metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Crystal structure of a salt with a protonated sugar cation and a cobalt(II) complex anion: (GlcN–H, K)[Co(NCS)4]·2H2O

CROSSMARK_Color_square_no_text.svg

aLeibniz-Institut für Katalyse e.V., Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, bUniversität Rostock, Institut für Chemie, Organische Chemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and cUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 July 2019; accepted 14 August 2019; online 6 September 2019)

The title compound, D-(+)-glucosa­mmonium potassium tetra­thio­cyanato­cobaltate(II) dihydrate, K(C6H14NO5)[Co(NCS)4]·2H2O or (GlcNH)(K)[Co(NCS)4]·2H2O, has been obtained as a side product of an incomplete salt metathesis reaction of D-(+)-glucosa­mine hydro­chloride (GlcN·HCl) and K2[Co(NCS)4]. The asymmetric unit contains a D-(+)-glucos­ammonium cation, a potassium cation, a tetra­iso­thio­cyanato­cobalt(II) complex anion and two water mol­ecules. The water mol­ecules coordinate to the potassium cation, which is further coordinated via three short K+⋯SCN contacts involving three [Co(NCS)4]2− complex anions and via three O atoms of two D-(+)-glucosa­mmonium cations, leading to an overall eightfold coordination around the potassium cation. Hydrogen-bonding inter­actions between the building blocks consolidate the three-dimensional arrangement.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Over about the last two decades, ionic liquids containing paramagnetic complex anions (magnetic ionic liquids, MIL) have attracted great inter­est because of their unique properties and possible applications (Santos et al., 2014[Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008-40018.]; Clark et al., 2016[Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9-21.]). During our ongoing efforts to synthesize cobalt-based ionic liquids with low melting points (Kozlova et al., 2009[Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524-1528.]; Geppert-Rybczyńska et al., 2010[Geppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534-5538.]; Peppel et al., 2010[Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116-7119.]), the title compound was obtained as a side product in an attempted synthesis of new low-melting transition-metal systems containing protonated bio-mol­ecules, i.e. sugar-based cations.

Fig. 1[link] shows the mol­ecular structures of the three parts present in the asymmetric unit. The title compound consists of a potassium cation that is bonded in an eightfold fashion to two water mol­ecules, three O atoms of two neighbouring D-(+)-glucosa­mmonium cations, and to three S atoms of three [Co(NCS)4]2− complex anions (Fig. 2[link]). All bond lengths and angles are in the expected ranges (Table 1[link]).

Table 1
Selected bond lengths (Å)

Co1—N3 1.944 (2) N4—C4 1.162 (3)
Co1—N4 1.958 (2) C4—S4 1.629 (2)
Co1—N2 1.968 (2) S1—K1i 3.3256 (7)
Co1—N1 1.970 (2) S2—K1 3.3287 (8)
N1—C1 1.153 (3) S4—K1ii 3.5399 (7)
C1—S1 1.638 (2) K1—O6 2.765 (2)
N2—C2 1.171 (3) K1—O1iii 2.812 (1)
C2—S2 1.613 (2) K1—O7 2.860 (2)
N3—C3 1.163 (3) K1—O3iv 2.864 (1)
C3—S3 1.630 (2) K1—O5iii 2.902 (2)
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structures of the cation–cation–anion triple present in the title compound, with atoms being presented as 50% displacement ellipsoids and with atom labelling.
[Figure 2]
Figure 2
View of the coordination environment of the potassium cation in (GlcNH)(K)[Co(NCS)4]·2H2O.

In the crystal structure, hydrogen bonds additionally connect all the structural units. All hydrogen atoms that are attached to the N and O atoms (except one H atom of O6 that represents a water O atom) are involved in hydrogen bonding. Table 2[link] lists all relevant inter­actions up to D⋯A distances of 3.3 Å. Fig. 3[link] shows a cut-out of the structure with hydrogen bonds shown as red dashed lines. The three-dimensional structure can be described as a sequence of anionic and cationic layers extending parallel to (011), stacked along [011], as shown in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O7iii 0.85 (1) 1.84 (1) 2.657 (2) 160 (3)
N5—H5C⋯O5v 0.91 2.09 2.967 (2) 162
O6—H6C⋯O4vi 0.85 (1) 2.20 (1) 3.010 (2) 160 (2)
O2—H2A⋯O4vii 0.85 (1) 2.20 (1) 3.015 (2) 162 (3)
N5—H5B⋯N2viii 0.91 2.26 3.145 (2) 166
N5—H5D⋯O6iii 0.91 2.30 3.175 (2) 160
O5—H5A⋯S1 0.85 (1) 2.39 (1) 3.233 (2) 176 (2)
O4—H4A⋯S4iii 0.85 (1) 2.43 (1) 3.266 (2) 170 (3)
O7—H7C⋯S1iii 0.85 (1) 2.49 (1) 3.298 (2) 159 (2)
Symmetry codes: (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (vi) x, y, z+1; (vii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (viii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Hydrogen-bonding contacts between the GlcNH+ cation, the (K(H2O)2)+ cation and the [Co(NCS)4]2– anion.
[Figure 4]
Figure 4
The packing of the ions in the crystal structure of the title compound.

Synthesis and crystallization

The title compound, (GlcNH)(K)[Co(NCS)4]·2H2O, was obtained as a side product in an incomplete salt metathesis reaction of 2 eq. D-(+)-glucosa­mine hydro­chloride (GlcN·HCl) and 1 eq. K2[Co(NCS)4] (Peppel et al., 2010[Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116-7119.]). K2[Co(NCS)4] was obtained by heating KSCN (15.0 g, 154.0 mmol, 4 eq.) and anhydrous CoCl2 (5.0 g, 38.5 mmol, 1 eq.) under reflux in 250 ml acetone for 2 h. The solvent was completely removed in vacuo and the residue was thoroughly extracted with ethyl acetate until the filtrate became colourless. The solvent of the combined filtrates was removed in vacuo and the resulting deep-blue solid was dried overnight at 393 K (14.0 g, 98%). Dry K2[Co(NCS)4] (1.0 g, 2.7 mmol, 1 eq.) and GlcN·HCl (1.2 g, 5.4 mmol, 2 eq.) were heated under reflux in 50 ml of ethanol overnight. The hot solution was filtered and the filtrate was slowly cooled to room temperature. Deep-blue single crystals of (GlcNH)(K)[Co(NCS)4]·2H2O were deposited at the bottom of the flask.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A few low-angle reflections were omitted from the refinement because their intensities were affected by the beam stop.

Table 3
Experimental details

Crystal data
Chemical formula [KCo(C6H14NO5)(NCS)4(H2O)2]
Mr 546.56
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.3713 (2), 14.1059 (3), 15.7347 (4)
V3) 2079.98 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.47
Crystal size (mm) 0.65 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker APEX-X8 CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 24428, 9699, 7503
Rint 0.031
(sin θ/λ)max−1) 0.834
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.058, 0.98
No. of reflections 9699
No. of parameters 285
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.59, −0.68
Absolute structure Flack x determined using 2715 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.004 (5)
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Crystal Impact, 2014[Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and ciftab2016 (Köckerling, 2016[Köckerling, M. (2016). ciftab. University of Rostock, Germany.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: ciftab2016 (Köckerling, 2016).

Poly[diaqua[µ-D-(+)-glucosammonium]tri-µ-thiocyanato-thiocyanatocobalt(II)potassium(I)] top
Crystal data top
[KCo(C6H14NO5)(NCS)4(H2O)2]Dx = 1.745 Mg m3
Mr = 546.56Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9954 reflections
a = 9.3713 (2) Åθ = 2.6–36.0°
b = 14.1059 (3) ŵ = 1.47 mm1
c = 15.7347 (4) ÅT = 173 K
V = 2079.98 (8) Å3Block, blue
Z = 40.65 × 0.07 × 0.05 mm
F(000) = 1116
Data collection top
Bruker APEX-X8 CCD
diffractometer
7503 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.031
φ and ω scansθmax = 36.4°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1415
k = 2313
24428 measured reflectionsl = 2616
9699 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0187P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
9699 reflectionsΔρmax = 0.59 e Å3
285 parametersΔρmin = 0.68 e Å3
10 restraintsAbsolute structure: Flack x determined using 2715 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.62109 (3)0.76616 (2)0.48158 (2)0.01938 (7)
N10.7606 (2)0.8376 (1)0.4133 (1)0.0268 (4)
C10.8322 (2)0.8742 (2)0.3636 (1)0.0191 (4)
S10.93387 (6)0.92611 (4)0.29276 (4)0.0223 (1)
N20.5171 (2)0.8625 (1)0.5476 (1)0.0232 (4)
C20.4283 (2)0.8943 (2)0.5915 (1)0.0189 (4)
S20.30724 (6)0.94110 (5)0.65107 (4)0.0305 (1)
N30.4981 (2)0.6893 (1)0.4099 (1)0.0274 (4)
C30.4293 (2)0.6383 (2)0.3688 (1)0.0200 (4)
S30.33187 (6)0.56658 (4)0.31185 (4)0.0257 (1)
N40.7071 (2)0.6805 (1)0.5650 (1)0.0250 (4)
C40.7734 (2)0.6367 (1)0.6135 (1)0.0185 (4)
S40.86663 (6)0.57317 (4)0.67975 (3)0.0233 (1)
K10.37801 (5)0.88532 (3)0.85226 (3)0.02172 (9)
O10.5999 (1)0.6576 (1)0.09269 (9)0.0165 (3)
O20.5319 (2)0.6440 (1)0.05053 (9)0.0199 (3)
H2A0.615 (1)0.635 (2)0.070 (2)0.06 (1)*
O30.1598 (1)0.6684 (1)0.0965 (1)0.0196 (3)
H3A0.150 (3)0.693 (2)0.1456 (7)0.049 (9)*
O40.3236 (2)0.8390 (1)0.12991 (9)0.0170 (3)
H4A0.324 (3)0.865 (2)0.1788 (7)0.039 (8)*
O50.7725 (1)0.8081 (1)0.14516 (9)0.0189 (3)
H5A0.819 (2)0.839 (2)0.182 (1)0.030 (7)*
N50.2920 (2)0.5419 (1)0.0135 (1)0.0168 (3)
H5B0.33220.48430.02420.025*
H5C0.29420.57770.06160.025*
H5D0.19990.53380.00330.025*
C50.5299 (2)0.6025 (2)0.0295 (1)0.0161 (4)
H5E0.57590.53860.02630.019*
C60.3738 (2)0.5909 (1)0.0554 (1)0.0141 (3)
H6A0.36840.55240.10860.017*
C70.3019 (2)0.6859 (1)0.0699 (1)0.0136 (4)
H7A0.29830.72020.01440.016*
C80.3854 (2)0.7460 (1)0.1321 (1)0.0126 (3)
H8A0.37680.71890.19060.015*
C90.5425 (2)0.7510 (1)0.1063 (1)0.0130 (4)
H9A0.55220.78920.05300.016*
C100.6299 (2)0.7957 (1)0.1758 (1)0.0169 (4)
H10A0.58860.85770.19190.020*
H10B0.63010.75430.22670.020*
O60.4544 (2)0.9728 (1)1.0028 (1)0.0300 (4)
H6B0.437 (3)1.0320 (4)1.001 (2)0.048 (9)*
H6C0.411 (3)0.948 (2)1.045 (1)0.10 (2)*
O70.5753 (2)0.7830 (1)0.7483 (1)0.0294 (4)
H7B0.635 (2)0.811 (1)0.716 (1)0.07 (1)*
H7C0.559 (3)0.7274 (8)0.730 (2)0.06 (1)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0206 (1)0.0181 (1)0.0194 (1)0.0007 (1)0.0012 (1)0.0005 (1)
N10.028 (1)0.027 (1)0.026 (1)0.0017 (9)0.0034 (8)0.0009 (9)
C10.0209 (9)0.017 (1)0.019 (1)0.0008 (8)0.0048 (8)0.0036 (8)
S10.0236 (2)0.0243 (3)0.0191 (2)0.0077 (2)0.0008 (2)0.0002 (2)
N20.0247 (9)0.022 (1)0.0229 (9)0.0007 (8)0.0002 (8)0.0010 (8)
C20.0215 (9)0.018 (1)0.018 (1)0.0027 (8)0.0057 (8)0.0033 (9)
S20.0288 (3)0.0370 (3)0.0257 (3)0.0123 (3)0.0029 (2)0.0007 (3)
N30.027 (1)0.023 (1)0.032 (1)0.0023 (8)0.0017 (9)0.0026 (9)
C30.0221 (9)0.018 (1)0.020 (1)0.0030 (8)0.0028 (8)0.0033 (9)
S30.0340 (3)0.0222 (3)0.0210 (3)0.0055 (2)0.0040 (2)0.0022 (2)
N40.0235 (9)0.026 (1)0.025 (1)0.0006 (8)0.0017 (8)0.0020 (8)
C40.0188 (9)0.017 (1)0.020 (1)0.0031 (8)0.0052 (8)0.0037 (8)
S40.0280 (3)0.0238 (3)0.0180 (2)0.0046 (2)0.0015 (2)0.0023 (2)
K10.0173 (2)0.0256 (2)0.0223 (2)0.0020 (2)0.0021 (2)0.0012 (2)
O10.0141 (6)0.0158 (7)0.0196 (7)0.0024 (5)0.0052 (5)0.0050 (6)
O20.0163 (7)0.0268 (9)0.0164 (7)0.0006 (6)0.0022 (6)0.0016 (6)
O30.0133 (6)0.0248 (8)0.0207 (8)0.0039 (6)0.0027 (6)0.0065 (7)
O40.0200 (7)0.0124 (7)0.0187 (7)0.0028 (6)0.0009 (6)0.0040 (6)
O50.0130 (6)0.0270 (8)0.0168 (7)0.0062 (6)0.0004 (6)0.0045 (6)
N50.0175 (7)0.0137 (8)0.0191 (8)0.0017 (6)0.0013 (7)0.0029 (7)
C50.0156 (8)0.0164 (9)0.016 (1)0.0025 (7)0.0039 (7)0.0040 (8)
C60.0175 (8)0.0123 (9)0.0125 (8)0.0011 (8)0.0028 (8)0.0001 (7)
C70.0111 (8)0.0145 (9)0.0153 (9)0.0009 (7)0.0007 (7)0.0011 (7)
C80.0138 (7)0.0113 (9)0.0126 (8)0.0002 (7)0.0008 (7)0.0002 (6)
C90.0145 (8)0.0111 (9)0.0134 (8)0.0003 (7)0.0011 (7)0.0012 (7)
C100.0137 (8)0.022 (1)0.0149 (9)0.0027 (8)0.0001 (8)0.0043 (8)
O60.0395 (9)0.0252 (9)0.025 (1)0.0058 (8)0.0028 (8)0.0036 (7)
O70.0303 (8)0.035 (1)0.0233 (8)0.0009 (8)0.0002 (7)0.0037 (8)
Geometric parameters (Å, º) top
Co1—N31.944 (2)O3—H3A0.850 (1)
Co1—N41.958 (2)O4—C81.434 (2)
Co1—N21.968 (2)O4—H4A0.850 (1)
Co1—N11.970 (2)O5—C101.432 (2)
N1—C11.153 (3)O5—K1iv2.902 (2)
C1—S11.638 (2)O5—H5A0.850 (1)
N2—C21.171 (3)N5—C61.497 (2)
C2—S21.613 (2)N5—H5B0.9100
N3—C31.163 (3)N5—H5C0.9100
C3—S31.630 (2)N5—H5D0.9100
N4—C41.162 (3)C5—C61.527 (3)
C4—S41.629 (2)C5—H5E1.0000
S1—K1i3.3256 (7)C6—C71.517 (3)
S2—K13.3287 (8)C6—H6A1.0000
S4—K1ii3.5399 (7)C7—C81.513 (2)
K1—O62.765 (2)C7—H7A1.0000
K1—O1iii2.812 (1)C8—C91.529 (2)
K1—O72.860 (2)C8—H8A1.0000
K1—O3iv2.864 (1)C9—C101.505 (3)
K1—O5iii2.902 (2)C9—H9A1.0000
K1—C10iii3.481 (2)C10—K1iv3.481 (2)
O1—C51.422 (2)C10—H10A0.9900
O1—C91.440 (2)C10—H10B0.9900
O1—K1iv2.812 (1)O6—H6B0.850 (1)
O2—C51.389 (2)O6—H6C0.850 (1)
O2—H2A0.850 (1)O7—H7B0.850 (1)
O3—C71.417 (2)O7—H7C0.850 (1)
O3—K1iii2.864 (1)
N3—Co1—N4106.83 (9)C7—O3—H3A108 (2)
N3—Co1—N2113.43 (8)K1iii—O3—H3A75 (2)
N4—Co1—N2106.02 (8)C8—O4—H4A111 (2)
N3—Co1—N1111.26 (9)C10—O5—K1iv101.4 (1)
N4—Co1—N1114.08 (8)C10—O5—H5A108 (2)
N2—Co1—N1105.25 (8)K1iv—O5—H5A108 (2)
C1—N1—Co1170.3 (2)C6—N5—H5B109.5
N1—C1—S1179.9 (2)C6—N5—H5C109.5
C1—S1—K1i118.29 (7)H5B—N5—H5C109.5
C2—N2—Co1158.1 (2)C6—N5—H5D109.5
N2—C2—S2178.4 (2)H5B—N5—H5D109.5
C2—S2—K1108.43 (8)H5C—N5—H5D109.5
C3—N3—Co1175.6 (2)O2—C5—O1113.4 (2)
N3—C3—S3179.5 (2)O2—C5—C6107.4 (2)
C4—N4—Co1171.4 (2)O1—C5—C6108.3 (2)
N4—C4—S4178.6 (2)O2—C5—H5E109.2
C4—S4—K1ii88.48 (7)O1—C5—H5E109.2
O6—K1—O1iii94.13 (5)C6—C5—H5E109.2
O6—K1—O7123.22 (5)N5—C6—C7106.8 (2)
O1iii—K1—O7131.81 (5)N5—C6—C5110.3 (2)
O6—K1—O3iv68.80 (5)C7—C6—C5111.8 (2)
O1iii—K1—O3iv135.31 (4)N5—C6—H6A109.3
O7—K1—O3iv55.32 (5)C7—C6—H6A109.3
O6—K1—O5iii119.72 (5)C5—C6—H6A109.3
O1iii—K1—O5iii58.51 (4)O3—C7—C8113.1 (2)
O7—K1—O5iii75.74 (5)O3—C7—C6108.0 (2)
O3iv—K1—O5iii93.51 (4)C8—C7—C6111.3 (2)
O6—K1—S1v75.35 (4)O3—C7—H7A108.1
O1iii—K1—S1v138.60 (3)C8—C7—H7A108.1
O7—K1—S1v84.26 (4)C6—C7—H7A108.1
O3iv—K1—S1v78.59 (3)O4—C8—C7106.8 (1)
O5iii—K1—S1v159.46 (3)O4—C8—C9109.9 (1)
O6—K1—S2139.53 (4)C7—C8—C9110.6 (1)
O1iii—K1—S299.16 (3)O4—C8—H8A109.9
O7—K1—S272.81 (4)C7—C8—H8A109.9
O3iv—K1—S2120.94 (3)C9—C8—H8A109.9
O5iii—K1—S299.65 (3)O1—C9—C10106.7 (2)
S1v—K1—S269.44 (2)O1—C9—C8110.9 (2)
O6—K1—C10iii127.51 (5)C10—C9—C8110.5 (2)
O1iii—K1—C10iii42.47 (4)O1—C9—H9A109.6
O7—K1—C10iii89.37 (5)C10—C9—H9A109.6
O3iv—K1—C10iii117.23 (5)C8—C9—H9A109.6
O5iii—K1—C10iii23.78 (4)O5—C10—C9108.3 (2)
S1v—K1—C10iii154.80 (4)O5—C10—K1iv54.79 (9)
S2—K1—C10iii85.38 (4)C9—C10—K1iv88.0 (1)
O6—K1—S4vi87.44 (4)O5—C10—H10A110.0
O1iii—K1—S4vi66.72 (3)C9—C10—H10A110.0
O7—K1—S4vi135.67 (4)K1iv—C10—H10A160.4
O3iv—K1—S4vi146.68 (3)O5—C10—H10B110.0
O5iii—K1—S4vi119.02 (3)C9—C10—H10B110.0
S1v—K1—S4vi72.82 (2)K1iv—C10—H10B70.7
S2—K1—S4vi63.81 (2)H10A—C10—H10B108.4
C10iii—K1—S4vi95.64 (3)K1—O6—H6B111 (2)
C5—O1—C9115.6 (1)K1—O6—H6C111 (2)
C5—O1—K1iv121.7 (1)H6B—O6—H6C109.5 (2)
C9—O1—K1iv119.9 (1)K1—O7—H7B122 (2)
C5—O2—H2A107 (2)K1—O7—H7C123 (2)
C7—O3—K1iii174.6 (1)H7B—O7—H7C109.5 (2)
C9—O1—C5—O259.7 (2)C6—C7—C8—C950.5 (2)
K1iv—O1—C5—O2101.0 (2)C5—O1—C9—C10179.1 (2)
C9—O1—C5—C659.5 (2)K1iv—O1—C9—C1019.9 (2)
K1iv—O1—C5—C6139.9 (1)C5—O1—C9—C858.7 (2)
O2—C5—C6—N551.3 (2)K1iv—O1—C9—C8140.2 (1)
O1—C5—C6—N5174.2 (2)O4—C8—C9—O1169.3 (1)
O2—C5—C6—C767.4 (2)C7—C8—C9—O151.7 (2)
O1—C5—C6—C755.5 (2)O4—C8—C9—C1072.6 (2)
N5—C6—C7—O361.3 (2)C7—C8—C9—C10169.8 (2)
C5—C6—C7—O3177.9 (1)K1iv—O5—C10—C973.8 (2)
N5—C6—C7—C8174.0 (2)O1—C9—C10—O565.5 (2)
C5—C6—C7—C853.2 (2)C8—C9—C10—O5173.8 (2)
O3—C7—C8—O468.2 (2)O1—C9—C10—K1iv13.8 (1)
C6—C7—C8—O4170.0 (2)C8—C9—C10—K1iv134.4 (1)
O3—C7—C8—C9172.3 (2)
Symmetry codes: (i) x+3/2, y+2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z+1; (v) x+3/2, y+2, z+1/2; (vi) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O7iii0.85 (1)1.84 (1)2.657 (2)160 (3)
N5—H5C···O5vii0.912.092.967 (2)162
O6—H6C···O4viii0.85 (1)2.20 (1)3.010 (2)160 (2)
O2—H2A···O4ix0.85 (1)2.20 (1)3.015 (2)162 (3)
N5—H5B···N2x0.912.263.145 (2)166
N5—H5D···O6iii0.912.303.175 (2)160
O5—H5A···S10.85 (1)2.38 (1)3.233 (2)176 (2)
O4—H4A···S4iii0.85 (1)2.42 (1)3.266 (2)170 (3)
O7—H7C···S1iii0.85 (1)2.49 (1)3.298 (2)159 (2)
O7—H7B···S3iv0.85 (1)2.57 (1)3.344 (2)152 (2)
O6—H6B···N3vi0.85 (1)2.69 (2)3.378 (3)139 (2)
C7—H7A···O5vii1.002.553.397 (2)142
C5—H5E···S4xi1.002.933.560 (2)122
C9—H9A···O3ix1.002.633.560 (2)155
C8—H8A···S31.002.903.828 (2)154
Symmetry codes: (iii) x1/2, y+3/2, z+1; (iv) x+1/2, y+3/2, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x1/2, y+3/2, z; (viii) x, y, z+1; (ix) x+1/2, y+3/2, z; (x) x+1, y1/2, z+1/2; (xi) x+3/2, y+1, z1/2.
 

Acknowledgements

We gratefully acknowledge the maintenance of the XRD equipment through Dr A. Villinger (University of Rostock).

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft, Priority Program SPP 1708 (grant Nos. KO-1616/8-1 and -2).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCrystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGeppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534–5538.  Google Scholar
First citationKöckerling, M. (2016). ciftab. University of Rostock, Germany.  Google Scholar
First citationKozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPeppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116–7119.  Web of Science CSD CrossRef CAS Google Scholar
First citationSantos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds