; Hulsbergen et al., 1983: Angaroni et al., 1990; Sakai et al., 1996; Casarin et al., 2004,2005). The bond lengths between the three Cu ions and the μ3-OH ion are very similar; the same applies for the Cu—N distances (Table 1).
bind in different fashions. A chelating mode by carboxylate atoms O3 and O4 is realised to bind to Cu1 whereas aThe title molecule is located around an inversion center, composed of two symmetry-related trinuclear copper(II) pyrazolate units (Fig. 3) that are connected together by carboxylate ions. The coordination environment of Cu1 is a distorted square pyramid in which the two bond lengths involving the chelating carboxylate group are non-equivalent, Cu1—O3 = 2.010 (1) and Cu1—O4) = 2.616 (1) Å. Cu2 has a square-planar environment formed by two N atoms of two bridging μ-pyrazolate anions and the μ3-OH group, completed by an oxygen atom from a carboxylate group, Cu2—O1 = 1.978 (1) Å. The Cu3 atom has a distorted square-pyramidal environment with the apical position occupied by the O atom of an ethanol molecule.
In the μ3-OH group and the oxygen atom O8 of the solvate ethanol molecule, the OH group of the solvate ethanol molecule and the benzoate oxygen atom O4, and the OH group of the coordinating ethanol molecule and the O4 atom of the benzoate ligand are connected (Table 2, Fig. 4).
of the title compound, further stabilization arises from intermolecular O—H⋯O hydrogen bonds. This way, theSynthesis and crystallization
All chemicals and solvents were purchased from commercial sources and used as received; all preparation and manipulations were performed under aerobic conditions, except where otherwise noted. Microwave-assisted reactions were done in a Discover System (CEM Corp.) microwave reactor. FTIR spectra were recorded with a Perkin-Elmer System 2000 FTIR instrument from 4000 to 100 cm−1, KBr solid state.
CuCl2·2H2O (0.40 g; 2.35 mmol) was added to a solution with sodium benzoate (benzNa) (0.30 g, 2.10 mmol) and pyrazole (pzH) (0.20 g, 2.94 mmol) in EtOH/H2O (10:5 mL). The reaction mixture was put into a microwave tube in the reactor cavity applying a 150 W microwave pulse for 5 min at 373 K. The obtained jade-green solution was filtered off after cooling for 5 min. The resulting intense blue filtrate was allowed to stand for 4 d at ambient temperature resulting in light-blue block-shaped crystals obtained by slow evaporation of the solvent. The crystalline product was collected by filtration and washed with EtOH (5 × 5 mL). Yield: 0.20 g (11%). Selected FTIR data (KBr, cm−1): 3393 (br, m); 3215 (br, s); 3113 (m); 2969 (m); 1593 (s); 1542 (s); 1490 (w); 1445 (w); 1400 (br, s); 1381 (w); 1278 (m); 1176 (s); 1129 (m); 1063(s); 967 (w); 945 (w); 877 (w); 848 (m); 780 (s); 764 (s); 720 (s); 687 (m): 630 (m); 599 (m); 486 (br, m).
Refinement
Crystal data, data collection and structure .
details are summarized in Table 3
|
Structural data
CCDC reference: 1907854
https://doi.org/10.1107/S2414314619011908/wm4113sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619011908/wm4113Isup2.hkl
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu6(C7H5O2)4(OH)2(C3H3N2)6(C2H6O)2]·2C2H6O | Z = 1 |
Mr = 1486.40 | F(000) = 758 |
Triclinic, P1 | Dx = 1.690 Mg m−3 |
a = 10.4608 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.4064 (5) Å | Cell parameters from 9612 reflections |
c = 13.0357 (6) Å | θ = 3.0–27.6° |
α = 85.061 (1)° | µ = 2.22 mm−1 |
β = 72.520 (1)° | T = 100 K |
γ = 80.044 (1)° | Block, clear light blue |
V = 1460.29 (12) Å3 | 0.35 × 0.25 × 0.15 mm |
Bruker D8 Venture diffractometer | 6754 independent reflections |
Radiation source: Incoatec microsource | 6300 reflections with I > 2σ(I) |
Mirrors monochromator | Rint = 0.022 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 27.7°, θmin = 2.5° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (SADABS; Bruker, 2015) | k = −14→14 |
Tmin = 0.645, Tmax = 0.746 | l = −16→16 |
64647 measured reflections |
Refinement on F2 | Primary atom site location: inferred from neighbouring sites |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0232P)2 + 1.2646P] where P = (Fo2 + 2Fc2)/3 |
6754 reflections | (Δ/σ)max = 0.002 |
400 parameters | Δρmax = 1.00 e Å−3 |
0 restraints | Δρmin = −0.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. All hydrogen atoms were placed geometrically and refined using a riding-atom model approximation, with C—H = 0.95–1.00 Å, with Uiso(H) = 1.2Ueq(C). A rotating model was used for the methyl groups. The H7 atom of the µ3-OH group was located in the final Fourier difference map and refined freely. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.28967 (2) | 0.73986 (2) | 0.64822 (2) | 0.00957 (4) | |
Cu2 | 0.57945 (2) | 0.84981 (2) | 0.60585 (2) | 0.00910 (4) | |
Cu3 | 0.44372 (2) | 0.84872 (2) | 0.40022 (2) | 0.00903 (4) | |
O1 | 0.71009 (10) | 0.89817 (9) | 0.67045 (8) | 0.0126 (2) | |
O2 | 0.58170 (10) | 1.06869 (9) | 0.73631 (8) | 0.0132 (2) | |
O3 | 0.13205 (10) | 0.66939 (9) | 0.74774 (8) | 0.0126 (2) | |
O4 | 0.27501 (10) | 0.51209 (9) | 0.67280 (8) | 0.0152 (2) | |
O7 | 0.45907 (10) | 0.78176 (9) | 0.54287 (8) | 0.00978 (19) | |
N1 | 0.37824 (12) | 0.72985 (11) | 0.76044 (10) | 0.0120 (2) | |
N2 | 0.49920 (12) | 0.76972 (11) | 0.74229 (10) | 0.0117 (2) | |
N3 | 0.66477 (12) | 0.91576 (10) | 0.46482 (9) | 0.0106 (2) | |
N4 | 0.60854 (12) | 0.91744 (10) | 0.38259 (9) | 0.0109 (2) | |
N5 | 0.26458 (12) | 0.80068 (10) | 0.43446 (10) | 0.0112 (2) | |
N6 | 0.20228 (12) | 0.76028 (11) | 0.53554 (10) | 0.0117 (2) | |
C1 | 0.35158 (15) | 0.67042 (13) | 0.85560 (11) | 0.0147 (3) | |
H1 | 0.2731 | 0.6339 | 0.8872 | 0.018* | |
C2 | 0.45569 (16) | 0.67008 (13) | 0.90129 (12) | 0.0159 (3) | |
H2 | 0.4632 | 0.6343 | 0.9682 | 0.019* | |
C3 | 0.54640 (15) | 0.73377 (13) | 0.82703 (12) | 0.0138 (3) | |
H3 | 0.6292 | 0.7495 | 0.8349 | 0.017* | |
C4 | 0.78133 (14) | 0.96040 (12) | 0.42651 (12) | 0.0124 (3) | |
H4 | 0.8403 | 0.969 | 0.4674 | 0.015* | |
C5 | 0.80270 (15) | 0.99204 (13) | 0.31813 (12) | 0.0141 (3) | |
H5 | 0.8766 | 1.0259 | 0.2709 | 0.017* | |
C6 | 0.69127 (15) | 0.96284 (12) | 0.29428 (11) | 0.0129 (3) | |
H6 | 0.6761 | 0.9735 | 0.2256 | 0.015* | |
C7 | 0.18136 (15) | 0.79900 (13) | 0.37370 (12) | 0.0134 (3) | |
H7 | 0.2006 | 0.8224 | 0.2996 | 0.016* | |
C8 | 0.06347 (15) | 0.75804 (13) | 0.43504 (12) | 0.0154 (3) | |
H8 | −0.0123 | 0.7481 | 0.4126 | 0.018* | |
O8 | 0.60791 (17) | 0.57097 (14) | 0.52992 (12) | 0.0421 (4) | |
C9 | 0.08100 (15) | 0.73499 (13) | 0.53626 (12) | 0.0143 (3) | |
H9 | 0.017 | 0.7057 | 0.5972 | 0.017* | |
C10 | 0.67100 (14) | 0.97951 (12) | 0.73796 (11) | 0.0112 (3) | |
H10 | 0.644 (3) | 0.546 (2) | 0.477 (2) | 0.048 (8)* | |
C11 | 0.73560 (14) | 0.96907 (12) | 0.82770 (11) | 0.0114 (3) | |
H11 | 0.498 (2) | 0.720 (2) | 0.5324 (19) | 0.033 (6)* | |
C12 | 0.85067 (15) | 0.88498 (13) | 0.82471 (12) | 0.0139 (3) | |
H12 | 0.8886 | 0.8338 | 0.7657 | 0.017* | |
C13 | 0.90977 (15) | 0.87607 (14) | 0.90811 (12) | 0.0165 (3) | |
H13 | 0.9883 | 0.8191 | 0.906 | 0.02* | |
C14 | 0.85389 (16) | 0.95059 (14) | 0.99447 (12) | 0.0163 (3) | |
H14 | 0.894 | 0.9441 | 1.0516 | 0.02* | |
C15 | 0.73963 (16) | 1.03462 (13) | 0.99774 (12) | 0.0169 (3) | |
H15 | 0.7019 | 1.0856 | 1.0568 | 0.02* | |
C16 | 0.68035 (15) | 1.04405 (13) | 0.91430 (12) | 0.0147 (3) | |
H16 | 0.6023 | 1.1016 | 0.9164 | 0.018* | |
C17 | 0.16176 (14) | 0.55833 (13) | 0.73175 (11) | 0.0124 (3) | |
C18 | 0.05533 (15) | 0.48198 (13) | 0.78522 (11) | 0.0136 (3) | |
C19 | 0.07998 (16) | 0.36048 (13) | 0.76582 (12) | 0.0157 (3) | |
H19 | 0.1649 | 0.3259 | 0.72 | 0.019* | |
C20 | −0.01983 (17) | 0.29002 (14) | 0.81361 (13) | 0.0185 (3) | |
H20 | −0.0025 | 0.2071 | 0.8012 | 0.022* | |
C21 | −0.14445 (18) | 0.34064 (15) | 0.87923 (14) | 0.0236 (3) | |
H21 | −0.213 | 0.2927 | 0.9108 | 0.028* | |
C22 | −0.16933 (18) | 0.46163 (16) | 0.89891 (15) | 0.0273 (4) | |
H22 | −0.2547 | 0.4961 | 0.9442 | 0.033* | |
C23 | −0.06960 (17) | 0.53216 (14) | 0.85243 (13) | 0.0214 (3) | |
H23 | −0.0865 | 0.6146 | 0.8664 | 0.026* | |
O5 | 0.54975 (12) | 0.68595 (10) | 0.29512 (9) | 0.0171 (2) | |
H5A | 0.601 (2) | 0.6366 (18) | 0.3077 (8) | 0.026* | |
C24 | 0.64511 (17) | 0.71837 (16) | 0.10209 (13) | 0.0223 (3) | |
H24A | 0.6292 | 0.7106 | 0.0328 | 0.033* | |
H24B | 0.734 | 0.6737 | 0.1019 | 0.033* | |
H24C | 0.6429 | 0.8026 | 0.1135 | 0.033* | |
C25 | 0.53594 (16) | 0.66945 (13) | 0.19152 (12) | 0.0167 (3) | |
H25A | 0.4458 | 0.71 | 0.1876 | 0.02* | |
H25B | 0.5413 | 0.5834 | 0.1818 | 0.02* | |
C27 | 0.67313 (16) | 0.52015 (13) | 0.60771 (13) | 0.0170 (3) | |
H27A | 0.6896 | 0.4324 | 0.6031 | 0.02* | |
H27B | 0.6122 | 0.5401 | 0.6804 | 0.02* | |
C26 | 0.8050 (2) | 0.56271 (18) | 0.5932 (2) | 0.0415 (5) | |
H26A | 0.8668 | 0.5411 | 0.5222 | 0.062* | |
H26B | 0.8454 | 0.5254 | 0.6491 | 0.062* | |
H26C | 0.7893 | 0.6495 | 0.5988 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00918 (8) | 0.01126 (8) | 0.00869 (8) | −0.00253 (6) | −0.00274 (6) | −0.00020 (6) |
Cu2 | 0.01051 (8) | 0.00998 (8) | 0.00809 (8) | −0.00296 (6) | −0.00396 (6) | 0.00012 (6) |
Cu3 | 0.00953 (8) | 0.01005 (8) | 0.00861 (8) | −0.00248 (6) | −0.00404 (6) | 0.00070 (6) |
O1 | 0.0131 (5) | 0.0153 (5) | 0.0117 (5) | −0.0038 (4) | −0.0056 (4) | −0.0016 (4) |
O2 | 0.0143 (5) | 0.0144 (5) | 0.0118 (5) | −0.0017 (4) | −0.0061 (4) | 0.0021 (4) |
O3 | 0.0113 (5) | 0.0131 (5) | 0.0127 (5) | −0.0026 (4) | −0.0020 (4) | −0.0008 (4) |
O4 | 0.0127 (5) | 0.0166 (5) | 0.0141 (5) | −0.0006 (4) | −0.0016 (4) | −0.0009 (4) |
O7 | 0.0106 (5) | 0.0099 (5) | 0.0094 (5) | −0.0018 (4) | −0.0036 (4) | −0.0001 (4) |
N1 | 0.0122 (6) | 0.0129 (6) | 0.0110 (6) | −0.0037 (4) | −0.0028 (4) | −0.0004 (4) |
N2 | 0.0128 (6) | 0.0121 (5) | 0.0114 (6) | −0.0030 (4) | −0.0047 (5) | −0.0005 (4) |
N3 | 0.0109 (5) | 0.0111 (5) | 0.0108 (5) | −0.0017 (4) | −0.0048 (4) | −0.0006 (4) |
N4 | 0.0118 (6) | 0.0124 (5) | 0.0094 (5) | −0.0021 (4) | −0.0043 (4) | −0.0002 (4) |
N5 | 0.0128 (6) | 0.0108 (5) | 0.0110 (5) | −0.0019 (4) | −0.0047 (5) | 0.0001 (4) |
N6 | 0.0114 (6) | 0.0119 (5) | 0.0121 (6) | −0.0028 (4) | −0.0032 (5) | −0.0001 (4) |
C1 | 0.0176 (7) | 0.0154 (7) | 0.0108 (6) | −0.0053 (5) | −0.0026 (5) | 0.0009 (5) |
C2 | 0.0208 (7) | 0.0170 (7) | 0.0117 (7) | −0.0052 (6) | −0.0066 (6) | 0.0018 (5) |
C3 | 0.0166 (7) | 0.0142 (7) | 0.0128 (7) | −0.0040 (5) | −0.0068 (6) | 0.0002 (5) |
C4 | 0.0110 (6) | 0.0111 (6) | 0.0153 (7) | −0.0014 (5) | −0.0038 (5) | −0.0020 (5) |
C5 | 0.0127 (7) | 0.0140 (7) | 0.0141 (7) | −0.0029 (5) | −0.0013 (5) | −0.0006 (5) |
C6 | 0.0146 (7) | 0.0127 (6) | 0.0102 (6) | −0.0024 (5) | −0.0019 (5) | 0.0001 (5) |
C7 | 0.0147 (7) | 0.0130 (6) | 0.0147 (7) | −0.0025 (5) | −0.0077 (5) | 0.0005 (5) |
C8 | 0.0124 (7) | 0.0165 (7) | 0.0193 (7) | −0.0024 (5) | −0.0078 (6) | −0.0006 (6) |
O8 | 0.0558 (10) | 0.0408 (8) | 0.0249 (7) | 0.0325 (7) | −0.0222 (7) | −0.0175 (6) |
C9 | 0.0108 (6) | 0.0159 (7) | 0.0166 (7) | −0.0030 (5) | −0.0038 (5) | −0.0009 (5) |
C10 | 0.0116 (6) | 0.0123 (6) | 0.0109 (6) | −0.0063 (5) | −0.0035 (5) | 0.0027 (5) |
C11 | 0.0135 (7) | 0.0112 (6) | 0.0112 (6) | −0.0044 (5) | −0.0051 (5) | 0.0020 (5) |
C12 | 0.0139 (7) | 0.0149 (7) | 0.0137 (7) | −0.0027 (5) | −0.0046 (5) | −0.0009 (5) |
C13 | 0.0136 (7) | 0.0188 (7) | 0.0181 (7) | −0.0022 (6) | −0.0069 (6) | 0.0014 (6) |
C14 | 0.0194 (7) | 0.0207 (7) | 0.0130 (7) | −0.0081 (6) | −0.0096 (6) | 0.0036 (5) |
C15 | 0.0251 (8) | 0.0145 (7) | 0.0125 (7) | −0.0037 (6) | −0.0069 (6) | −0.0015 (5) |
C16 | 0.0181 (7) | 0.0121 (6) | 0.0143 (7) | −0.0009 (5) | −0.0064 (6) | 0.0009 (5) |
C17 | 0.0125 (6) | 0.0156 (7) | 0.0102 (6) | −0.0021 (5) | −0.0051 (5) | 0.0005 (5) |
C18 | 0.0148 (7) | 0.0151 (7) | 0.0119 (7) | −0.0038 (5) | −0.0047 (5) | 0.0010 (5) |
C19 | 0.0162 (7) | 0.0162 (7) | 0.0155 (7) | −0.0021 (5) | −0.0054 (6) | −0.0020 (5) |
C20 | 0.0248 (8) | 0.0144 (7) | 0.0178 (7) | −0.0060 (6) | −0.0069 (6) | −0.0008 (6) |
C21 | 0.0246 (8) | 0.0217 (8) | 0.0229 (8) | −0.0123 (7) | −0.0001 (7) | 0.0010 (6) |
C22 | 0.0214 (8) | 0.0217 (8) | 0.0296 (9) | −0.0064 (7) | 0.0085 (7) | −0.0032 (7) |
C23 | 0.0212 (8) | 0.0147 (7) | 0.0232 (8) | −0.0040 (6) | 0.0019 (6) | −0.0012 (6) |
O5 | 0.0203 (6) | 0.0151 (5) | 0.0155 (5) | 0.0042 (4) | −0.0077 (4) | −0.0029 (4) |
C24 | 0.0227 (8) | 0.0292 (9) | 0.0161 (7) | −0.0059 (7) | −0.0064 (6) | −0.0009 (6) |
C25 | 0.0205 (7) | 0.0152 (7) | 0.0161 (7) | −0.0029 (6) | −0.0071 (6) | −0.0026 (5) |
C27 | 0.0198 (7) | 0.0130 (7) | 0.0181 (7) | −0.0004 (6) | −0.0064 (6) | −0.0011 (5) |
C26 | 0.0208 (9) | 0.0276 (10) | 0.0754 (16) | −0.0017 (7) | −0.0088 (10) | −0.0209 (10) |
Cu1—N6 | 1.9291 (12) | C8—H8 | 0.95 |
Cu1—N1 | 1.9392 (12) | O8—C27 | 1.417 (2) |
Cu1—O7 | 1.9932 (10) | O8—H10 | 0.73 (3) |
Cu1—O3 | 2.0103 (10) | C9—H9 | 0.95 |
Cu1—O4 | 2.6155 (10) | C10—C11 | 1.5041 (19) |
Cu2—N3 | 1.9366 (12) | C11—C16 | 1.394 (2) |
Cu2—N2 | 1.9471 (12) | C11—C12 | 1.396 (2) |
Cu2—O1 | 1.9781 (10) | C12—C13 | 1.392 (2) |
Cu2—O7 | 1.9827 (10) | C12—H12 | 0.95 |
Cu3—N5 | 1.9550 (12) | C13—C14 | 1.389 (2) |
Cu3—N4 | 1.9591 (12) | C13—H13 | 0.95 |
Cu3—O7 | 1.9899 (10) | C14—C15 | 1.389 (2) |
Cu3—O2i | 2.0086 (10) | C14—H14 | 0.95 |
Cu3—O5 | 2.3168 (11) | C15—C16 | 1.393 (2) |
O1—C10 | 1.2633 (17) | C15—H15 | 0.95 |
O2—C10 | 1.2600 (17) | C16—H16 | 0.95 |
O2—Cu3i | 2.0086 (10) | C17—C18 | 1.499 (2) |
O3—C17 | 1.2709 (18) | C18—C23 | 1.394 (2) |
O4—C17 | 1.2566 (18) | C18—C19 | 1.396 (2) |
O7—H11 | 0.76 (2) | C19—C20 | 1.392 (2) |
N1—C1 | 1.3374 (18) | C19—H19 | 0.95 |
N1—N2 | 1.3654 (16) | C20—C21 | 1.385 (2) |
N2—C3 | 1.3460 (18) | C20—H20 | 0.95 |
N3—C4 | 1.3418 (18) | C21—C22 | 1.391 (2) |
N3—N4 | 1.3663 (16) | C21—H21 | 0.95 |
N4—C6 | 1.3402 (18) | C22—C23 | 1.389 (2) |
N5—C7 | 1.3446 (18) | C22—H22 | 0.95 |
N5—N6 | 1.3626 (17) | C23—H23 | 0.95 |
N6—C9 | 1.3461 (18) | O5—C25 | 1.4320 (18) |
C1—C2 | 1.389 (2) | O5—H5A | 0.75 (2) |
C1—H1 | 0.95 | C24—C25 | 1.511 (2) |
C2—C3 | 1.389 (2) | C24—H24A | 0.98 |
C2—H2 | 0.95 | C24—H24B | 0.98 |
C3—H3 | 0.95 | C24—H24C | 0.98 |
C4—C5 | 1.388 (2) | C25—H25A | 0.99 |
C4—H4 | 0.95 | C25—H25B | 0.99 |
C5—C6 | 1.391 (2) | C27—C26 | 1.495 (2) |
C5—H5 | 0.95 | C27—H27A | 0.99 |
C6—H6 | 0.95 | C27—H27B | 0.99 |
C7—C8 | 1.386 (2) | C26—H26A | 0.98 |
C7—H7 | 0.95 | C26—H26B | 0.98 |
C8—C9 | 1.383 (2) | C26—H26C | 0.98 |
N6—Cu1—N1 | 176.43 (5) | C27—O8—H10 | 110 (2) |
N6—Cu1—O7 | 89.83 (5) | N6—C9—C8 | 109.81 (13) |
N1—Cu1—O7 | 88.66 (5) | N6—C9—H9 | 125.1 |
N6—Cu1—O3 | 90.38 (5) | C8—C9—H9 | 125.1 |
N1—Cu1—O3 | 91.64 (5) | O2—C10—O1 | 125.14 (13) |
O7—Cu1—O3 | 170.42 (4) | O2—C10—C11 | 117.31 (12) |
N3—Cu2—N2 | 174.97 (5) | O1—C10—C11 | 117.55 (12) |
N3—Cu2—O1 | 93.18 (5) | C16—C11—C12 | 119.80 (13) |
N2—Cu2—O1 | 88.71 (5) | C16—C11—C10 | 119.76 (13) |
N3—Cu2—O7 | 89.06 (5) | C12—C11—C10 | 120.44 (13) |
N2—Cu2—O7 | 88.55 (5) | C13—C12—C11 | 120.01 (14) |
O1—Cu2—O7 | 173.24 (4) | C13—C12—H12 | 120.0 |
N5—Cu3—N4 | 170.64 (5) | C11—C12—H12 | 120.0 |
N5—Cu3—O7 | 89.44 (4) | C14—C13—C12 | 119.95 (14) |
N4—Cu3—O7 | 87.98 (4) | C14—C13—H13 | 120.0 |
N5—Cu3—O2i | 90.09 (5) | C12—C13—H13 | 120.0 |
N4—Cu3—O2i | 91.58 (5) | C13—C14—C15 | 120.29 (14) |
O7—Cu3—O2i | 174.28 (4) | C13—C14—H14 | 119.9 |
N5—Cu3—O5 | 93.33 (5) | C15—C14—H14 | 119.9 |
N4—Cu3—O5 | 95.98 (5) | C14—C15—C16 | 119.95 (14) |
O7—Cu3—O5 | 100.03 (4) | C14—C15—H15 | 120.0 |
O2i—Cu3—O5 | 85.69 (4) | C16—C15—H15 | 120.0 |
C10—O1—Cu2 | 119.78 (9) | C15—C16—C11 | 120.00 (14) |
C10—O2—Cu3i | 123.31 (9) | C15—C16—H16 | 120.0 |
C17—O3—Cu1 | 104.76 (9) | C11—C16—H16 | 120.0 |
Cu2—O7—Cu3 | 117.22 (5) | O4—C17—O3 | 122.41 (13) |
Cu2—O7—Cu1 | 115.10 (5) | O4—C17—C18 | 119.97 (13) |
Cu3—O7—Cu1 | 116.42 (5) | O3—C17—C18 | 117.62 (13) |
Cu2—O7—H11 | 99.7 (18) | C23—C18—C19 | 119.67 (14) |
Cu3—O7—H11 | 105.3 (18) | C23—C18—C17 | 120.34 (13) |
Cu1—O7—H11 | 98.8 (18) | C19—C18—C17 | 119.97 (13) |
C1—N1—N2 | 108.23 (12) | C20—C19—C18 | 120.01 (14) |
C1—N1—Cu1 | 129.67 (10) | C20—C19—H19 | 120.0 |
N2—N1—Cu1 | 121.21 (9) | C18—C19—H19 | 120.0 |
C3—N2—N1 | 107.82 (12) | C21—C20—C19 | 120.08 (15) |
C3—N2—Cu2 | 131.65 (10) | C21—C20—H20 | 120.0 |
N1—N2—Cu2 | 120.28 (9) | C19—C20—H20 | 120.0 |
C4—N3—N4 | 108.19 (11) | C20—C21—C22 | 120.08 (15) |
C4—N3—Cu2 | 131.04 (10) | C20—C21—H21 | 120.0 |
N4—N3—Cu2 | 120.71 (9) | C22—C21—H21 | 120.0 |
C6—N4—N3 | 107.81 (11) | C23—C22—C21 | 120.12 (16) |
C6—N4—Cu3 | 130.08 (10) | C23—C22—H22 | 119.9 |
N3—N4—Cu3 | 121.89 (9) | C21—C22—H22 | 119.9 |
C7—N5—N6 | 107.68 (12) | C22—C23—C18 | 120.03 (15) |
C7—N5—Cu3 | 131.52 (10) | C22—C23—H23 | 120.0 |
N6—N5—Cu3 | 120.80 (9) | C18—C23—H23 | 120.0 |
C9—N6—N5 | 108.06 (12) | C25—O5—Cu3 | 124.88 (9) |
C9—N6—Cu1 | 129.94 (10) | C25—O5—H5A | 109.5 |
N5—N6—Cu1 | 121.93 (9) | Cu3—O5—H5A | 125.5 |
N1—C1—C2 | 109.86 (13) | C25—C24—H24A | 109.5 |
N1—C1—H1 | 125.1 | C25—C24—H24B | 109.5 |
C2—C1—H1 | 125.1 | H24A—C24—H24B | 109.5 |
C1—C2—C3 | 104.43 (13) | C25—C24—H24C | 109.5 |
C1—C2—H2 | 127.8 | H24A—C24—H24C | 109.5 |
C3—C2—H2 | 127.8 | H24B—C24—H24C | 109.5 |
N2—C3—C2 | 109.66 (13) | O5—C25—C24 | 111.55 (13) |
N2—C3—H3 | 125.2 | O5—C25—H25A | 109.3 |
C2—C3—H3 | 125.2 | C24—C25—H25A | 109.3 |
N3—C4—C5 | 109.74 (13) | O5—C25—H25B | 109.3 |
N3—C4—H4 | 125.1 | C24—C25—H25B | 109.3 |
C5—C4—H4 | 125.1 | H25A—C25—H25B | 108.0 |
C4—C5—C6 | 104.31 (13) | O8—C27—C26 | 112.79 (17) |
C4—C5—H5 | 127.8 | O8—C27—H27A | 109.0 |
C6—C5—H5 | 127.8 | C26—C27—H27A | 109.0 |
N4—C6—C5 | 109.95 (13) | O8—C27—H27B | 109.0 |
N4—C6—H6 | 125.0 | C26—C27—H27B | 109.0 |
C5—C6—H6 | 125.0 | H27A—C27—H27B | 107.8 |
N5—C7—C8 | 110.03 (13) | C27—C26—H26A | 109.5 |
N5—C7—H7 | 125.0 | C27—C26—H26B | 109.5 |
C8—C7—H7 | 125.0 | H26A—C26—H26B | 109.5 |
C9—C8—C7 | 104.41 (13) | C27—C26—H26C | 109.5 |
C9—C8—H8 | 127.8 | H26A—C26—H26C | 109.5 |
C7—C8—H8 | 127.8 | H26B—C26—H26C | 109.5 |
C1—N1—N2—C3 | 0.21 (15) | Cu3i—O2—C10—C11 | 145.05 (10) |
Cu1—N1—N2—C3 | −169.96 (9) | Cu2—O1—C10—O2 | −33.95 (18) |
C1—N1—N2—Cu2 | 175.10 (9) | Cu2—O1—C10—C11 | 145.80 (10) |
Cu1—N1—N2—Cu2 | 4.94 (14) | O2—C10—C11—C16 | 11.01 (19) |
C4—N3—N4—C6 | 0.16 (15) | O1—C10—C11—C16 | −168.77 (13) |
Cu2—N3—N4—C6 | −177.39 (9) | O2—C10—C11—C12 | −168.85 (13) |
C4—N3—N4—Cu3 | 175.24 (9) | O1—C10—C11—C12 | 11.38 (19) |
Cu2—N3—N4—Cu3 | −2.31 (14) | C16—C11—C12—C13 | 0.1 (2) |
C7—N5—N6—C9 | −0.45 (15) | C10—C11—C12—C13 | 179.95 (13) |
Cu3—N5—N6—C9 | 179.42 (9) | C11—C12—C13—C14 | 0.2 (2) |
C7—N5—N6—Cu1 | 176.74 (9) | C12—C13—C14—C15 | −0.4 (2) |
Cu3—N5—N6—Cu1 | −3.39 (14) | C13—C14—C15—C16 | 0.2 (2) |
N2—N1—C1—C2 | −0.25 (16) | C14—C15—C16—C11 | 0.1 (2) |
Cu1—N1—C1—C2 | 168.82 (10) | C12—C11—C16—C15 | −0.3 (2) |
N1—C1—C2—C3 | 0.18 (17) | C10—C11—C16—C15 | 179.89 (13) |
N1—N2—C3—C2 | −0.09 (16) | Cu1—O3—C17—O4 | 6.52 (16) |
Cu2—N2—C3—C2 | −174.19 (10) | Cu1—O3—C17—C18 | −172.80 (10) |
C1—C2—C3—N2 | −0.05 (17) | O4—C17—C18—C23 | 178.73 (14) |
N4—N3—C4—C5 | 0.04 (16) | O3—C17—C18—C23 | −1.9 (2) |
Cu2—N3—C4—C5 | 177.25 (10) | O4—C17—C18—C19 | −2.8 (2) |
N3—C4—C5—C6 | −0.22 (16) | O3—C17—C18—C19 | 176.59 (13) |
N3—N4—C6—C5 | −0.31 (16) | C23—C18—C19—C20 | −0.1 (2) |
Cu3—N4—C6—C5 | −174.84 (10) | C17—C18—C19—C20 | −178.63 (13) |
C4—C5—C6—N4 | 0.32 (16) | C18—C19—C20—C21 | 0.9 (2) |
N6—N5—C7—C8 | 0.35 (16) | C19—C20—C21—C22 | −1.1 (3) |
Cu3—N5—C7—C8 | −179.50 (10) | C20—C21—C22—C23 | 0.3 (3) |
N5—C7—C8—C9 | −0.12 (17) | C21—C22—C23—C18 | 0.5 (3) |
N5—N6—C9—C8 | 0.38 (16) | C19—C18—C23—C22 | −0.6 (2) |
Cu1—N6—C9—C8 | −176.50 (10) | C17—C18—C23—C22 | 177.90 (16) |
C7—C8—C9—N6 | −0.16 (17) | Cu3—O5—C25—C24 | 92.04 (14) |
Cu3i—O2—C10—O1 | −35.20 (19) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O8—H10···O4ii | 0.73 (3) | 2.00 (3) | 2.7325 (18) | 173 (3) |
O7—H11···O8 | 0.76 (2) | 1.87 (2) | 2.6175 (17) | 168 (2) |
O5—H5A···O4ii | 0.75 | 2.0 | 2.7393 (16) | 170 |
C27—H27A···N5ii | 0.99 | 2.68 | 3.6640 (19) | 173 |
Symmetry code: (ii) −x+1, −y+1, −z+1. |
Acknowledgements
The Rectoría and Vicerrectoría de Investigación, Universidad de Costa Rica, are acknowledged for funding the purchase of a D8 Venture SC XRD. CELEQ is thanked for supplying liquid nitrogen for the X-ray measurements.
Funding information
Funding for this research was provided by: Centro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica; Escuela de Química, Universidad de Costa Rica.
References
Al Isawi, W. A., Ahmed, B. M., Hartman, C. K., Seybold, A. N. & Mezei, G. (2018). Inorg. Chim. Acta, 475, 65–72. Web of Science CSD CrossRef CAS Google Scholar
Angaroni, M., Ardizzoia, G. A., Beringhelli, T., La Monica, G., Gatteschi, D., Masciocchi, N. & Moret, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3305–3309. CSD CrossRef Web of Science Google Scholar
Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C. & Piccinelli, F. (2005). Inorg. Chem. 44, 6265–6276. Web of Science CSD CrossRef PubMed CAS Google Scholar
Casarin, M., Corvaja, C., Di Nicola, C., Falcomer, D., Franco, L., Monari, M., Pandolfo, L., Pettinari, C., Piccinelli, F. & Tagliatesta, P. (2004). Inorg. Chem. 43, 5865–5876. Web of Science CSD CrossRef PubMed CAS Google Scholar
Deacon, G. B. & Phillips, R. J. (1980). Coord. Chem. Rev. 33, 227–250. CrossRef CAS Web of Science Google Scholar
Delgado, S., Gallego, A., Castillo, O. & Zamora, F. (2011). Dalton Trans. 40, 847–852. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ferrer, S., Haasnoot, J. G., Reedijk, J., Müller, E., Biagini Cingi, M., Lanfranchi, M., Manotti Lanfredi, A. M. & Ribas, J. (2000). Inorg. Chem. 39, 1859–1867. Web of Science CSD CrossRef PubMed CAS Google Scholar
Ferrer, S., Lloret, F., Bertomeu, I., Alzuet, G., Borrás, J., García-Granda, S., Liu-González, M. & Haasnoot, J. G. (2002). Inorg. Chem. 41, 5821–5830. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gass, I. A., Milios, C. J., Whittaker, G., Fabiani, F. P. A., Parsons, S., Murrie, M., Perlepes, S. P. & Brechin, E. K. (2006). Inorg. Chem. 45, 5281–5283. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hartman, C. K. & Mezei, G. (2017). Inorg. Chem. 56, 10609–10624. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hulsbergen, F. B., ten Hoedt, R. W. M., Verschoor, G. C., Reedijk, J. & Spek, A. L. (1983). J. Chem. Soc. Dalton Trans. pp. 539–545. CSD CrossRef Web of Science Google Scholar
Kupcewicz, B., Ciolkowski, M., Karwowski, B. T., Rozalski, M., Krajewska, U., Lorenz, I.-P., Mayer, P. & Budzisz, E. (2013). J. Mol. Struct. 1052, 32–37. Web of Science CSD CrossRef CAS Google Scholar
Ledezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 64, 45–51. CAS Google Scholar
Ledezma-Gairaud, M., Pineda, L. W., Aromí, G. & Sañudo, E. C. (2015). Inorg. Chim. Acta, 434, 215–220. CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mezei, G. (2016). Acta Cryst. E72, 1064–1067. Web of Science CSD CrossRef IUCr Journals Google Scholar
Milios, C. J., Prescimone, A., Sánchez-Benítez, J., Parsons, S., Murrie, M. & Brechin, E. K. (2006a). Inorg. Chem. 45, 7053–7055. Web of Science CSD CrossRef PubMed CAS Google Scholar
Milios, C. J., Vinslava, A., Whittaker, G., Parsons, S., Wernsdorfer, W., Christou, G., Perlepes, S. P. & Brechin, E. K. (2006b). Inorg. Chem. 45, 5272–5274. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nakamoto, K. (1997). Application in Organometallic Chemistry. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 5th ed., p. 271. New York: Wiley-Interscience. Google Scholar
Pons-Balagué, A., Ioanidis, N., Wernsdorfer, W., Yamaguchi, A. & Sañudo, E. C. (2011). Dalton Trans. 40, 11765–11769. Web of Science PubMed Google Scholar
Pons-Balagué, A., Heras Ojea, M. J., Ledezma-Gairaud, M., Reta Mañeru, D., Teat, J. S., Sánchez Costa, J., Aromí, G. & Sañudo, E. C. (2013). Polyhedron, 52, 781–787. Google Scholar
Sakai, K., Yamada, Y., Tsubomura, T., Yabuki, M. & Yamaguchi, M. (1996). Inorg. Chem. 35, 542–544. CSD CrossRef PubMed CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Viciano-Chumillas, M., Tanase, S., Aromí, G., Smits, J. M. M., de Gelder, R., Solans, X., Bouwman, E. & Reedijk, J. (2007). Eur. J. Inorg. Chem. pp. 2635–2640. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.