organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

(E)-1-(2-Hy­dr­oxy-6-meth­­oxy­phen­yl)-3-(2-meth­­oxy­naphthalen-1-yl)prop-2-en-1-one

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 September 2019; accepted 16 September 2019; online 27 September 2019)

In the title compound, C21H18O4, the dihedral angle between the naphthelene ring system (r.m.s. deviation = 0.014 Å) and the benzene ring is 9.68 (1)°. The C atom of the meth­oxy group of the naphthalene ring system is almost coplanar with the ring [C—O—C—C = −2.0 (3)°], whereas the C atom of the meth­oxy group of the phenol ring is slightly twisted [C—O—C—C = 6.2 (3)°]. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Chalcones are a family of flavonoids which have a general C6–C3–C6 carbon framework. In contrast to other flavonoid families, chalcones possess the C3 unit as an α, β-unsaturated carbonyl (enone) group. In the enone system, the C=C and C=O double bonds are in a cis conformation along with a single bond connecting the two double bonds (s-cisoid). According to recent reviews (Mahapatra et al., 2019[Mahapatra, D. K., Bharti, S. K., Asati, V. & Singh, S. K. (2019). Eur. J. Med. Chem. 174, 142-158.]; Zhuang et al., 2017[Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762-7810.]), natural and synthetic chalcones reveal diverse biological activities. In addition, when a chalcone has a hydroxyl group adjacent to carbonyl group, it tends to react via an intra­molecular Michael addition to form flavanone, flavone or flavonol derivatives depending on the reaction conditions. The crystal structure of a flavone derived from hydroxyl-chalcone was described recently (Sung, 2018[Sung, J. (2018). IUCrData, 3, x181277.]). In continuation of our work in this area (Ahn et al., 2017[Ahn, S., Lim, Y., Sung, J. & Koh, D. (2017). IUCrData, 2, x170732.]), the title compound was synthesized and its crystal structure was determined and are reported here.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The C2=C3 double bond of the central enone group adopts a trans configuration [H2—C2—C3—H3 = −179.2°]. In the enone system, the C=C double bond and C=O double bond are not in the same plane [torsion angle O1—C1—C2—C3 = −17.6 (3)°]. The C atom of the meth­oxy group of the naphthalene ring is almost coplanar with the ring [C14—O2—C5—C6 = −2.0 (3)°], whereas the C atom of the meth­oxy group of the benzene ring is slightly twisted [C21—O4—C20—C19 = 6.2 (3)°]. The dihedral angle formed between the plane of the naphthalene ring system (C4–C13; r.m.s. deviation = 0.014 Å) and the plane of the benzene ring (C15–C20; r.m.s. deviation = 0.006 Å) is 9.68 (1)°. An intra­molecular O—H⋯O hydrogen bonds generates an S(6) ring motif. (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1 0.84 1.72 2.473 (2) 147
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Synthesis and crystallization

2-Hy­droxy-6-meth­oxy­aceto­phenone (830 mg, 5 mmol) was added to a solution of 2-meth­oxy­naphthaldehyde (930 mg, 5 mmol) in 80 ml of ethanol (Fig. 2[link]) and the temperature was adjusted to around 275–276 K in an ice-bath. To the cooled reaction mixture, 7 ml of 50% aqueous KOH solution were added, and the reaction mixture was stirred at room temperature for 20 h. This mixture was poured into iced water (150 ml) and was acidified (pH = 3) with 6 N HCl solution to give a precipitate. Filtration and washing with water afforded the crude solid of the title compound (802 mg, 48%). Recrystallization of the solid from ethanol solution gave orange blocks suitable for X-ray diffraction analysis (m.p. 472–473 K).

[Figure 2]
Figure 2
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18O4
Mr 334.35
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 200
a, b, c (Å) 14.8220 (9), 5.2416 (3), 20.8364 (13)
V3) 1618.80 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.25 × 0.15 × 0.07
 
Data collection
Diffractometer Bruker CCD area detector
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 11076, 2853, 2041
Rint 0.050
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.04
No. of reflections 2853
No. of parameters 229
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.20
Computer programs: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(E)-1-(2-Hydroxy-6-methoxyphenyl)-3-(2-methoxynaphthalen-1-yl)prop-2-en-1-one top
Crystal data top
C21H18O4F(000) = 704
Mr = 334.35Dx = 1.372 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4201 reflections
a = 14.8220 (9) Åθ = 2.8–27.4°
b = 5.2416 (3) ŵ = 0.10 mm1
c = 20.8364 (13) ÅT = 200 K
V = 1618.80 (17) Å3Block, orange
Z = 40.25 × 0.15 × 0.07 mm
Data collection top
Bruker CCD area detector
diffractometer
2041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.050
Graphite monochromatorθmax = 28.3°, θmin = 2.0°
phi and ω scansh = 1919
11076 measured reflectionsk = 66
2853 independent reflectionsl = 2711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0346P)2]
where P = (Fo2 + 2Fc2)/3
2853 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.60597 (14)0.4619 (4)0.12953 (12)0.0341 (5)
O10.67919 (11)0.3449 (3)0.13586 (9)0.0469 (5)
C20.59032 (15)0.6894 (4)0.16954 (12)0.0336 (5)
H20.54480.80890.15830.040*
C30.64120 (15)0.7258 (4)0.22208 (12)0.0330 (5)
H30.68550.59810.22930.040*
C40.63973 (15)0.9290 (4)0.27004 (12)0.0328 (5)
C50.56895 (16)1.1025 (4)0.27589 (12)0.0350 (5)
C60.56880 (17)1.2901 (5)0.32383 (13)0.0407 (6)
H60.51931.40460.32700.049*
C70.63881 (17)1.3101 (5)0.36588 (12)0.0405 (6)
H70.63791.43990.39770.049*
C80.71243 (16)1.1411 (4)0.36284 (11)0.0360 (6)
C90.78445 (17)1.1583 (5)0.40781 (13)0.0421 (6)
H90.78361.28950.43930.051*
C100.85437 (17)0.9906 (5)0.40658 (14)0.0463 (7)
H100.90161.00260.43720.056*
C110.85583 (18)0.7997 (5)0.35945 (13)0.0451 (7)
H110.90450.68170.35860.054*
C120.78887 (16)0.7799 (5)0.31489 (13)0.0386 (6)
H120.79270.65150.28280.046*
C130.71324 (16)0.9479 (4)0.31534 (12)0.0325 (5)
O20.49958 (11)1.0813 (3)0.23328 (9)0.0441 (4)
C140.42411 (16)1.2514 (4)0.23981 (15)0.0441 (6)
H14A0.39561.22510.28170.066*
H14B0.38021.21680.20570.066*
H14C0.44511.42820.23640.066*
C150.53979 (15)0.3670 (4)0.08228 (11)0.0313 (5)
C160.56510 (15)0.1617 (4)0.04161 (12)0.0345 (5)
O30.64746 (11)0.0559 (3)0.04480 (9)0.0463 (5)
H3A0.67550.11640.07630.069*
C170.50611 (17)0.0633 (5)0.00367 (13)0.0418 (6)
H170.52470.07270.03080.050*
C180.42135 (19)0.1621 (5)0.00917 (13)0.0470 (7)
H180.38150.09450.04060.056*
C190.39205 (16)0.3592 (5)0.03002 (13)0.0406 (6)
H190.33250.42430.02570.049*
C200.44987 (16)0.4601 (4)0.07524 (12)0.0344 (5)
O40.42414 (10)0.6504 (3)0.11552 (9)0.0424 (4)
C210.33232 (16)0.7297 (5)0.11503 (16)0.0550 (8)
H21A0.31650.79220.07220.082*
H21B0.32370.86660.14650.082*
H21C0.29350.58490.12610.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (12)0.0399 (13)0.0324 (14)0.0034 (10)0.0024 (10)0.0007 (11)
O10.0320 (9)0.0572 (11)0.0516 (12)0.0068 (8)0.0050 (8)0.0143 (10)
C20.0308 (12)0.0363 (13)0.0337 (14)0.0020 (9)0.0016 (11)0.0022 (11)
C30.0292 (12)0.0351 (12)0.0348 (14)0.0029 (9)0.0012 (11)0.0003 (11)
C40.0342 (13)0.0333 (12)0.0310 (13)0.0041 (10)0.0030 (11)0.0003 (11)
C50.0348 (13)0.0386 (13)0.0316 (13)0.0040 (10)0.0030 (11)0.0002 (11)
C60.0437 (15)0.0380 (14)0.0404 (15)0.0017 (11)0.0066 (13)0.0008 (12)
C70.0515 (16)0.0378 (14)0.0323 (15)0.0056 (12)0.0058 (13)0.0052 (11)
C80.0434 (14)0.0366 (13)0.0280 (14)0.0101 (10)0.0040 (11)0.0025 (11)
C90.0530 (16)0.0431 (14)0.0302 (13)0.0134 (12)0.0019 (13)0.0012 (12)
C100.0502 (17)0.0494 (16)0.0392 (16)0.0134 (12)0.0126 (14)0.0093 (14)
C110.0451 (16)0.0381 (14)0.0521 (19)0.0074 (11)0.0118 (13)0.0055 (13)
C120.0405 (14)0.0335 (12)0.0416 (15)0.0054 (11)0.0066 (12)0.0001 (12)
C130.0361 (13)0.0321 (11)0.0292 (12)0.0065 (10)0.0012 (10)0.0023 (11)
O20.0382 (9)0.0487 (10)0.0454 (11)0.0100 (8)0.0047 (8)0.0078 (9)
C140.0355 (15)0.0458 (14)0.0511 (17)0.0066 (11)0.0009 (12)0.0012 (14)
C150.0310 (12)0.0362 (12)0.0268 (13)0.0020 (10)0.0017 (10)0.0007 (11)
C160.0361 (13)0.0359 (12)0.0315 (14)0.0000 (10)0.0022 (11)0.0006 (11)
O30.0414 (10)0.0532 (11)0.0443 (12)0.0087 (8)0.0011 (9)0.0117 (9)
C170.0493 (16)0.0426 (14)0.0335 (15)0.0026 (12)0.0002 (13)0.0071 (12)
C180.0523 (18)0.0531 (15)0.0355 (16)0.0089 (13)0.0113 (13)0.0088 (13)
C190.0336 (13)0.0476 (14)0.0406 (16)0.0000 (11)0.0062 (12)0.0008 (13)
C200.0352 (13)0.0354 (12)0.0326 (13)0.0021 (10)0.0009 (11)0.0006 (11)
O40.0292 (8)0.0507 (10)0.0472 (11)0.0045 (7)0.0037 (8)0.0137 (9)
C210.0328 (13)0.0661 (18)0.066 (2)0.0101 (12)0.0014 (15)0.0152 (17)
Geometric parameters (Å, º) top
C1—O11.254 (3)C11—H110.9500
C1—O11.254 (3)C12—C131.425 (3)
C1—C21.473 (3)C12—H120.9500
C1—C151.476 (3)O2—C141.437 (3)
C2—C31.343 (3)C14—H14A0.9800
C2—H20.9500C14—H14B0.9800
C3—C41.461 (3)C14—H14C0.9800
C3—H30.9500C15—C161.420 (3)
C4—C51.394 (3)C15—C201.427 (3)
C4—C131.445 (3)C16—O31.343 (3)
C5—O21.363 (3)C16—C171.386 (3)
C5—C61.402 (3)O3—H3A0.8400
C6—C71.362 (3)C17—C181.364 (4)
C6—H60.9500C17—H170.9500
C7—C81.407 (3)C18—C191.386 (4)
C7—H70.9500C18—H180.9500
C8—C131.416 (3)C19—C201.379 (3)
C8—C91.423 (3)C19—H190.9500
C9—C101.359 (3)C20—O41.358 (3)
C9—H90.9500O4—C211.423 (3)
C10—C111.402 (4)C21—H21A0.9800
C10—H100.9500C21—H21B0.9800
C11—C121.363 (3)C21—H21C0.9800
O1—C1—C2118.2 (2)C13—C12—H12119.3
O1—C1—C2118.2 (2)C8—C13—C12116.9 (2)
O1—C1—C15118.7 (2)C8—C13—C4119.9 (2)
O1—C1—C15118.7 (2)C12—C13—C4123.1 (2)
C2—C1—C15123.1 (2)C5—O2—C14118.36 (19)
C3—C2—C1119.2 (2)O2—C14—H14A109.5
C3—C2—H2120.4O2—C14—H14B109.5
C1—C2—H2120.4H14A—C14—H14B109.5
C2—C3—C4130.8 (2)O2—C14—H14C109.5
C2—C3—H3114.6H14A—C14—H14C109.5
C4—C3—H3114.6H14B—C14—H14C109.5
C5—C4—C13117.8 (2)C16—C15—C20116.4 (2)
C5—C4—C3123.2 (2)C16—C15—C1118.6 (2)
C13—C4—C3119.05 (19)C20—C15—C1125.0 (2)
O2—C5—C4117.2 (2)O3—C16—C17117.0 (2)
O2—C5—C6121.4 (2)O3—C16—C15121.6 (2)
C4—C5—C6121.4 (2)C17—C16—C15121.4 (2)
C7—C6—C5120.7 (2)C16—O3—H3A109.5
C7—C6—H6119.6C18—C17—C16119.8 (2)
C5—C6—H6119.6C18—C17—H17120.1
C6—C7—C8120.9 (2)C16—C17—H17120.1
C6—C7—H7119.5C17—C18—C19121.5 (2)
C8—C7—H7119.5C17—C18—H18119.3
C7—C8—C13119.2 (2)C19—C18—H18119.3
C7—C8—C9120.8 (2)C20—C19—C18119.6 (2)
C13—C8—C9119.9 (2)C20—C19—H19120.2
C10—C9—C8121.2 (2)C18—C19—H19120.2
C10—C9—H9119.4O4—C20—C19122.0 (2)
C8—C9—H9119.4O4—C20—C15116.7 (2)
C9—C10—C11119.1 (2)C19—C20—C15121.3 (2)
C9—C10—H10120.4C20—O4—C21118.59 (19)
C11—C10—H10120.4O4—C21—H21A109.5
C12—C11—C10121.3 (2)O4—C21—H21B109.5
C12—C11—H11119.3H21A—C21—H21B109.5
C10—C11—H11119.3O4—C21—H21C109.5
C11—C12—C13121.4 (2)H21A—C21—H21C109.5
C11—C12—H12119.3H21B—C21—H21C109.5
C2—C1—O1—O10.00 (5)C5—C4—C13—C81.1 (3)
C15—C1—O1—O10.00 (6)C3—C4—C13—C8179.0 (2)
O1—C1—C2—C317.6 (3)C5—C4—C13—C12179.2 (2)
O1—C1—C2—C317.6 (3)C3—C4—C13—C121.3 (3)
C15—C1—C2—C3162.7 (2)C4—C5—O2—C14177.6 (2)
C1—C2—C3—C4179.2 (2)C6—C5—O2—C142.0 (3)
C2—C3—C4—C513.8 (4)O1—C1—C15—C165.9 (3)
C2—C3—C4—C13168.4 (2)O1—C1—C15—C165.9 (3)
C13—C4—C5—O2179.4 (2)C2—C1—C15—C16173.7 (2)
C3—C4—C5—O21.6 (3)O1—C1—C15—C20171.9 (2)
C13—C4—C5—C60.2 (3)O1—C1—C15—C20171.9 (2)
C3—C4—C5—C6178.0 (2)C2—C1—C15—C208.4 (3)
O2—C5—C6—C7179.6 (2)C20—C15—C16—O3178.8 (2)
C4—C5—C6—C70.8 (4)C1—C15—C16—O30.8 (3)
C5—C6—C7—C80.9 (4)C20—C15—C16—C171.8 (3)
C6—C7—C8—C130.1 (3)C1—C15—C16—C17179.9 (2)
C6—C7—C8—C9178.4 (2)O3—C16—C17—C18179.8 (2)
C7—C8—C9—C10177.8 (2)C15—C16—C17—C180.8 (4)
C13—C8—C9—C100.6 (3)C16—C17—C18—C190.5 (4)
C8—C9—C10—C110.9 (4)C17—C18—C19—C200.7 (4)
C9—C10—C11—C120.3 (4)C18—C19—C20—O4178.9 (2)
C10—C11—C12—C131.8 (4)C18—C19—C20—C150.5 (4)
C7—C8—C13—C12179.2 (2)C16—C15—C20—O4177.75 (19)
C9—C8—C13—C120.9 (3)C1—C15—C20—O40.1 (3)
C7—C8—C13—C41.1 (3)C16—C15—C20—C191.7 (3)
C9—C8—C13—C4179.4 (2)C1—C15—C20—C19179.5 (2)
C11—C12—C13—C82.0 (3)C19—C20—O4—C216.2 (3)
C11—C12—C13—C4178.3 (2)C15—C20—O4—C21173.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O10.841.722.473 (2)147
 

Acknowledgements

The author acknowledges financial support from Dongduk Women's University.

References

First citationAhn, S., Lim, Y., Sung, J. & Koh, D. (2017). IUCrData, 2, x170732.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationMahapatra, D. K., Bharti, S. K., Asati, V. & Singh, S. K. (2019). Eur. J. Med. Chem. 174, 142–158.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSung, J. (2018). IUCrData, 3, x181277.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C. & Miao, Z. (2017). Chem. Rev. 117, 7762–7810.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds