metal-organic compounds
4]·2H2O
of a salt with a protonated sugar cation and a cobalt(II) complex anion: (GlcN–H, K)[Co(NCS)aLeibniz-Institut für Katalyse e.V., Heterogene Photokatalyse, Albert-Einstein-Str. 29a, D-18059 Rostock, Germany, bUniversität Rostock, Institut für Chemie, Organische Chemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany, and cUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: Martin.Koeckerling@uni-rostock.de
The title compound, D-(+)-glucosammonium potassium tetrathiocyanatocobaltate(II) dihydrate, K(C6H14NO5)[Co(NCS)4]·2H2O or (GlcNH)(K)[Co(NCS)4]·2H2O, has been obtained as a side product of an incomplete salt metathesis reaction of D-(+)-glucosamine hydrochloride (GlcN·HCl) and K2[Co(NCS)4]. The contains a D-(+)-glucosammonium cation, a potassium cation, a tetraisothiocyanatocobalt(II) complex anion and two water molecules. The water molecules coordinate to the potassium cation, which is further coordinated via three short K+⋯SCN− contacts involving three [Co(NCS)4]2− complex anions and via three O atoms of two D-(+)-glucosammonium cations, leading to an overall eightfold coordination around the potassium cation. Hydrogen-bonding interactions between the building blocks consolidate the three-dimensional arrangement.
Keywords: cobalt; glucosamine; ionic liquid; crystal structure.
CCDC reference: 1947086
Structure description
Over about the last two decades, ionic liquids containing paramagnetic complex anions (magnetic ionic liquids, MIL) have attracted great interest because of their unique properties and possible applications (Santos et al., 2014; Clark et al., 2016). During our ongoing efforts to synthesize cobalt-based ionic liquids with low melting points (Kozlova et al., 2009; Geppert-Rybczyńska et al., 2010; Peppel et al., 2010), the title compound was obtained as a side product in an attempted synthesis of new low-melting transition-metal systems containing protonated bio-molecules, i.e. sugar-based cations.
Fig. 1 shows the molecular structures of the three parts present in the The title compound consists of a potassium cation that is bonded in an eightfold fashion to two water molecules, three O atoms of two neighbouring D-(+)-glucosammonium cations, and to three S atoms of three [Co(NCS)4]2− complex anions (Fig. 2). All bond lengths and angles are in the expected ranges (Table 1).
In the lists all relevant interactions up to D⋯A distances of 3.3 Å. Fig. 3 shows a cut-out of the structure with hydrogen bonds shown as red dashed lines. The three-dimensional structure can be described as a sequence of anionic and cationic layers extending parallel to (011), stacked along [011], as shown in Fig. 4.
hydrogen bonds additionally connect all the structural units. All hydrogen atoms that are attached to the N and O atoms (except one H atom of O6 that represents a water O atom) are involved in hydrogen bonding. Table 2
|
Synthesis and crystallization
The title compound, (GlcNH)(K)[Co(NCS)4]·2H2O, was obtained as a side product in an incomplete salt metathesis reaction of 2 eq. D-(+)-glucosamine hydrochloride (GlcN·HCl) and 1 eq. K2[Co(NCS)4] (Peppel et al., 2010). K2[Co(NCS)4] was obtained by heating KSCN (15.0 g, 154.0 mmol, 4 eq.) and anhydrous CoCl2 (5.0 g, 38.5 mmol, 1 eq.) under reflux in 250 ml acetone for 2 h. The solvent was completely removed in vacuo and the residue was thoroughly extracted with ethyl acetate until the filtrate became colourless. The solvent of the combined filtrates was removed in vacuo and the resulting deep-blue solid was dried overnight at 393 K (14.0 g, 98%). Dry K2[Co(NCS)4] (1.0 g, 2.7 mmol, 1 eq.) and GlcN·HCl (1.2 g, 5.4 mmol, 2 eq.) were heated under reflux in 50 ml of ethanol overnight. The hot solution was filtered and the filtrate was slowly cooled to room temperature. Deep-blue single crystals of (GlcNH)(K)[Co(NCS)4]·2H2O were deposited at the bottom of the flask.
Refinement
Crystal data, data collection and structure . A few low-angle reflections were omitted from the because their intensities were affected by the beam stop.
details are summarized in Table 3
|
Structural data
CCDC reference: 1947086
https://doi.org/10.1107/S2414314619011428/wm4108sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2414314619011428/wm4108Isup3.hkl
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: ciftab2016 (Köckerling, 2016).[KCo(C6H14NO5)(NCS)4(H2O)2] | Dx = 1.745 Mg m−3 |
Mr = 546.56 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9954 reflections |
a = 9.3713 (2) Å | θ = 2.6–36.0° |
b = 14.1059 (3) Å | µ = 1.47 mm−1 |
c = 15.7347 (4) Å | T = 173 K |
V = 2079.98 (8) Å3 | Block, blue |
Z = 4 | 0.65 × 0.07 × 0.05 mm |
F(000) = 1116 |
Bruker APEX-X8 CCD diffractometer | 7503 reflections with I > 2σ(I) |
Radiation source: sealed tube | Rint = 0.031 |
φ and ω scans | θmax = 36.4°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −14→15 |
k = −23→13 | |
24428 measured reflections | l = −26→16 |
9699 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.058 | w = 1/[σ2(Fo2) + (0.0187P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.98 | (Δ/σ)max = 0.001 |
9699 reflections | Δρmax = 0.59 e Å−3 |
285 parameters | Δρmin = −0.68 e Å−3 |
10 restraints | Absolute structure: Flack x determined using 2715 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.004 (5) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.62109 (3) | 0.76616 (2) | 0.48158 (2) | 0.01938 (7) | |
N1 | 0.7606 (2) | 0.8376 (1) | 0.4133 (1) | 0.0268 (4) | |
C1 | 0.8322 (2) | 0.8742 (2) | 0.3636 (1) | 0.0191 (4) | |
S1 | 0.93387 (6) | 0.92611 (4) | 0.29276 (4) | 0.0223 (1) | |
N2 | 0.5171 (2) | 0.8625 (1) | 0.5476 (1) | 0.0232 (4) | |
C2 | 0.4283 (2) | 0.8943 (2) | 0.5915 (1) | 0.0189 (4) | |
S2 | 0.30724 (6) | 0.94110 (5) | 0.65107 (4) | 0.0305 (1) | |
N3 | 0.4981 (2) | 0.6893 (1) | 0.4099 (1) | 0.0274 (4) | |
C3 | 0.4293 (2) | 0.6383 (2) | 0.3688 (1) | 0.0200 (4) | |
S3 | 0.33187 (6) | 0.56658 (4) | 0.31185 (4) | 0.0257 (1) | |
N4 | 0.7071 (2) | 0.6805 (1) | 0.5650 (1) | 0.0250 (4) | |
C4 | 0.7734 (2) | 0.6367 (1) | 0.6135 (1) | 0.0185 (4) | |
S4 | 0.86663 (6) | 0.57317 (4) | 0.67975 (3) | 0.0233 (1) | |
K1 | 0.37801 (5) | 0.88532 (3) | 0.85226 (3) | 0.02172 (9) | |
O1 | 0.5999 (1) | 0.6576 (1) | 0.09269 (9) | 0.0165 (3) | |
O2 | 0.5319 (2) | 0.6440 (1) | −0.05053 (9) | 0.0199 (3) | |
H2A | 0.615 (1) | 0.635 (2) | −0.070 (2) | 0.06 (1)* | |
O3 | 0.1598 (1) | 0.6684 (1) | 0.0965 (1) | 0.0196 (3) | |
H3A | 0.150 (3) | 0.693 (2) | 0.1456 (7) | 0.049 (9)* | |
O4 | 0.3236 (2) | 0.8390 (1) | 0.12991 (9) | 0.0170 (3) | |
H4A | 0.324 (3) | 0.865 (2) | 0.1788 (7) | 0.039 (8)* | |
O5 | 0.7725 (1) | 0.8081 (1) | 0.14516 (9) | 0.0189 (3) | |
H5A | 0.819 (2) | 0.839 (2) | 0.182 (1) | 0.030 (7)* | |
N5 | 0.2920 (2) | 0.5419 (1) | −0.0135 (1) | 0.0168 (3) | |
H5B | 0.3322 | 0.4843 | −0.0242 | 0.025* | |
H5C | 0.2942 | 0.5777 | −0.0616 | 0.025* | |
H5D | 0.1999 | 0.5338 | 0.0033 | 0.025* | |
C5 | 0.5299 (2) | 0.6025 (2) | 0.0295 (1) | 0.0161 (4) | |
H5E | 0.5759 | 0.5386 | 0.0263 | 0.019* | |
C6 | 0.3738 (2) | 0.5909 (1) | 0.0554 (1) | 0.0141 (3) | |
H6A | 0.3684 | 0.5524 | 0.1086 | 0.017* | |
C7 | 0.3019 (2) | 0.6859 (1) | 0.0699 (1) | 0.0136 (4) | |
H7A | 0.2983 | 0.7202 | 0.0144 | 0.016* | |
C8 | 0.3854 (2) | 0.7460 (1) | 0.1321 (1) | 0.0126 (3) | |
H8A | 0.3768 | 0.7189 | 0.1906 | 0.015* | |
C9 | 0.5425 (2) | 0.7510 (1) | 0.1063 (1) | 0.0130 (4) | |
H9A | 0.5522 | 0.7892 | 0.0530 | 0.016* | |
C10 | 0.6299 (2) | 0.7957 (1) | 0.1758 (1) | 0.0169 (4) | |
H10A | 0.5886 | 0.8577 | 0.1919 | 0.020* | |
H10B | 0.6301 | 0.7543 | 0.2267 | 0.020* | |
O6 | 0.4544 (2) | 0.9728 (1) | 1.0028 (1) | 0.0300 (4) | |
H6B | 0.437 (3) | 1.0320 (4) | 1.001 (2) | 0.048 (9)* | |
H6C | 0.411 (3) | 0.948 (2) | 1.045 (1) | 0.10 (2)* | |
O7 | 0.5753 (2) | 0.7830 (1) | 0.7483 (1) | 0.0294 (4) | |
H7B | 0.635 (2) | 0.811 (1) | 0.716 (1) | 0.07 (1)* | |
H7C | 0.559 (3) | 0.7274 (8) | 0.730 (2) | 0.06 (1)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0206 (1) | 0.0181 (1) | 0.0194 (1) | −0.0007 (1) | 0.0012 (1) | 0.0005 (1) |
N1 | 0.028 (1) | 0.027 (1) | 0.026 (1) | −0.0017 (9) | 0.0034 (8) | 0.0009 (9) |
C1 | 0.0209 (9) | 0.017 (1) | 0.019 (1) | 0.0008 (8) | −0.0048 (8) | −0.0036 (8) |
S1 | 0.0236 (2) | 0.0243 (3) | 0.0191 (2) | −0.0077 (2) | −0.0008 (2) | 0.0002 (2) |
N2 | 0.0247 (9) | 0.022 (1) | 0.0229 (9) | 0.0007 (8) | −0.0002 (8) | 0.0010 (8) |
C2 | 0.0215 (9) | 0.018 (1) | 0.018 (1) | −0.0027 (8) | −0.0057 (8) | 0.0033 (9) |
S2 | 0.0288 (3) | 0.0370 (3) | 0.0257 (3) | 0.0123 (3) | 0.0029 (2) | 0.0007 (3) |
N3 | 0.027 (1) | 0.023 (1) | 0.032 (1) | 0.0023 (8) | −0.0017 (9) | −0.0026 (9) |
C3 | 0.0221 (9) | 0.018 (1) | 0.020 (1) | 0.0030 (8) | 0.0028 (8) | 0.0033 (9) |
S3 | 0.0340 (3) | 0.0222 (3) | 0.0210 (3) | −0.0055 (2) | −0.0040 (2) | 0.0022 (2) |
N4 | 0.0235 (9) | 0.026 (1) | 0.025 (1) | 0.0006 (8) | 0.0017 (8) | 0.0020 (8) |
C4 | 0.0188 (9) | 0.017 (1) | 0.020 (1) | −0.0031 (8) | 0.0052 (8) | −0.0037 (8) |
S4 | 0.0280 (3) | 0.0238 (3) | 0.0180 (2) | 0.0046 (2) | −0.0015 (2) | −0.0023 (2) |
K1 | 0.0173 (2) | 0.0256 (2) | 0.0223 (2) | −0.0020 (2) | 0.0021 (2) | −0.0012 (2) |
O1 | 0.0141 (6) | 0.0158 (7) | 0.0196 (7) | 0.0024 (5) | −0.0052 (5) | −0.0050 (6) |
O2 | 0.0163 (7) | 0.0268 (9) | 0.0164 (7) | 0.0006 (6) | 0.0022 (6) | −0.0016 (6) |
O3 | 0.0133 (6) | 0.0248 (8) | 0.0207 (8) | −0.0039 (6) | 0.0027 (6) | −0.0065 (7) |
O4 | 0.0200 (7) | 0.0124 (7) | 0.0187 (7) | 0.0028 (6) | −0.0009 (6) | −0.0040 (6) |
O5 | 0.0130 (6) | 0.0270 (8) | 0.0168 (7) | −0.0062 (6) | −0.0004 (6) | −0.0045 (6) |
N5 | 0.0175 (7) | 0.0137 (8) | 0.0191 (8) | −0.0017 (6) | −0.0013 (7) | −0.0029 (7) |
C5 | 0.0156 (8) | 0.0164 (9) | 0.016 (1) | 0.0025 (7) | −0.0039 (7) | −0.0040 (8) |
C6 | 0.0175 (8) | 0.0123 (9) | 0.0125 (8) | −0.0011 (8) | −0.0028 (8) | −0.0001 (7) |
C7 | 0.0111 (8) | 0.0145 (9) | 0.0153 (9) | −0.0009 (7) | 0.0007 (7) | −0.0011 (7) |
C8 | 0.0138 (7) | 0.0113 (9) | 0.0126 (8) | 0.0002 (7) | 0.0008 (7) | 0.0002 (6) |
C9 | 0.0145 (8) | 0.0111 (9) | 0.0134 (8) | −0.0003 (7) | 0.0011 (7) | −0.0012 (7) |
C10 | 0.0137 (8) | 0.022 (1) | 0.0149 (9) | −0.0027 (8) | 0.0001 (8) | −0.0043 (8) |
O6 | 0.0395 (9) | 0.0252 (9) | 0.025 (1) | 0.0058 (8) | 0.0028 (8) | −0.0036 (7) |
O7 | 0.0303 (8) | 0.035 (1) | 0.0233 (8) | −0.0009 (8) | −0.0002 (7) | −0.0037 (8) |
Co1—N3 | 1.944 (2) | O3—H3A | 0.850 (1) |
Co1—N4 | 1.958 (2) | O4—C8 | 1.434 (2) |
Co1—N2 | 1.968 (2) | O4—H4A | 0.850 (1) |
Co1—N1 | 1.970 (2) | O5—C10 | 1.432 (2) |
N1—C1 | 1.153 (3) | O5—K1iv | 2.902 (2) |
C1—S1 | 1.638 (2) | O5—H5A | 0.850 (1) |
N2—C2 | 1.171 (3) | N5—C6 | 1.497 (2) |
C2—S2 | 1.613 (2) | N5—H5B | 0.9100 |
N3—C3 | 1.163 (3) | N5—H5C | 0.9100 |
C3—S3 | 1.630 (2) | N5—H5D | 0.9100 |
N4—C4 | 1.162 (3) | C5—C6 | 1.527 (3) |
C4—S4 | 1.629 (2) | C5—H5E | 1.0000 |
S1—K1i | 3.3256 (7) | C6—C7 | 1.517 (3) |
S2—K1 | 3.3287 (8) | C6—H6A | 1.0000 |
S4—K1ii | 3.5399 (7) | C7—C8 | 1.513 (2) |
K1—O6 | 2.765 (2) | C7—H7A | 1.0000 |
K1—O1iii | 2.812 (1) | C8—C9 | 1.529 (2) |
K1—O7 | 2.860 (2) | C8—H8A | 1.0000 |
K1—O3iv | 2.864 (1) | C9—C10 | 1.505 (3) |
K1—O5iii | 2.902 (2) | C9—H9A | 1.0000 |
K1—C10iii | 3.481 (2) | C10—K1iv | 3.481 (2) |
O1—C5 | 1.422 (2) | C10—H10A | 0.9900 |
O1—C9 | 1.440 (2) | C10—H10B | 0.9900 |
O1—K1iv | 2.812 (1) | O6—H6B | 0.850 (1) |
O2—C5 | 1.389 (2) | O6—H6C | 0.850 (1) |
O2—H2A | 0.850 (1) | O7—H7B | 0.850 (1) |
O3—C7 | 1.417 (2) | O7—H7C | 0.850 (1) |
O3—K1iii | 2.864 (1) | ||
N3—Co1—N4 | 106.83 (9) | C7—O3—H3A | 108 (2) |
N3—Co1—N2 | 113.43 (8) | K1iii—O3—H3A | 75 (2) |
N4—Co1—N2 | 106.02 (8) | C8—O4—H4A | 111 (2) |
N3—Co1—N1 | 111.26 (9) | C10—O5—K1iv | 101.4 (1) |
N4—Co1—N1 | 114.08 (8) | C10—O5—H5A | 108 (2) |
N2—Co1—N1 | 105.25 (8) | K1iv—O5—H5A | 108 (2) |
C1—N1—Co1 | 170.3 (2) | C6—N5—H5B | 109.5 |
N1—C1—S1 | 179.9 (2) | C6—N5—H5C | 109.5 |
C1—S1—K1i | 118.29 (7) | H5B—N5—H5C | 109.5 |
C2—N2—Co1 | 158.1 (2) | C6—N5—H5D | 109.5 |
N2—C2—S2 | 178.4 (2) | H5B—N5—H5D | 109.5 |
C2—S2—K1 | 108.43 (8) | H5C—N5—H5D | 109.5 |
C3—N3—Co1 | 175.6 (2) | O2—C5—O1 | 113.4 (2) |
N3—C3—S3 | 179.5 (2) | O2—C5—C6 | 107.4 (2) |
C4—N4—Co1 | 171.4 (2) | O1—C5—C6 | 108.3 (2) |
N4—C4—S4 | 178.6 (2) | O2—C5—H5E | 109.2 |
C4—S4—K1ii | 88.48 (7) | O1—C5—H5E | 109.2 |
O6—K1—O1iii | 94.13 (5) | C6—C5—H5E | 109.2 |
O6—K1—O7 | 123.22 (5) | N5—C6—C7 | 106.8 (2) |
O1iii—K1—O7 | 131.81 (5) | N5—C6—C5 | 110.3 (2) |
O6—K1—O3iv | 68.80 (5) | C7—C6—C5 | 111.8 (2) |
O1iii—K1—O3iv | 135.31 (4) | N5—C6—H6A | 109.3 |
O7—K1—O3iv | 55.32 (5) | C7—C6—H6A | 109.3 |
O6—K1—O5iii | 119.72 (5) | C5—C6—H6A | 109.3 |
O1iii—K1—O5iii | 58.51 (4) | O3—C7—C8 | 113.1 (2) |
O7—K1—O5iii | 75.74 (5) | O3—C7—C6 | 108.0 (2) |
O3iv—K1—O5iii | 93.51 (4) | C8—C7—C6 | 111.3 (2) |
O6—K1—S1v | 75.35 (4) | O3—C7—H7A | 108.1 |
O1iii—K1—S1v | 138.60 (3) | C8—C7—H7A | 108.1 |
O7—K1—S1v | 84.26 (4) | C6—C7—H7A | 108.1 |
O3iv—K1—S1v | 78.59 (3) | O4—C8—C7 | 106.8 (1) |
O5iii—K1—S1v | 159.46 (3) | O4—C8—C9 | 109.9 (1) |
O6—K1—S2 | 139.53 (4) | C7—C8—C9 | 110.6 (1) |
O1iii—K1—S2 | 99.16 (3) | O4—C8—H8A | 109.9 |
O7—K1—S2 | 72.81 (4) | C7—C8—H8A | 109.9 |
O3iv—K1—S2 | 120.94 (3) | C9—C8—H8A | 109.9 |
O5iii—K1—S2 | 99.65 (3) | O1—C9—C10 | 106.7 (2) |
S1v—K1—S2 | 69.44 (2) | O1—C9—C8 | 110.9 (2) |
O6—K1—C10iii | 127.51 (5) | C10—C9—C8 | 110.5 (2) |
O1iii—K1—C10iii | 42.47 (4) | O1—C9—H9A | 109.6 |
O7—K1—C10iii | 89.37 (5) | C10—C9—H9A | 109.6 |
O3iv—K1—C10iii | 117.23 (5) | C8—C9—H9A | 109.6 |
O5iii—K1—C10iii | 23.78 (4) | O5—C10—C9 | 108.3 (2) |
S1v—K1—C10iii | 154.80 (4) | O5—C10—K1iv | 54.79 (9) |
S2—K1—C10iii | 85.38 (4) | C9—C10—K1iv | 88.0 (1) |
O6—K1—S4vi | 87.44 (4) | O5—C10—H10A | 110.0 |
O1iii—K1—S4vi | 66.72 (3) | C9—C10—H10A | 110.0 |
O7—K1—S4vi | 135.67 (4) | K1iv—C10—H10A | 160.4 |
O3iv—K1—S4vi | 146.68 (3) | O5—C10—H10B | 110.0 |
O5iii—K1—S4vi | 119.02 (3) | C9—C10—H10B | 110.0 |
S1v—K1—S4vi | 72.82 (2) | K1iv—C10—H10B | 70.7 |
S2—K1—S4vi | 63.81 (2) | H10A—C10—H10B | 108.4 |
C10iii—K1—S4vi | 95.64 (3) | K1—O6—H6B | 111 (2) |
C5—O1—C9 | 115.6 (1) | K1—O6—H6C | 111 (2) |
C5—O1—K1iv | 121.7 (1) | H6B—O6—H6C | 109.5 (2) |
C9—O1—K1iv | 119.9 (1) | K1—O7—H7B | 122 (2) |
C5—O2—H2A | 107 (2) | K1—O7—H7C | 123 (2) |
C7—O3—K1iii | 174.6 (1) | H7B—O7—H7C | 109.5 (2) |
C9—O1—C5—O2 | 59.7 (2) | C6—C7—C8—C9 | 50.5 (2) |
K1iv—O1—C5—O2 | −101.0 (2) | C5—O1—C9—C10 | 179.1 (2) |
C9—O1—C5—C6 | −59.5 (2) | K1iv—O1—C9—C10 | −19.9 (2) |
K1iv—O1—C5—C6 | 139.9 (1) | C5—O1—C9—C8 | 58.7 (2) |
O2—C5—C6—N5 | 51.3 (2) | K1iv—O1—C9—C8 | −140.2 (1) |
O1—C5—C6—N5 | 174.2 (2) | O4—C8—C9—O1 | −169.3 (1) |
O2—C5—C6—C7 | −67.4 (2) | C7—C8—C9—O1 | −51.7 (2) |
O1—C5—C6—C7 | 55.5 (2) | O4—C8—C9—C10 | 72.6 (2) |
N5—C6—C7—O3 | 61.3 (2) | C7—C8—C9—C10 | −169.8 (2) |
C5—C6—C7—O3 | −177.9 (1) | K1iv—O5—C10—C9 | −73.8 (2) |
N5—C6—C7—C8 | −174.0 (2) | O1—C9—C10—O5 | 65.5 (2) |
C5—C6—C7—C8 | −53.2 (2) | C8—C9—C10—O5 | −173.8 (2) |
O3—C7—C8—O4 | −68.2 (2) | O1—C9—C10—K1iv | 13.8 (1) |
C6—C7—C8—O4 | 170.0 (2) | C8—C9—C10—K1iv | 134.4 (1) |
O3—C7—C8—C9 | 172.3 (2) |
Symmetry codes: (i) −x+3/2, −y+2, z−1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1/2, −y+3/2, −z+1; (iv) x+1/2, −y+3/2, −z+1; (v) −x+3/2, −y+2, z+1/2; (vi) −x+1, y+1/2, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3A···O7iii | 0.85 (1) | 1.84 (1) | 2.657 (2) | 160 (3) |
N5—H5C···O5vii | 0.91 | 2.09 | 2.967 (2) | 162 |
O6—H6C···O4viii | 0.85 (1) | 2.20 (1) | 3.010 (2) | 160 (2) |
O2—H2A···O4ix | 0.85 (1) | 2.20 (1) | 3.015 (2) | 162 (3) |
N5—H5B···N2x | 0.91 | 2.26 | 3.145 (2) | 166 |
N5—H5D···O6iii | 0.91 | 2.30 | 3.175 (2) | 160 |
O5—H5A···S1 | 0.85 (1) | 2.38 (1) | 3.233 (2) | 176 (2) |
O4—H4A···S4iii | 0.85 (1) | 2.42 (1) | 3.266 (2) | 170 (3) |
O7—H7C···S1iii | 0.85 (1) | 2.49 (1) | 3.298 (2) | 159 (2) |
O7—H7B···S3iv | 0.85 (1) | 2.57 (1) | 3.344 (2) | 152 (2) |
O6—H6B···N3vi | 0.85 (1) | 2.69 (2) | 3.378 (3) | 139 (2) |
C7—H7A···O5vii | 1.00 | 2.55 | 3.397 (2) | 142 |
C5—H5E···S4xi | 1.00 | 2.93 | 3.560 (2) | 122 |
C9—H9A···O3ix | 1.00 | 2.63 | 3.560 (2) | 155 |
C8—H8A···S3 | 1.00 | 2.90 | 3.828 (2) | 154 |
Symmetry codes: (iii) x−1/2, −y+3/2, −z+1; (iv) x+1/2, −y+3/2, −z+1; (vi) −x+1, y+1/2, −z+3/2; (vii) x−1/2, −y+3/2, −z; (viii) x, y, z+1; (ix) x+1/2, −y+3/2, −z; (x) −x+1, y−1/2, −z+1/2; (xi) −x+3/2, −y+1, z−1/2. |
Acknowledgements
We gratefully acknowledge the maintenance of the XRD equipment through Dr A. Villinger (University of Rostock).
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft, Priority Program SPP 1708 (grant Nos. KO-1616/8-1 and -2).
References
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, K. D., Nacham, O., Purslow, J. A., Pierson, S. A. & Anderson, J. L. (2016). Anal. Chim. Acta, 934, 9–21. Web of Science CrossRef CAS PubMed Google Scholar
Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Geppert-Rybczyńska, M., Lehmann, J. K., Peppel, T., Köckerling, M. & Heintz, A. (2010). J. Chem. Eng. Data, 55, 5534–5538. Google Scholar
Köckerling, M. (2016). ciftab. University of Rostock, Germany. Google Scholar
Kozlova, S. A., Verevkin, S. P., Heintz, A., Peppel, T. & Köckerling, M. (2009). J. Chem. Eng. Data, 54, 1524–1528. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R. V., Lehmann, J. K., Verevkin, S. P. & Heintz, A. (2010). Angew. Chem. Int. Ed. 49, 7116–7119. Web of Science CSD CrossRef CAS Google Scholar
Santos, E., Albo, J. & Irabien, A. (2014). RSC Adv. 4, 40008–40018. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.