metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Poly[(μ4-phenyl­phospho­nato)zinc(II)]

CROSSMARK_Color_square_no_text.svg

aAIC School 2019 – Crystallographic Information Fiesta, Naples, Italy, bDepartment of Inorganic Chemistry, University of Zaragoza, Zaragoza, Spain, cDipartimento di Scienze della Terra, University of Milan, Milan, Italy, dDipartimento di Scienze Chimiche, della Vita e della Sostenibilit Ambientale, University of Parma, Parma, Italy, eDipartimento di Scienze della Terra e dell'Ambiente, University of Pavia, Italy, and fOlexSys Ltd, Durham University, Durham, DH1 3LE, UK
*Correspondence e-mail: chiara.massera@unipr.it

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 September 2019; accepted 3 September 2019; online 6 September 2019)

The title two-dimensional coordination polymer, [Zn(C6H5PO3)]n, was synthesized serendipitously by reacting a tetra­phospho­nate cavitand Tiiii[C3H7, CH3, C6H5] and Zn(CH3COO)2·2H2O in a DMF/H2O mixture. The basic conditions of the reaction cleaved the phospho­nate bridges at the upper rim of the cavitand, making them available for reaction with the zinc ions. The coordination polymer can be described as an inorganic layer in which zinc coordinates the oxygen atoms of the phospho­nate groups in a distorted tetra­hedral environment, while the phenyl groups, which are statistically disordered over two orientations, point up and down with respect to the layer. The layers inter­act through van der Waals inter­actions. The crystal studied was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Resorcinarene-based cavitands (Cram, 1983[Cram, D. J. (1983). Science, 219, 1177-1183.]; Cram & Cram, 1994[Cram, D. J. & Cram, J. M. (1994). Container Molecules and Their Guests, Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, vol. 4. Royal Society of Chemistry, Cambridge.]) are synthetic organic compounds endowed with a rigid, pre-organized cavity which can be decorated both at the upper and lower rim with different functional groups. In particular, tetra­phospho­nate cavitands Tiiii have four P=O groups at the upper rim all pointing to the inside of the cavity; they are generally described as Tiiii[R, R1, R2], where R = lower rim substituents, R1 = upper rim substituents and R2 = substituents on the P atom (Pinalli & Dalcanale, 2013[Pinalli, R. & Dalcanale, E. (2013). Acc. Chem. Res. 46, 399-411.]). These dipolar groups can act as hydrogen-bond acceptors and have been used as ligands for metal cations (Pinalli et al., 2016[Pinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788-5802.]; Melegari et al., 2010[Melegari, M., Massera, C., Ugozzoli, F. & Dalcanale, E. (2010). CrystEngComm, 12, 2057-2059.]). Within the framework of ongoing research on the inter­actions between cavitands and metal ions, a solvothermal reaction between the tetra­phospho­nate cavitand Tiiii[C3H7, CH3, C6H5] and Zn(CH3COO)2·2H2O was carried out in a DMF/H2O mixture. The basicity of the solution resulting from the presence of the acetate anion hydrolysed the cavitands, cleaving the bridges at the upper rim, with a concomitant release of the phenyl­phospho­nate groups. Their reaction with the zinc cations yielded the title compound, I, the crystal structure of which is reported here.

The asymmetric unit of I comprises a phenyl­phospho­nate anion and a zinc(II) cation (Fig. 1[link]); selected bond lengths are given in Table 1[link]. The delocalization of the negative charge and the single/double-bond character within the phospho­nate group are shown by the P—O distances, two of which are shorter than the third [P1—O1, P1—O2 and P1—O3 have values of 1.507 (4), 1.513 (4) and 1.561 (4) Å, respectively]. In particular, the longest P—O distance involves the O atom that bridges two metal cations, and it is therefore weakened by the double coordination. The coordination polymer is parallel to the (100) plane; each of the phospho­nate groups connects four distinct zinc cations, with O1 and O2 monodentate and with O3 bridging two Zn cations. Overall, the structure can be seen as an inorganic zone, decorated on both sides by the phenyl groups (Fig. 2[link]). Within the layer, the phenyl groups in one orientation form C—H⋯O hydrogen bonds with the oxygen atoms O1iv of adjacent phosphate groups (see Table 2[link] and Fig. 3[link]). Cohesion between layers is ensured by dispersion inter­actions.

Table 1
Selected bond lengths (Å)

Zn1—O1 1.914 (4) P1—O1 1.507 (4)
Zn1—O2i 1.907 (4) P1—O2 1.513 (4)
Zn1—O3ii 1.989 (4) P1—O3 1.561 (4)
Zn1—O3iii 1.988 (4)    
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2B—H2B⋯O1iv 0.95 2.45 3.378 (13) 170
Symmetry code: (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
Asymmetric unit of I, plus the oxygen atoms needed to complete the tetrahedral coordination around Zn1. Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) x, −y + [{3\over 2}], z + [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1. Only one orientation of the disordered phenyl group is shown for clarity.
[Figure 2]
Figure 2
Side (A) and top (B) view of I highlighting its layered structure. H atoms have been omitted for clarity.
[Figure 3]
Figure 3
View along the b-axis direction of the intra­molecular hydrogen bond (blue dotted line) in I. Symmetry code: (iv) x, −y + [{3\over 2}], z − [{1\over 2}].

A search of the Cambridge Structural Database (Version 5.38, update May 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for phenyl­phospho­nate in combination with zinc, yielded the structure of a catena-poly[[aqua­zinc(II)]-μ4-phenyl­phospho­nato] (refcode JAHGAA; Martin et al., 1989[Martin, K. J., Squattrito, P. J. & Clearfield, A. (1989). Inorg. Chim. Acta, 155, 7-9.]), closely related to the title compound. The main difference concerns the coordination sphere of the metal ion, which is a distorted octa­hedron comprising one oxygen atom of a coordinating water mol­ecule and five oxygen atoms from the μ4-phospho­nate groups.

Synthesis and crystallization

The cavitand Tiiii[C3H7, CH3, C6H5] was prepared following published procedures (Biavardi et al., 2008[Biavardi, E., Battistini, G., Montalti, M., Yebeutchou, R. M., Prodi, L. & Dalcanale, E. (2008). Chem. Commun. pp. 1638-1640.]): 18.0 mg (0.015 mmol) of the Tiiii cavitand were dissolved in DMF (2 ml), while Zn(CH3COO)2·2H2O (6.5 mg, 0.030 mmol) was dissolved in 1 ml of water. The two solutions were put in a Schlenk reactor with a volume of 10 ml, and left at room temperature overnight. The reaction mixture was then heated at 120°C in an oil bath for three days and allowed to cool to room temperature. Small, light-yellow crystals were formed; they were filtered, washed with DMF and dried.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. It was observed that Fobs was systematically greater than Fcalc for the most discrepant reflections. A twin law was identified [−1 0 −0.768 0 −1 0 0 0 1] and for the final refinement, a two-component model was refined. The population of the second component refined to a value of 0.242 (6).

Table 3
Experimental details

Crystal data
Chemical formula [Zn(C6H5O3P)]
Mr 221.47
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.8549 (8), 5.1581 (3), 10.5471 (6)
β (°) 105.816 (2)
V3) 777.56 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 5.98
Crystal size (mm) 0.10 × 0.08 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture PhotonII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.558, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 1897, 1544, 1498
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.121, 1.04
No. of reflections 1544
No. of parameters 138
No. of restraints 144
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.23, −1.08
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), olex2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

The phenyl ring of the phospho­nate group was found to be disordered over two equally populated orientations, related by rotation about the P1—C1⋯C4 axis. The dihedral angle between the mean planes passing through the two orientations is 76.3 (6)°. Neighbouring disorder assemblies of this type must be populated by alternate disorder groups in order to avoid unreasonably short contacts. That is, for a given orientation of the half-occupied phenyl group, its neighbour must be the other congener. Examination of undistorted reciprocal-lattice plots revealed diffuse streaks, which we inter­pret as arising from stacking faults accompanying the disorder. We did not undertake more detailed analysis of the diffuse scattering.

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: olex2.refine (Bourhis et al., 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Poly[(µ4-phenylphosphonato)zinc(II)] top
Crystal data top
[Zn(C6H5O3P)]F(000) = 436.050
Mr = 221.47Dx = 1.892 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.8549 (8) ÅCell parameters from 1658 reflections
b = 5.1581 (3) Åθ = 6.2–74.8°
c = 10.5471 (6) ŵ = 5.98 mm1
β = 105.816 (2)°T = 150 K
V = 777.56 (8) Å3Prismatic, light yellow
Z = 40.10 × 0.08 × 0.07 mm
Data collection top
Bruker D8 Venture PhotonII
diffractometer
1498 reflections with I > 2σ(I)
phi & ω scanRint = 0
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 72.7°, θmin = 6.2°
Tmin = 0.558, Tmax = 0.754h = 1817
1897 measured reflectionsk = 66
1544 independent reflectionsl = 012
Refinement top
Refinement on F221 constraints
Least-squares matrix: fullPrimary atom site location: iterative
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0246P)2 + 7.9936P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.0004
1544 reflectionsΔρmax = 1.23 e Å3
138 parametersΔρmin = 1.08 e Å3
144 restraints
Special details top

Refinement. The H atoms bound to C atoms were placed in calculated positions and refined isotropically using a riding model C—H = 0.95 Å, and Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.49966 (5)0.70559 (13)0.64634 (6)0.0168 (2)
P10.38324 (9)0.7695 (3)0.35527 (12)0.0175 (3)
O30.4428 (2)0.6262 (7)0.2757 (3)0.0212 (7)
O20.4026 (3)1.0576 (8)0.3577 (4)0.0263 (8)
O10.4016 (2)0.6435 (8)0.4888 (3)0.0233 (8)
c40.0722 (4)0.6776 (16)0.1495 (7)0.0451 (16)
H4a0.0075 (4)0.6593 (16)0.1062 (7)0.054 (2)*0.498 (9)
H4b0.0074 (4)0.6583 (16)0.1066 (7)0.054 (2)*0.502 (9)
C10.2618 (3)0.7270 (11)0.2715 (5)0.0215 (10)
C2A0.2065 (8)0.945 (3)0.2247 (12)0.036 (3)0.498 (9)
H2A0.2339 (8)1.112 (3)0.2334 (12)0.043 (3)*0.498 (9)
C5A0.1266 (10)0.459 (3)0.1968 (17)0.053 (4)0.498 (9)
H5A0.0988 (10)0.292 (3)0.1875 (17)0.063 (4)*0.498 (9)
C3B0.1330 (9)0.725 (3)0.0761 (13)0.045 (3)0.502 (9)
H3B0.1099 (9)0.743 (3)0.0167 (13)0.054 (4)*0.502 (9)
C6B0.1990 (8)0.681 (3)0.3468 (12)0.037 (3)0.502 (9)
H6B0.2215 (8)0.665 (3)0.4398 (12)0.044 (4)*0.502 (9)
C3A0.1118 (9)0.914 (3)0.1656 (15)0.050 (4)0.498 (9)
H3A0.0741 (9)1.062 (3)0.1359 (15)0.060 (4)*0.498 (9)
C6A0.2220 (9)0.488 (3)0.2578 (15)0.041 (3)0.498 (9)
H6A0.2593 (9)0.340 (3)0.2899 (15)0.049 (4)*0.498 (9)
C2B0.2298 (8)0.746 (3)0.1361 (11)0.034 (3)0.502 (9)
H2B0.2722 (8)0.772 (3)0.0843 (11)0.041 (3)*0.502 (9)
C5B0.1028 (9)0.658 (3)0.2850 (14)0.047 (3)0.502 (9)
H5B0.0597 (9)0.629 (3)0.3355 (14)0.056 (4)*0.502 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0222 (3)0.0162 (4)0.0129 (3)0.0007 (3)0.0061 (3)0.0004 (2)
P10.0189 (6)0.0221 (6)0.0123 (5)0.0009 (5)0.0056 (5)0.0003 (5)
O30.0247 (17)0.0233 (18)0.0164 (16)0.0013 (14)0.0069 (14)0.0014 (14)
O20.0238 (17)0.028 (2)0.029 (2)0.0011 (15)0.0114 (15)0.0033 (16)
O10.0227 (17)0.033 (2)0.0151 (16)0.0046 (15)0.0059 (13)0.0025 (15)
c40.022 (3)0.059 (4)0.048 (4)0.002 (3)0.000 (2)0.006 (3)
C10.020 (2)0.028 (3)0.017 (2)0.0016 (18)0.0051 (18)0.0021 (19)
C2A0.031 (5)0.040 (6)0.034 (6)0.003 (3)0.002 (4)0.004 (4)
C5A0.031 (6)0.050 (7)0.071 (9)0.008 (4)0.004 (4)0.006 (5)
C3B0.030 (6)0.069 (9)0.028 (6)0.002 (4)0.005 (3)0.003 (4)
C6B0.027 (5)0.059 (8)0.026 (5)0.004 (4)0.010 (3)0.001 (4)
C3A0.029 (6)0.060 (8)0.054 (8)0.003 (4)0.000 (4)0.001 (4)
C6A0.030 (6)0.032 (6)0.059 (8)0.004 (3)0.008 (4)0.003 (4)
C2B0.032 (5)0.055 (7)0.013 (4)0.003 (4)0.003 (3)0.001 (4)
C5B0.022 (5)0.069 (9)0.048 (6)0.004 (4)0.010 (4)0.002 (4)
Geometric parameters (Å, º) top
Zn1—O11.914 (4)C1—C6A1.358 (14)
Zn1—O2i1.907 (4)C1—C2B1.380 (12)
Zn1—O3ii1.989 (4)C2A—H2A0.9500
Zn1—O3iii1.988 (4)C2A—C3A1.384 (18)
P1—O11.507 (4)C5A—H5A0.9500
P1—O21.513 (4)C5A—C6A1.396 (18)
P1—O31.561 (4)C3B—H3B0.9500
P1—C11.793 (5)C3B—C2B1.408 (16)
c4—C5A1.397 (18)C6B—H6B0.9500
c4—C3B1.362 (16)C6B—C5B1.404 (17)
c4—C3A1.343 (18)C3A—H3A0.9500
c4—C5B1.380 (16)C6A—H6A0.9500
C1—C2A1.398 (14)C2B—H2B0.9500
C1—C6B1.401 (13)C5B—H5B0.9500
O2i—Zn1—O3iii108.46 (16)C3B—c4—H4b119.4 (6)
O2i—Zn1—O3ii101.79 (16)C3A—c4—H4a120.1 (7)
O1—Zn1—O3iii110.74 (16)C3A—c4—C5A119.7 (9)
O1—Zn1—O3ii107.71 (15)C5B—c4—H4b119.4 (6)
O1—Zn1—O2i119.43 (16)C5B—c4—C3B121.3 (8)
O2—P1—O3110.0 (2)C6A—C1—C2A119.7 (8)
O1—P1—O3108.2 (2)C2B—C1—C6B120.3 (8)
O1—P1—O2115.0 (2)C3A—C2A—H2A120.2 (9)
C1—P1—O3108.6 (2)C6A—C5A—H5A120.2 (9)
C1—P1—O2106.8 (2)C2B—C3B—H3B119.6 (7)
C1—P1—O1108.0 (2)C5B—C6B—H6B119.9 (8)
P1—O3—Zn1iv124.8 (2)H3A—C3A—C2A119.4 (9)
P1—O3—Zn1iii115.35 (19)H6A—C6A—C5A119.9 (9)
P1—O2—Zn1i140.5 (2)H2B—C2B—C3B120.6 (7)
P1—O1—Zn1129.8 (2)H5B—C5B—C6B120.6 (8)
C5A—c4—H4a120.1 (7)
Zn1iii—O3—P1—O2138.3 (2)Zn1i—O2—P1—O329.8 (4)
Zn1iv—O3—P1—O219.8 (3)Zn1i—O2—P1—O192.6 (4)
Zn1iv—O3—P1—O1146.2 (2)Zn1i—O2—P1—C1147.5 (4)
Zn1iii—O3—P1—O112.0 (3)Zn1—O1—P1—O385.0 (3)
Zn1iii—O3—P1—C1105.1 (3)Zn1—O1—P1—O238.3 (4)
Zn1iv—O3—P1—C196.7 (3)Zn1—O1—P1—C1157.5 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2B—H2B···O1iv0.952.453.378 (13)170
Symmetry code: (iv) x, y+3/2, z1/2.
 

Acknowledgements

The "Laboratorio di Strutturistica Mario Nardelli" of the University of Parma and Chiesi Farmaceutici SpA are kindly acknowledged for support of the D8 Venture X-ray equipment. Data analysis, structure solution, refinement and validation were conducted as part of a tutorial session during the Crystallographic Information Fiesta held in Naples, Italy, from 29 August to 3 September 2019, and organized by the Italian Crystallographic Association in partnership with the IUCr.

References

First citationBiavardi, E., Battistini, G., Montalti, M., Yebeutchou, R. M., Prodi, L. & Dalcanale, E. (2008). Chem. Commun. pp. 1638–1640.  Web of Science CrossRef Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCram, D. J. (1983). Science, 219, 1177–1183.  CrossRef PubMed CAS Web of Science Google Scholar
First citationCram, D. J. & Cram, J. M. (1994). Container Molecules and Their Guests, Monographs in Supramolecular Chemistry, edited by J. F. Stoddart, vol. 4. Royal Society of Chemistry, Cambridge.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartin, K. J., Squattrito, P. J. & Clearfield, A. (1989). Inorg. Chim. Acta, 155, 7–9.  CSD CrossRef CAS Web of Science Google Scholar
First citationMelegari, M., Massera, C., Ugozzoli, F. & Dalcanale, E. (2010). CrystEngComm, 12, 2057–2059.  Web of Science CSD CrossRef CAS Google Scholar
First citationPinalli, R. & Dalcanale, E. (2013). Acc. Chem. Res. 46, 399–411.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPinalli, R., Dalcanale, E., Ugozzoli, F. & Massera, C. (2016). CrystEngComm, 18, 5788–5802.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds