organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(3,5-Di­chloro­phen­yl)benzene-1,2-diol

CROSSMARK_Color_square_no_text.svg

aThe University of Iowa, Department of Occupational and Environmental Health, University of Iowa Research Park, Iowa City, IA 52242, USA, and bDepartment of Chemistry, University of Kentucky, Chemistry-Physics Bldg, Lexington, KY 40506-0055, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

Edited by A. J. Lough, University of Toronto, Canada (Received 26 August 2019; accepted 30 August 2019; online 6 September 2019)

The title structure, C12H8Cl2O2, is a putative metabolite of 3,5-di­chloro­biphenyl (PCB 14). The dihedral angle between the two benzene rings of the title compounds is 58.86 (4)°. In the crystal, it displays intra- and inter­molecular O—H⋯O hydrogen bonding and inter­molecular O—H⋯Cl hydrogen⋯chlorine inter­actions. The inter­molecular inter­actions form a two-dimensional network parallel to (010).

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Humans are exposed to polychlorinated bi­phenyls (PCBs), a class of persistent organic pollutants, via their diet (Schecter et al., 2010[Schecter, A., Colacino, J., Haffner, D., Patel, K., Opel, M., Päpke, O. & Birnbaum, L. (2010). Environ. Health Perspect. 118, 796-802.]; Shin et al., 2015[Shin, E. S., Nguyen, K. H., Kim, J., Kim, C. I. & Chang, Y. S. (2015). Environ. Pollut. 207, 403-412.]) and by inhalation (Dhakal et al., 2014[Dhakal, K., Uwimana, E., Adamcakova-Dodd, A., Thorne, P. S., Lehmler, H.-J. & Robertson, L. W. (2014). Chem. Res. Toxicol. 27, 1411-1420.]; Hu et al., 2010[Hu, X., Adamcakova-Dodd, A., Lehmler, H.-J., Hu, D., Kania-Korwel, I., Hornbuckle, K. & Thorne, P. S. (2010). Environ. Sci. Technol. 44, 6893-6900.]). In particular, lower chlorinated PCBs are oxidized by cytochrome P450 enzymes to the corresponding mono­hydroxy­lated and further to di­hydroxy­lated compounds (Grimm et al., 2015[Grimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H.-J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245-272.]; Kania-Korwel & Lehmler, 2016[Kania-Korwel, I. & Lehmler, H.-J. (2016). Environ. Sci. Pollut. Res. Int. 23, 2042-2057.]). Di­hydroxy­lated PCBs can be oxidized to reactive PCB quinones. Both di­hydroxy­lated PCBs and the corresponding quinones are highly toxic, for example because they can promote oxidative stress or bind to nucleophilic sites on cellular macromolecules (Grimm et al., 2015[Grimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H.-J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245-272.]). To better understand the mechanism(s) of toxicity of these mol­ecules in living organisms, it is important to characterize the three-dimensional structure of these PCB metabolites (Lehmler, Parkin et al., 2002[Lehmler, H.-J., Parkin, S. & Robertson, L. W. (2002). Chemosphere, 46, 485-488.]; Shaikh et al., 2008[Shaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694-1698.]).

3-(3,5-Di­chloro­phen­yl)benzene-1,2-diol (Fig. 1[link]) is a putative metabolite of PCB 14 (3,5-di­chloro­biphen­yl). The dihedral angle between the least-squares planes of the two benzene rings is 58.84 (4)°. For comparison, the dihedral angle of other PCB derivatives with one OH group ortho to the phen­yl–phenyl bond ranges from 48 to 59.5° (Lehmler, Robertson et al., 2002[Lehmler, H.-J., Robertson, L. W., Parkin, S. & Brock, C. P. (2002). Acta Cryst. B58, 140-147.]; Perrin et al., 1987[Perrin, M., Bekkouch, K. & Thozet, A. (1987). Acta Cryst. C43, 980-982.]). Dihedral angles of PCB derivatives without any ortho chlorine substituents are in the range 4.9 to 43.9° (Dhakal et al., 2019a[Dhakal, R., Parkin, S. & Lehmler, H.-J. (2019a). IUCrData, 4, x190518.]), whereas PCB derivatives with one ortho chlorine substituent range from 47.34 to 59.92° (Dhakal et al., 2019b[Dhakal, R., Parkin, S. & Lehmler, H.-J. (2019b). IUCrData, 4, x190662.]). The title compound crystallizes in the monoclinic space group P21/c and displays intra- and inter­molecular mol­ecular O—H⋯O hydrogen bonding (Fig. 2[link], Table 1[link]) and inter­molecular O—H⋯Cl inter­actions (Fig. 3[link], Table 1[link]). The inter­molecular inter­actions lead to the formation of a two-dimensional network parallel to (010).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl2i 0.79 2.73 3.2538 (12) 126
O1—H1O⋯O2 0.79 2.20 2.6459 (16) 117
O2—H2O⋯O1ii 0.77 2.02 2.7708 (16) 169
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 1]
Figure 1
View of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular hydrogen bond is shown as a dashed line. For information regarding the hydrogen-bond geometry, see Table 1[link].
[Figure 2]
Figure 2
A packing plot viewed approximately along the a axis. Intra- and inter­molecular hydrogen bonds are drawn as thick dashed lines. For information regarding the hydrogen-bond geometry, see Table 1[link].
[Figure 3]
Figure 3
A packing plot viewed approximately along the b axis. Inter­molecular hydrogen⋯chlorine inter­actions are drawn as thin dashed lines. For information regarding the hydrogen-bond geometry, see Table 1[link].

Synthesis and crystallization

The title compound was synthesized via a Suzuki cross-coupling reaction of 1-bromo-3,5-di­chloro­benzene with 2,3-di­meth­oxy­phenyl boronic acid in the presence of Pd(PPh3)4, and a 2 M aqueous solution of Na2CO3 followed by de­methyl­ation with BBr3 (Bauer et al., 1995[Bauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92-95.]). Crystals suitable for crystal-structure analysis were obtained by recrystallization from diethyl ether:hexa­nes (approximately 1:3, v/v) as described by Bauer et al. (1995[Bauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92-95.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C12H8Cl2O2
Mr 255.08
Crystal system, space group Monoclinic, P21/c
Temperature (K) 90
a, b, c (Å) 6.2198 (3), 16.9271 (8), 10.4460 (5)
β (°) 101.013 (3)
V3) 1079.53 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.58
Crystal size (mm) 0.28 × 0.25 × 0.25
 
Data collection
Diffractometer Nonius KappaCCD diffractometer
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of Biological Macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226-235. Chester, England: International Union of Crystallography.])
Tmin, Tmax 0.855, 0.869
No. of measured, independent and observed [I > 2σ(I)] reflections 6641, 2470, 2029
Rint 0.037
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.074, 1.04
No. of reflections 2470
No. of parameters 149
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.31, −0.28
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), SCALEPACK and DENZO-SMN (Otwinowski & Minor, 2006[Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of Biological Macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226-235. Chester, England: International Union of Crystallography.]), XP in SHELXTL, SHELXS and SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CIFFIX (Parkin, 2013[Parkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ciffix]).

Structural data


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 2006); data reduction: DENZO-SMN (Otwinowski & Minor, 2006); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX (Sheldrick, 2008) and CIFFIX (Parkin, 2013).

3-(3,5-Dichlorophenyl)benzene-1,2-diol top
Crystal data top
C12H8Cl2O2F(000) = 520
Mr = 255.08Dx = 1.569 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.2198 (3) ÅCell parameters from 5954 reflections
b = 16.9271 (8) Åθ = 1.0–27.5°
c = 10.4460 (5) ŵ = 0.58 mm1
β = 101.013 (3)°T = 90 K
V = 1079.53 (9) Å3Block, colourless
Z = 40.28 × 0.25 × 0.25 mm
Data collection top
Nonius KappaCCD
diffractometer
2470 independent reflections
Radiation source: fine-focus sealed-tube2029 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.037
φ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(Scalepack; Otwinowski & Minor, 2006)
h = 78
Tmin = 0.855, Tmax = 0.869k = 2121
6641 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.363P]
where P = (Fo2 + 2Fc2)/3
2470 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Special details top

Experimental. The crystal was mounted using polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid-nitrogen based cryostat.

Diffraction data were collected with the crystal at 90K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were found in difference Fourier maps. Carbon-bound H atoms were subsequently included in the refinement using riding models, with constrained distances set to 0.95 Å (Csp2H). Hydroxyl O—H distances were refined. Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (OH only) of the attached atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.06252 (7)0.51040 (2)0.70416 (4)0.02025 (12)
Cl20.30147 (7)0.35884 (3)0.52162 (4)0.02112 (13)
O10.98156 (18)0.29232 (7)1.03073 (11)0.0180 (3)
H1O1.064 (3)0.2671 (12)1.0814 (15)0.027*
O20.98599 (18)0.25308 (7)1.27641 (11)0.0189 (3)
H2O0.9675 (16)0.2391 (11)1.343 (2)0.028*
C10.6550 (3)0.38712 (9)0.88020 (16)0.0151 (4)
C20.8333 (3)0.43045 (9)0.85610 (16)0.0156 (4)
H20.9481280.4445850.9261130.019*
C30.8430 (3)0.45292 (10)0.72976 (16)0.0157 (4)
C40.6808 (3)0.43163 (9)0.62473 (16)0.0165 (4)
H40.6896660.4462180.5380810.020*
C50.5060 (3)0.38841 (10)0.65118 (16)0.0162 (4)
C60.4880 (3)0.36663 (9)0.77716 (16)0.0154 (4)
H60.3635330.3382400.7924450.018*
C1'0.6450 (3)0.36330 (9)1.01653 (16)0.0146 (3)
C2'0.8112 (3)0.31794 (9)1.08832 (16)0.0140 (3)
C3'0.8095 (3)0.29685 (9)1.21704 (16)0.0145 (4)
C4'0.6384 (3)0.32091 (10)1.27509 (16)0.0171 (4)
H4'0.6363530.3070081.3629590.020*
C5'0.4694 (3)0.36558 (10)1.20385 (17)0.0193 (4)
H5'0.3511570.3820461.2431620.023*
C6'0.4723 (3)0.38623 (10)1.07594 (17)0.0190 (4)
H6'0.3551340.4163881.0280580.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0179 (2)0.0205 (2)0.0225 (2)0.00488 (18)0.00431 (17)0.00181 (18)
Cl20.0210 (2)0.0269 (2)0.0137 (2)0.00667 (18)0.00082 (17)0.00019 (17)
O10.0150 (6)0.0252 (7)0.0139 (6)0.0082 (5)0.0030 (5)0.0026 (5)
O20.0195 (6)0.0251 (7)0.0123 (6)0.0048 (5)0.0041 (5)0.0055 (5)
C10.0169 (8)0.0130 (8)0.0150 (8)0.0045 (7)0.0022 (7)0.0008 (7)
C20.0149 (8)0.0138 (8)0.0170 (8)0.0020 (7)0.0000 (7)0.0026 (7)
C30.0151 (8)0.0113 (8)0.0211 (9)0.0004 (7)0.0045 (7)0.0002 (7)
C40.0193 (9)0.0152 (8)0.0152 (8)0.0022 (7)0.0039 (7)0.0018 (7)
C50.0145 (8)0.0158 (8)0.0164 (8)0.0014 (7)0.0018 (7)0.0021 (7)
C60.0143 (8)0.0140 (8)0.0183 (9)0.0003 (7)0.0041 (7)0.0001 (7)
C1'0.0157 (8)0.0138 (8)0.0135 (8)0.0017 (7)0.0008 (7)0.0011 (7)
C2'0.0139 (8)0.0154 (8)0.0134 (8)0.0024 (7)0.0045 (7)0.0047 (7)
C3'0.0156 (8)0.0116 (8)0.0153 (8)0.0019 (7)0.0006 (7)0.0002 (7)
C4'0.0201 (9)0.0176 (8)0.0142 (8)0.0041 (7)0.0052 (7)0.0006 (7)
C5'0.0182 (9)0.0215 (9)0.0198 (9)0.0010 (8)0.0079 (7)0.0029 (7)
C6'0.0171 (9)0.0201 (9)0.0199 (9)0.0030 (7)0.0040 (7)0.0005 (7)
Geometric parameters (Å, º) top
Cl1—C31.7386 (17)C4—H40.9500
Cl2—C51.7445 (16)C5—C61.392 (2)
O1—C2'1.3842 (18)C6—H60.9500
O1—H1O0.79 (2)C1'—C2'1.387 (2)
O2—C3'1.3704 (19)C1'—C6'1.395 (2)
O2—H2O0.77 (2)C2'—C3'1.393 (2)
C1—C61.390 (2)C3'—C4'1.383 (2)
C1—C21.392 (2)C4'—C5'1.390 (2)
C1—C1'1.493 (2)C4'—H4'0.9500
C2—C31.386 (2)C5'—C6'1.385 (2)
C2—H20.9500C5'—H5'0.9500
C3—C41.389 (2)C6'—H6'0.9500
C4—C51.381 (2)
C2'—O1—H1O109.5C5—C6—H6120.6
C3'—O2—H2O109.5C2'—C1'—C6'118.12 (15)
C6—C1—C2119.67 (15)C2'—C1'—C1120.19 (15)
C6—C1—C1'120.70 (15)C6'—C1'—C1121.69 (15)
C2—C1—C1'119.64 (15)O1—C2'—C1'119.45 (14)
C3—C2—C1119.85 (15)O1—C2'—C3'119.12 (14)
C3—C2—H2120.1C1'—C2'—C3'121.42 (15)
C1—C2—H2120.1O2—C3'—C4'125.29 (15)
C2—C3—C4121.61 (15)O2—C3'—C2'114.97 (14)
C2—C3—Cl1118.58 (13)C4'—C3'—C2'119.73 (15)
C4—C3—Cl1119.81 (13)C3'—C4'—C5'119.48 (15)
C5—C4—C3117.39 (15)C3'—C4'—H4'120.3
C5—C4—H4121.3C5'—C4'—H4'120.3
C3—C4—H4121.3C6'—C5'—C4'120.41 (16)
C4—C5—C6122.57 (15)C6'—C5'—H5'119.8
C4—C5—Cl2118.82 (13)C4'—C5'—H5'119.8
C6—C5—Cl2118.61 (13)C5'—C6'—C1'120.82 (16)
C1—C6—C5118.87 (15)C5'—C6'—H6'119.6
C1—C6—H6120.6C1'—C6'—H6'119.6
C6—C1—C2—C30.1 (2)C2—C1—C1'—C6'121.12 (18)
C1'—C1—C2—C3179.80 (15)C6'—C1'—C2'—O1178.10 (14)
C1—C2—C3—C41.6 (2)C1—C1'—C2'—O12.6 (2)
C1—C2—C3—Cl1177.41 (12)C6'—C1'—C2'—C3'1.3 (2)
C2—C3—C4—C51.3 (2)C1—C1'—C2'—C3'178.05 (15)
Cl1—C3—C4—C5177.66 (12)O1—C2'—C3'—O21.7 (2)
C3—C4—C5—C60.4 (2)C1'—C2'—C3'—O2178.96 (14)
C3—C4—C5—Cl2178.77 (12)O1—C2'—C3'—C4'178.90 (14)
C2—C1—C6—C51.6 (2)C1'—C2'—C3'—C4'0.5 (2)
C1'—C1—C6—C5178.52 (15)O2—C3'—C4'—C5'179.68 (15)
C4—C5—C6—C11.9 (2)C2'—C3'—C4'—C5'0.3 (2)
Cl2—C5—C6—C1177.29 (12)C3'—C4'—C5'—C6'0.3 (3)
C6—C1—C1'—C2'121.97 (18)C4'—C5'—C6'—C1'0.5 (3)
C2—C1—C1'—C2'58.2 (2)C2'—C1'—C6'—C5'1.3 (3)
C6—C1—C1'—C6'58.8 (2)C1—C1'—C6'—C5'178.00 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl2i0.792.733.2538 (12)126
O1—H1O···O20.792.202.6459 (16)117
O2—H2O···O1ii0.772.022.7708 (16)169
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The Nonius KappaCCD diffractometer was funded by the University of Kentucky.

Funding information

Funding for this research was provided by: National Institute of Environmental Health Sciences (grant No. P42 ES013661; grant No. P30 ES005605; grant No. R21 ES027169).

References

First citationBauer, U., Amaro, A. R. & Robertson, L. W. (1995). Chem. Res. Toxicol. 8, 92–95.  CrossRef CAS PubMed Web of Science Google Scholar
First citationDhakal, K., Uwimana, E., Adamcakova-Dodd, A., Thorne, P. S., Lehmler, H.-J. & Robertson, L. W. (2014). Chem. Res. Toxicol. 27, 1411–1420.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDhakal, R., Parkin, S. & Lehmler, H.-J. (2019a). IUCrData, 4, x190518.  Google Scholar
First citationDhakal, R., Parkin, S. & Lehmler, H.-J. (2019b). IUCrData, 4, x190662.  Google Scholar
First citationGrimm, F. A., Hu, D., Kania-Korwel, I., Lehmler, H.-J., Ludewig, G., Hornbuckle, K. C., Duffel, M. W., Bergman, A. & Robertson, L. W. (2015). Crit. Rev. Toxicol. 45, 245–272.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, X., Adamcakova-Dodd, A., Lehmler, H.-J., Hu, D., Kania-Korwel, I., Hornbuckle, K. & Thorne, P. S. (2010). Environ. Sci. Technol. 44, 6893–6900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKania-Korwel, I. & Lehmler, H.-J. (2016). Environ. Sci. Pollut. Res. Int. 23, 2042–2057.  CAS PubMed Google Scholar
First citationLehmler, H.-J., Parkin, S. & Robertson, L. W. (2002). Chemosphere, 46, 485–488.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLehmler, H.-J., Robertson, L. W., Parkin, S. & Brock, C. P. (2002). Acta Cryst. B58, 140–147.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, Crystallography of Biological Macromolecules, edited by M. G. Rossmann & E. Arnold, ch. 11.4, pp. 226–235. Chester, England: International Union of Crystallography.  Google Scholar
First citationParkin, S. (2013). CIFFIX, https://xray.uky.edu/Resources/scripts/ciffix  Google Scholar
First citationPerrin, M., Bekkouch, K. & Thozet, A. (1987). Acta Cryst. C43, 980–982.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchecter, A., Colacino, J., Haffner, D., Patel, K., Opel, M., Päpke, O. & Birnbaum, L. (2010). Environ. Health Perspect. 118, 796–802.  Web of Science CrossRef CAS PubMed Google Scholar
First citationShaikh, N. S., Parkin, S., Luthe, G. & Lehmler, H.-J. (2008). Chemosphere, 70, 1694–1698.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, E. S., Nguyen, K. H., Kim, J., Kim, C. I. & Chang, Y. S. (2015). Environ. Pollut. 207, 403–412.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds