organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1:1 Co-crystal of 3-ethyl-4-methyl-3-pyrrolin-2-one and 3-ethyl-4-methyl-3-pyrroline-2,5-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry & Biochemistry, Albright College, N. 13th and Bern Streets, Reading, PA 19604, USA, and bDepartment of Chemistry, Villanova University, 800 E. Lancaster Avenue, Villanova, PA 19085, USA
*Correspondence e-mail: npiro@albright.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 August 2019; accepted 31 August 2019; online 10 September 2019)

Crystallization from a 20-year-old commercial source of 3-ethyl-4-methyl-3-pyrrolin-2-one afforded 1:1 co-crystals of this compound (C7H11NO) with its oxidized derivative, 3-ethyl-4-methyl-3-pyrroline-2,5-dione (C7H9NO2). The compound crystallizes in the space group P[\overline{1}], with two mol­ecules of each species in the asymmetric unit. These four mol­ecules form a hydrogen-bonded tetra­mer with a dimer of 3-ethyl-4-methyl-3-pyrrolin-2-one as the core flanked by one mol­ecule of the dione on each side.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

3-Ethyl-4-methyl-3-pyrrolin-2-one, C7H11NO (1) is an α,β–unsaturated lactam derivative. It has medical applications and is used as a starting material to synthesize glimepiride, the only sulfonyl urea approved by the US Food and Drug Administration (FDA) for use with insulin to treat type 2 diabetes. (Tanwar et al., 2017[Tanwar, D. K., Surendrabhai, V. R. & Gill, M. S. (2017). Synlett, 28, 2495-2498.]). We attempted to crystallize 3-ethyl-4-methyl-3-pyrrolin-2-one from a 20-year-old commercial source (Aldrich), but upon solving the structure, it was determined that the compound crystallized as a 1:1 co-crystal with its oxidized derivative, 3-ethyl-4-methyl-3-pyrrolin-2,5-dione, C7H9NO2 (2), which is also known as 2-ethyl-3-methyl­male­imide. The source of this male­imide is unclear, though it is reported to form through certain aerobic photoxidation pathways, for example from chloro­phyls (Xian et al., 2006[Xian, Q., Chen, H., Liu, H., Zou, H. & Yin, D. (2006). Environ. Sci. Pollut. Res. Int. 13, 233-237.]; Kozono et al., 2002[Kozono, M., Nomoto, S., Mita, H., Ishiwatari, R. & Shimoyama, A. (2002). Biosci. Biotechnol. Biochem. 66, 1844-1847.]), and therefore aerobic oxidation cannot be ruled out.

The asymmetric unit of the triclinic co-crystal consists of two mol­ecules of each compound (Fig. 1[link]). These four mol­ecules are held together by four N—H⋯O hydrogen bonds, Table 1[link]. At the center of the tetra­mer is a dimer of 3-ethyl-4-methyl-3-pyrrolin-2-one mol­ecules held together by two N—H⋯O hydrogen bonds with N⋯O distances of 2.8487 (15) and 2.9222 (15) Å. The oxygen atom of each pyrrolinone unit also accepts a second hydrogen bond from the N—H unit of a male­imide mol­ecule; these DA distances are similar to those in the core, being 2.8202 (15) Å and 2.8677 (15) Å. The oxygen atoms of the male­imide mol­ecules do not engage in hydrogen bonding – the shortest inter­molecular distances to the male­imide carbonyls are long (> 2.70 Å) C—H⋯O contacts.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.89 (2) 1.97 (2) 2.8487 (15) 173 (2)
N2—H2⋯O1 0.88 (2) 2.05 (2) 2.9222 (15) 171 (2)
N3—H3⋯O1 0.88 (2) 1.97 (2) 2.8202 (15) 165 (2)
N4—H4⋯O2 0.86 (2) 2.03 (2) 2.8677 (15) 165 (2)
[Figure 1]
Figure 1
The asymmetric unit of the crystal contains two mol­ecules of each component of the co-crystal, linked together by four hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level.

The C=O bonds of all four mol­ecules in the asymmetric unit are consistent with the degree of resonance delocalization of the mol­ecule. The C=O bonds of pyrrolinone 1 are longer [1.2495 (15) and 1.2467 (15) Å] than the C=O bonds of male­imide 2 [1.2100 (16)–1.2132 (16) Å]. Correspondingly, the N—C(O) bonds of the male­imides are longer [1.3838 (17)–1.3865 (17) Å)] than the N—C(O) bonds of the pyrrolinones [1.3395 (17) and 1.3391 (17) Å].

Synthesis and crystallization

Commercial 3-ethyl-4-methyl-3-pyrrolin-2-one (Aldrich) was purchased in 1997 and stored under air at room temperature. A sample was crystallized in 2019 by slow evaporation of a di­chloro­methane solution at room temperature over several days. Nearly colorless blocks were obtained and data were collected on these crystals at 100 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C7H9NO2·C7H11NO
Mr 264.32
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.2673 (17), 11.885 (2), 12.839 (2)
α, β, γ (°) 90.601 (3), 108.694 (2), 108.797 (2)
V3) 1393.6 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.5 × 0.4 × 0.4
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.638, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22087, 7807, 5738
Rint 0.042
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.129, 1.02
No. of reflections 7807
No. of parameters 363
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.47, −0.31
Computer programs: SAINT and APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: SAINT (Bruker, 2014); cell refinement: APEX2 (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

3-Ethyl-4-methyl-3-pyrrolin-2-one–3-ethyl-4-methyl-3-pyrroline-2,5-dione (1/1) top
Crystal data top
C7H9NO2·C7H11NOZ = 4
Mr = 264.32F(000) = 568
Triclinic, P1Dx = 1.260 Mg m3
a = 10.2673 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.885 (2) ÅCell parameters from 4195 reflections
c = 12.839 (2) Åθ = 2.2–30.4°
α = 90.601 (3)°µ = 0.09 mm1
β = 108.694 (2)°T = 100 K
γ = 108.797 (2)°Block, off-white
V = 1393.6 (4) Å30.5 × 0.4 × 0.4 mm
Data collection top
Bruker APEXII CCD
diffractometer
5738 reflections with I > 2σ(I)
φ and ω scansRint = 0.042
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 29.6°, θmin = 1.7°
Tmin = 0.638, Tmax = 0.746h = 1414
22087 measured reflectionsk = 1616
7807 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.2427P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
7807 reflectionsΔρmax = 0.47 e Å3
363 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 1. Fixed Uiso At 1.2 times of: All C(H,H) groups, All N(H) groups At 1.5 times of: All C(H,H,H) groups 2.a Secondary CH2 refined with riding coordinates: C4(H4A,H4B), C5(H5A,H5B), C19(H19A,H19B), C12(H12A,H12B), C11(H11A,H11B), C26(H26A,H26B) 2.b Idealised Me refined as rotating group: C6(H6A,H6B,H6C), C21(H21A,H21B,H21C), C28(H28A,H28B,H28C), C14(H14A,H14B, H14C), C7(H7A,H7B,H7C), C13(H13A,H13B,H13C), C20(H20A,H20B,H20C), C27(H27A, H27B,H27C)

The coordinates of the four hydrogen atoms (H1–H4) engaged in hydrogen bonds were refined while all others were treated with a riding model.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.21235 (10)0.36055 (8)0.67113 (8)0.0189 (2)
O60.01203 (11)0.43139 (9)0.40166 (8)0.0204 (2)
O40.75738 (11)0.53952 (9)1.01712 (8)0.0227 (2)
O10.56722 (10)0.62186 (9)0.75879 (8)0.0200 (2)
N10.38644 (12)0.55072 (10)0.58794 (9)0.0167 (2)
H10.3252 (18)0.4919 (15)0.6090 (13)0.020*
N30.83545 (13)0.71001 (10)0.93659 (10)0.0184 (2)
H30.7591 (19)0.6936 (14)0.8759 (14)0.022*
N20.41748 (13)0.39669 (10)0.82662 (9)0.0173 (2)
H20.4672 (18)0.4676 (15)0.8144 (13)0.021*
N40.07317 (13)0.28418 (11)0.50433 (10)0.0179 (2)
H40.0032 (19)0.3029 (14)0.5626 (14)0.021*
C171.05941 (14)0.79960 (12)1.07610 (10)0.0150 (3)
C220.08165 (14)0.34340 (12)0.41122 (11)0.0155 (3)
C150.84850 (15)0.63481 (12)1.01803 (11)0.0161 (3)
C160.99545 (14)0.69420 (11)1.10621 (10)0.0148 (3)
C40.35382 (14)0.58429 (12)0.47670 (10)0.0160 (3)
H4A0.2614650.6019240.4529210.019*
H4B0.3463180.5202590.4228510.019*
C250.19971 (14)0.18630 (12)0.48532 (11)0.0165 (3)
C80.28393 (14)0.33068 (11)0.75769 (10)0.0145 (3)
C20.57626 (14)0.71910 (11)0.59323 (11)0.0143 (3)
C90.23720 (14)0.21533 (11)0.80256 (10)0.0145 (3)
C10.51327 (14)0.62710 (11)0.65760 (11)0.0146 (3)
C30.48329 (14)0.69498 (12)0.48829 (11)0.0160 (3)
C180.95907 (15)0.81199 (12)0.96574 (11)0.0158 (3)
C230.22806 (14)0.27622 (12)0.32497 (11)0.0158 (3)
C50.72351 (14)0.81347 (12)0.64460 (11)0.0166 (3)
H5A0.7355310.8429000.7207040.020*
H5B0.7313640.8819510.6008890.020*
C100.34397 (15)0.21846 (12)0.89684 (11)0.0181 (3)
C240.29647 (14)0.18262 (12)0.36832 (11)0.0160 (3)
C191.04928 (15)0.63491 (12)1.20459 (11)0.0179 (3)
H19A0.9675780.5944561.2312840.022*
H19B1.1260800.6962031.2650120.022*
C120.09622 (15)0.11766 (12)0.74122 (11)0.0166 (3)
H12A0.0168300.1518050.7163280.020*
H12B0.0716840.0581960.7915710.020*
C110.46781 (15)0.33592 (12)0.92045 (11)0.0200 (3)
H11A0.4833130.3813710.9910250.024*
H11B0.5599780.3237720.9238190.024*
C60.84446 (15)0.76321 (13)0.64858 (13)0.0217 (3)
H6A0.8375830.7405550.5728850.033*
H6B0.8330630.6925350.6881080.033*
H6C0.9402130.8243330.6873160.033*
C260.27140 (16)0.31362 (13)0.21204 (11)0.0205 (3)
H26A0.2321830.4021050.2176770.025*
H26B0.3794990.2875460.1800190.025*
C211.20247 (15)0.89522 (12)1.13460 (12)0.0212 (3)
H21A1.2395590.8812281.2119390.032*
H21B1.1894810.9734181.1322490.032*
H21C1.2726300.8940041.0981760.032*
C280.44102 (15)0.08562 (13)0.31799 (12)0.0227 (3)
H28A0.4268900.0149640.2900580.034*
H28B0.5036160.1133950.2566250.034*
H28C0.4877040.0646460.3741650.034*
C140.34989 (17)0.12475 (13)0.97320 (12)0.0267 (3)
H14A0.3657960.1587891.0479560.040*
H14B0.4305050.0968710.9749600.040*
H14C0.2572350.0571540.9467430.040*
C70.49576 (17)0.76137 (14)0.39212 (12)0.0251 (3)
H7A0.4903890.7069040.3318310.038*
H7B0.5896130.8276690.4147150.038*
H7C0.4154650.7931870.3665740.038*
C130.10590 (18)0.05544 (14)0.64105 (12)0.0279 (3)
H13A0.1387380.1152450.5944650.042*
H13B0.0092830.0021380.5980840.042*
H13C0.1758990.0131670.6661470.042*
C201.11168 (19)0.54321 (14)1.17583 (12)0.0281 (3)
H20A1.0375660.4853501.1129930.042*
H20B1.1393360.5010841.2399940.042*
H20C1.1982100.5843091.1560190.042*
C270.21402 (19)0.25974 (17)0.13569 (13)0.0326 (4)
H27A0.2389180.2897680.0637390.049*
H27B0.2587900.1722310.1253210.049*
H27C0.1074190.2825250.1688590.049*
O30.98077 (11)0.89459 (9)0.91156 (8)0.0225 (2)
O50.22727 (11)0.11830 (9)0.55131 (8)0.0247 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0159 (5)0.0195 (5)0.0151 (5)0.0016 (4)0.0015 (4)0.0072 (4)
O60.0182 (5)0.0173 (5)0.0219 (5)0.0000 (4)0.0078 (4)0.0008 (4)
O40.0206 (5)0.0181 (5)0.0217 (5)0.0031 (4)0.0070 (4)0.0010 (4)
O10.0163 (5)0.0203 (5)0.0155 (5)0.0006 (4)0.0005 (4)0.0057 (4)
N10.0146 (5)0.0142 (5)0.0148 (5)0.0004 (4)0.0019 (4)0.0046 (4)
N30.0154 (6)0.0178 (6)0.0132 (5)0.0001 (5)0.0008 (5)0.0016 (4)
N20.0161 (6)0.0133 (5)0.0152 (5)0.0011 (5)0.0018 (4)0.0050 (4)
N40.0130 (5)0.0202 (6)0.0131 (5)0.0005 (5)0.0000 (4)0.0009 (4)
C170.0151 (6)0.0147 (6)0.0118 (6)0.0023 (5)0.0030 (5)0.0002 (5)
C220.0156 (6)0.0157 (6)0.0155 (6)0.0053 (5)0.0056 (5)0.0001 (5)
C150.0166 (6)0.0165 (6)0.0130 (6)0.0023 (5)0.0056 (5)0.0006 (5)
C160.0157 (6)0.0146 (6)0.0117 (6)0.0030 (5)0.0038 (5)0.0002 (5)
C40.0142 (6)0.0169 (6)0.0128 (6)0.0029 (5)0.0019 (5)0.0022 (5)
C250.0138 (6)0.0158 (6)0.0178 (6)0.0043 (5)0.0038 (5)0.0007 (5)
C80.0150 (6)0.0137 (6)0.0124 (6)0.0018 (5)0.0048 (5)0.0021 (5)
C20.0127 (6)0.0117 (6)0.0179 (6)0.0034 (5)0.0052 (5)0.0037 (5)
C90.0156 (6)0.0113 (6)0.0130 (6)0.0003 (5)0.0044 (5)0.0007 (5)
C10.0129 (6)0.0127 (6)0.0169 (6)0.0039 (5)0.0037 (5)0.0037 (5)
C30.0148 (6)0.0158 (6)0.0177 (6)0.0049 (5)0.0065 (5)0.0045 (5)
C180.0151 (6)0.0161 (6)0.0134 (6)0.0034 (5)0.0031 (5)0.0004 (5)
C230.0132 (6)0.0149 (6)0.0171 (6)0.0049 (5)0.0022 (5)0.0012 (5)
C50.0136 (6)0.0117 (6)0.0198 (7)0.0005 (5)0.0032 (5)0.0031 (5)
C100.0179 (7)0.0144 (6)0.0158 (6)0.0006 (5)0.0025 (5)0.0032 (5)
C240.0134 (6)0.0143 (6)0.0182 (6)0.0051 (5)0.0024 (5)0.0001 (5)
C190.0213 (7)0.0182 (7)0.0116 (6)0.0042 (5)0.0048 (5)0.0042 (5)
C120.0157 (6)0.0153 (6)0.0133 (6)0.0003 (5)0.0034 (5)0.0030 (5)
C110.0173 (7)0.0168 (7)0.0169 (7)0.0002 (5)0.0003 (5)0.0051 (5)
C60.0156 (7)0.0205 (7)0.0268 (7)0.0044 (6)0.0062 (6)0.0049 (6)
C260.0186 (7)0.0218 (7)0.0179 (7)0.0061 (6)0.0027 (5)0.0043 (5)
C210.0181 (7)0.0175 (7)0.0185 (7)0.0013 (5)0.0014 (5)0.0030 (5)
C280.0170 (7)0.0171 (7)0.0256 (7)0.0021 (5)0.0002 (6)0.0015 (6)
C140.0234 (8)0.0197 (7)0.0240 (8)0.0009 (6)0.0026 (6)0.0101 (6)
C70.0218 (7)0.0309 (8)0.0195 (7)0.0049 (6)0.0070 (6)0.0109 (6)
C130.0292 (8)0.0215 (7)0.0223 (7)0.0047 (6)0.0086 (6)0.0056 (6)
C200.0371 (9)0.0300 (8)0.0190 (7)0.0177 (7)0.0059 (7)0.0050 (6)
C270.0367 (9)0.0478 (10)0.0173 (7)0.0218 (8)0.0071 (7)0.0050 (7)
O30.0255 (5)0.0181 (5)0.0179 (5)0.0032 (4)0.0036 (4)0.0060 (4)
O50.0225 (5)0.0241 (5)0.0230 (5)0.0039 (4)0.0061 (4)0.0090 (4)
Geometric parameters (Å, º) top
O2—C81.2467 (15)C5—C61.530 (2)
O6—C221.2100 (16)C10—C111.5026 (19)
O4—C151.2115 (16)C10—C141.4945 (18)
O1—C11.2495 (15)C24—C281.4887 (19)
N1—H10.887 (16)C19—H19A0.9900
N1—C41.4500 (16)C19—H19B0.9900
N1—C11.3395 (17)C19—C201.526 (2)
N3—H30.875 (17)C12—H12A0.9900
N3—C151.3846 (17)C12—H12B0.9900
N3—C181.3838 (17)C12—C131.523 (2)
N2—H20.879 (16)C11—H11A0.9900
N2—C81.3391 (17)C11—H11B0.9900
N2—C111.4491 (17)C6—H6A0.9800
N4—H40.856 (17)C6—H6B0.9800
N4—C221.3865 (17)C6—H6C0.9800
N4—C251.3848 (17)C26—H26A0.9900
C17—C161.3389 (18)C26—H26B0.9900
C17—C181.5023 (18)C26—C271.523 (2)
C17—C211.4874 (18)C21—H21A0.9800
C22—C231.5047 (18)C21—H21B0.9800
C15—C161.5028 (18)C21—H21C0.9800
C16—C191.4899 (18)C28—H28A0.9800
C4—H4A0.9900C28—H28B0.9800
C4—H4B0.9900C28—H28C0.9800
C4—C31.5040 (18)C14—H14A0.9800
C25—C241.5031 (18)C14—H14B0.9800
C25—O51.2132 (16)C14—H14C0.9800
C8—C91.4871 (17)C7—H7A0.9800
C2—C11.4842 (17)C7—H7B0.9800
C2—C31.3415 (18)C7—H7C0.9800
C2—C51.4936 (18)C13—H13A0.9800
C9—C101.3380 (19)C13—H13B0.9800
C9—C121.4934 (18)C13—H13C0.9800
C3—C71.4900 (18)C20—H20A0.9800
C18—O31.2124 (16)C20—H20B0.9800
C23—C241.3419 (18)C20—H20C0.9800
C23—C261.4918 (18)C27—H27A0.9800
C5—H5A0.9900C27—H27B0.9800
C5—H5B0.9900C27—H27C0.9800
C4—N1—H1124.0 (10)H19A—C19—H19B108.0
C1—N1—H1123.9 (10)C20—C19—H19A109.4
C1—N1—C4111.72 (11)C20—C19—H19B109.4
C15—N3—H3123.6 (11)C9—C12—H12A109.4
C18—N3—H3126.2 (11)C9—C12—H12B109.4
C18—N3—C15110.15 (11)C9—C12—C13111.30 (11)
C8—N2—H2122.8 (10)H12A—C12—H12B108.0
C8—N2—C11111.70 (11)C13—C12—H12A109.4
C11—N2—H2125.5 (10)C13—C12—H12B109.4
C22—N4—H4123.8 (11)N2—C11—C10102.71 (11)
C25—N4—H4125.6 (11)N2—C11—H11A111.2
C25—N4—C22110.40 (11)N2—C11—H11B111.2
C16—C17—C18108.26 (11)C10—C11—H11A111.2
C16—C17—C21130.11 (12)C10—C11—H11B111.2
C21—C17—C18121.63 (11)H11A—C11—H11B109.1
O6—C22—N4126.14 (12)C5—C6—H6A109.5
O6—C22—C23127.07 (12)C5—C6—H6B109.5
N4—C22—C23106.79 (11)C5—C6—H6C109.5
O4—C15—N3125.76 (13)H6A—C6—H6B109.5
O4—C15—C16127.26 (12)H6A—C6—H6C109.5
N3—C15—C16106.98 (11)H6B—C6—H6C109.5
C17—C16—C15107.82 (11)C23—C26—H26A109.4
C17—C16—C19130.63 (12)C23—C26—H26B109.4
C19—C16—C15121.53 (11)C23—C26—C27111.36 (12)
N1—C4—H4A111.2H26A—C26—H26B108.0
N1—C4—H4B111.2C27—C26—H26A109.4
N1—C4—C3102.76 (10)C27—C26—H26B109.4
H4A—C4—H4B109.1C17—C21—H21A109.5
C3—C4—H4A111.2C17—C21—H21B109.5
C3—C4—H4B111.2C17—C21—H21C109.5
N4—C25—C24106.64 (11)H21A—C21—H21B109.5
O5—C25—N4126.34 (13)H21A—C21—H21C109.5
O5—C25—C24127.01 (12)H21B—C21—H21C109.5
O2—C8—N2125.99 (12)C24—C28—H28A109.5
O2—C8—C9126.30 (12)C24—C28—H28B109.5
N2—C8—C9107.71 (11)C24—C28—H28C109.5
C1—C2—C5121.51 (11)H28A—C28—H28B109.5
C3—C2—C1108.08 (11)H28A—C28—H28C109.5
C3—C2—C5130.31 (12)H28B—C28—H28C109.5
C8—C9—C12121.34 (11)C10—C14—H14A109.5
C10—C9—C8107.89 (11)C10—C14—H14B109.5
C10—C9—C12130.69 (12)C10—C14—H14C109.5
O1—C1—N1125.75 (12)H14A—C14—H14B109.5
O1—C1—C2126.53 (12)H14A—C14—H14C109.5
N1—C1—C2107.71 (11)H14B—C14—H14C109.5
C2—C3—C4109.72 (11)C3—C7—H7A109.5
C2—C3—C7128.87 (13)C3—C7—H7B109.5
C7—C3—C4121.41 (12)C3—C7—H7C109.5
N3—C18—C17106.77 (11)H7A—C7—H7B109.5
O3—C18—N3125.96 (12)H7A—C7—H7C109.5
O3—C18—C17127.27 (12)H7B—C7—H7C109.5
C24—C23—C22107.84 (11)C12—C13—H13A109.5
C24—C23—C26131.04 (12)C12—C13—H13B109.5
C26—C23—C22121.03 (12)C12—C13—H13C109.5
C2—C5—H5A109.6H13A—C13—H13B109.5
C2—C5—H5B109.6H13A—C13—H13C109.5
C2—C5—C6110.49 (11)H13B—C13—H13C109.5
H5A—C5—H5B108.1C19—C20—H20A109.5
C6—C5—H5A109.6C19—C20—H20B109.5
C6—C5—H5B109.6C19—C20—H20C109.5
C9—C10—C11109.98 (11)H20A—C20—H20B109.5
C9—C10—C14128.69 (13)H20A—C20—H20C109.5
C14—C10—C11121.33 (12)H20B—C20—H20C109.5
C23—C24—C25108.31 (11)C26—C27—H27A109.5
C23—C24—C28130.25 (12)C26—C27—H27B109.5
C28—C24—C25121.43 (12)C26—C27—H27C109.5
C16—C19—H19A109.4H27A—C27—H27B109.5
C16—C19—H19B109.4H27A—C27—H27C109.5
C16—C19—C20110.95 (11)H27B—C27—H27C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.89 (2)1.97 (2)2.8487 (15)173 (2)
N2—H2···O10.88 (2)2.05 (2)2.9222 (15)171 (2)
N3—H3···O10.88 (2)1.97 (2)2.8202 (15)165 (2)
N4—H4···O20.86 (2)2.03 (2)2.8677 (15)165 (2)
 

Acknowledgements

We thank Dr Mark Bezpalko for access to and maintenance of the instrument used in this study.

Funding information

Funding for this research was provided by: Albright College ; Villanova University .

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKozono, M., Nomoto, S., Mita, H., Ishiwatari, R. & Shimoyama, A. (2002). Biosci. Biotechnol. Biochem. 66, 1844–1847.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTanwar, D. K., Surendrabhai, V. R. & Gill, M. S. (2017). Synlett, 28, 2495–2498.  CAS Google Scholar
First citationXian, Q., Chen, H., Liu, H., Zou, H. & Yin, D. (2006). Environ. Sci. Pollut. Res. Int. 13, 233–237.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds