organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,4′,5,5′-Tetra­meth­­oxy-2′-methyl­biphen­yl-4-ol

CROSSMARK_Color_square_no_text.svg

aJohannes Gutenberg University Mainz, Institute of Organic Chemistry, Duesbergweg 10-14, 55128 Mainz, Germany
*Correspondence e-mail: waldvogel@uni-mainz.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 August 2019; accepted 2 September 2019; online 6 September 2019)

The asymmetric unit of the title compound, C17H20O5, contains two independent mol­ecules, A and B, with similar geometries [dihedral angles between the phenyl rings = 56.19 (8) and 54.98 (7)°, respectively]. Intra­molecular O—H⋯O hydrogen bonds occur in both mol­ecules. In the crystal, the A mol­ecules form [1[\overline{1}]0] chains linked by O—H⋯O hydrogen bonds from the hydroxyl group to one of the meth­oxy O atoms. The B mol­ecules form O—H⋯O hydrogen bonds to the hydroxyl O atoms of the A mol­ecules and thus act as fixed spacers between the chains of mol­ecule A. Some weak C—H⋯O contacts are also present.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Non-symmetric biaryl systems are a frequently occurring structural motif and can be found in natural products (Bringmann et al., 2005[Bringmann, G., Price Mortimer, A. J., Keller, P. A., Gresser, M. J., Garner, J. & Breuning, M. (2005). Angew. Chem. Int. Ed. 44, 5384-5427.]) and material science (Grimsdale et al., 2009[Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G. & Holmes, A. B. (2009). Chem. Rev. 109, 897-1091.]) and as a part of ligand building blocks for catalysis (Noyori, 2003[Noyori, R. (2003). Adv. Synth. Catal. 345, 15-32.]). The cross-coupling of non-symmetric biaryl systems represents a significant, versatile and useful transformation in organic chemistry (Cepanec, 2004[Cepanec, I. (2004). Synthesis of biaryls. Amsterdam: Elsevier.]) while electrochemical synthesis offers access to new substances (Wiebe et al., 2018[Wiebe, A., Gieshoff, T., Möhle, S., Rodrigo, E., Zirbes, M. & Waldvogel, S. R. (2018). Angew. Chem. Int. Ed. 57, 5594-5619.]) that could not previously be synthesized in classical chemistry (Waldvogel et al., 2018[Waldvogel, S. R., Lips, S., Selt, M., Riehl, B. & Kampf, C. J. (2018). Chem. Rev. 118, 6706-6765.]; Lips et al., 2018[Lips, S., Schollmeyer, D., Franke, R. & Waldvogel, S. R. (2018). Angew. Chem. Int. Ed. 57, 13325-13329.], 2019[Lips, S., Franke, R. & Waldvogel, S. R. (2019). Synlett, 30, 1174-1177.]; Dörr et al., 2019[Dörr, M., Lips, S., Martínez-Huitle, C. A., Schollmeyer, D., Franke, R. & Waldvogel, S. R. (2019). Chem. Eur. J. 25, 7835-7838.];Schulz et al., 2017[Schulz, L., Enders, M., Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. (2017). Angew. Chem. Int. Ed. 56, 4877-4881.]). Additionally, the electro-organic synthesis of biaryl systems is a sustainable (Wiebe et al., 2017[Wiebe, A., Riehl, B., Lips, S., Franke, R. & Waldvogel, S. R. (2017). Sci. Adv. 3, eaao3920.]) and applicable metal- and reagent-free technology.

The triclinic unit cell of the title compound contains two independent mol­ecules with nearly identical geometries (r.m.s. deviation = 0.143 Å) (Fig. 1[link]). The dihedral angles between the least-squares planes of the phenyl rings are 56.19 (8) and 54.98 (7)° for mol­ecules A and B, respectively. The mol­ecular conformations are consolidated by intra­molecular O—H⋯O hydrogen bonds (Table 1[link]). All of the meth­oxy groups are located close to the planes of their connected phenyl rings. In the crystal, mol­ecules B and A are linked via an O9B—H9B⋯O9A hydrogen bond while mol­ecule A shows an O9A—H9A⋯O20A bond, leading to a chain along [1[\overline{1}]0] (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9A—H9A⋯O7A 0.87 (3) 2.30 (3) 2.703 (2) 108 (2)
O9B—H9B⋯O7B 0.88 (3) 2.16 (3) 2.659 (2) 116 (2)
O9A—H9A⋯O20Ai 0.87 (3) 2.34 (3) 3.0000 (19) 133 (2)
O9B—H9B⋯O9A 0.88 (3) 2.23 (3) 2.992 (2) 146 (2)
C13A—H13A⋯O20Bii 0.95 2.52 3.453 (2) 166
C13B—H13B⋯O9Biii 0.95 2.55 3.498 (2) 172
C19A—H19C⋯O18Bii 0.98 2.49 3.452 (3) 167
C19B—H19D⋯O18Aiv 0.98 2.54 3.475 (3) 159
Symmetry codes: (i) x-1, y+1, z; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
A partial packing diagram viewed along [100] with A mol­ecules in black and B mol­ecules in red. Hydrogen bonds are shown as dashed lines.

Synthesis and crystallization

A solution of 2,6-di­meth­oxy­phenol (0.58 g, 3.8 mmol, 1.0 eq.), 1,2-dimeth­oxy-4-methyl­benzene (1.73 g, 11.4 mmol, 3.0 eq.) and N-methyl-N,N,N-tri­butyl­ammonium methyl­sulfate (0.77 g, 2.25 mmol) in 25 ml of 1,1,1,3,3,3-hexa­fluoro-propan-2-ol was transferred into a undivided beaker-type electrolysis cell equipped with boron-doped diamond electrodes. A constant current electrolysis with a current density of 5.2 mA cm−2 was performed at 323 K. After application of 731 C (2 F per 2,6-di­meth­oxy­phenol) the electrolysis was stopped and the solvent mixture was recovered in vacuo (323 K, 200-70 mbar). The crude coupling product was purified by column chromatography [SiO2, ethyl acetate/cyclo­hexane (1:4)] and the desired product was obtained as a slightly brown solid [yield: 68%, 0.79 g, 2.6 mmol); m.p. 367 K (cyclo­hexa­ne/ethyl acetate (4:1)]; Suitable single crystals were obtained by slowly diluting a saturated solution of the title compound in ethyl acetate with n-heptane (diffusion method).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C17H20O5
Mr 304.33
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 7.5318 (5), 11.0092 (6), 18.1896 (12)
α, β, γ (°) 85.600 (5), 87.945 (5), 78.702 (5)
V3) 1474.34 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.31 × 0.21 × 0.13
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 13532, 6992, 4168
Rint 0.032
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.122, 0.96
No. of reflections 6992
No. of parameters 415
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.27, −0.23
Computer programs: X-RED and X-AREA (Stoe & Cie, 1996[Stoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]), SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Structural data


Computing details top

Data collection: X-RED and X-AREA (Stoe & Cie, 1996); cell refinement: X-RED and X-AREA (Stoe & Cie, 1996); data reduction: X-RED and X-AREA (Stoe & Cie, 1996); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015).

3,4',5,5'-Tetramethoxy-2'-methylbiphenyl-4-ol top
Crystal data top
C17H20O5F(000) = 648
Mr = 304.33Dx = 1.371 Mg m3
Triclinic, P1Melting point: 367 K
a = 7.5318 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0092 (6) ÅCell parameters from 5220 reflections
c = 18.1896 (12) Åθ = 2.8–28.3°
α = 85.600 (5)°µ = 0.10 mm1
β = 87.945 (5)°T = 193 K
γ = 78.702 (5)°Block, colourless
V = 1474.34 (16) Å30.31 × 0.21 × 0.13 mm
Z = 4
Data collection top
Stoe IPDS 2T
diffractometer
4168 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focusRint = 0.032
Detector resolution: 6.67 pixels mm-1θmax = 27.9°, θmin = 2.8°
rotation method scansh = 99
13532 measured reflectionsk = 1414
6992 independent reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.065P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
6992 reflectionsΔρmax = 0.27 e Å3
415 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms attached to carbon atoms were placed at calculated positions and were refined in the riding-model approximation with isotropic displacement parameters. Hydroxyl hydrogen atoms were localized in difference maps and were refined without any constraints/restraints.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.9799 (2)0.18167 (15)0.12238 (9)0.0296 (4)
C2A1.0221 (3)0.30034 (15)0.11006 (10)0.0340 (4)
H2A1.1375000.3092330.0900270.041*
C3A0.8959 (3)0.40467 (15)0.12707 (9)0.0326 (4)
C4A0.7270 (3)0.39390 (16)0.15603 (9)0.0321 (4)
C5A0.6841 (2)0.27607 (16)0.16868 (9)0.0312 (4)
C6A0.8106 (2)0.17168 (15)0.15203 (9)0.0303 (4)
H6A0.7808040.0918480.1611040.036*
O7A0.92497 (19)0.52477 (11)0.11762 (7)0.0415 (3)
C8A1.1016 (3)0.54224 (19)0.09269 (13)0.0485 (5)
H8A1.1224700.5191300.0416780.073*
H8B1.1933570.4899440.1242630.073*
H8C1.1098270.6295980.0950840.073*
O9A0.5991 (2)0.49493 (12)0.17523 (8)0.0413 (3)
H9A0.626 (4)0.564 (2)0.1549 (16)0.082 (9)*
O10A0.51533 (18)0.27390 (11)0.19765 (8)0.0428 (3)
C11A0.4691 (3)0.15525 (18)0.21397 (13)0.0477 (5)
H11A0.4745420.1121320.1685250.072*
H11B0.3461810.1657270.2353160.072*
H11C0.5547370.1062250.2492940.072*
C12A1.1143 (2)0.06707 (15)0.10736 (9)0.0287 (4)
C13A1.1546 (2)0.02472 (15)0.16586 (9)0.0295 (4)
H13A1.0999420.0095780.2130160.035*
C14A1.2709 (2)0.13561 (15)0.15652 (9)0.0293 (4)
C15A1.3497 (2)0.15842 (15)0.08669 (10)0.0297 (4)
C16A1.3113 (2)0.06908 (16)0.02949 (10)0.0314 (4)
H16A1.3660840.0851240.0175370.038*
C17A1.1942 (2)0.04481 (15)0.03803 (9)0.0296 (4)
O18A1.31709 (19)0.22968 (11)0.21027 (7)0.0375 (3)
C19A1.2669 (3)0.20125 (18)0.28398 (10)0.0423 (5)
H19A1.3153090.1288160.2957590.063*
H19B1.3162390.2724750.3178340.063*
H19C1.1345780.1828420.2891580.063*
O20A1.46309 (18)0.27231 (11)0.08059 (7)0.0384 (3)
C21A1.4887 (3)0.31556 (19)0.00889 (11)0.0458 (5)
H21A1.3707700.3166860.0118390.069*
H21B1.5620590.3997140.0115820.069*
H21C1.5510040.2602040.0226810.069*
C22A1.1508 (3)0.13320 (16)0.02933 (10)0.0364 (4)
H22A1.1912770.0895870.0737350.055*
H22B1.2132690.2029550.0270200.055*
H22C1.0198440.1644740.0309770.055*
C1B0.3944 (2)0.27622 (14)0.48112 (9)0.0261 (4)
C2B0.3044 (2)0.33223 (15)0.41793 (9)0.0290 (4)
H2B0.1904130.3144200.4066770.035*
C3B0.3824 (3)0.41407 (15)0.37162 (9)0.0291 (4)
C4B0.5515 (2)0.43821 (14)0.38575 (9)0.0283 (4)
C5B0.6380 (2)0.38653 (14)0.45020 (9)0.0266 (4)
C6B0.5587 (2)0.30630 (14)0.49753 (9)0.0267 (4)
H6B0.6176090.2715000.5417460.032*
O7B0.30278 (18)0.47921 (11)0.31022 (7)0.0374 (3)
C8B0.1337 (3)0.4548 (2)0.29006 (12)0.0482 (5)
H8D0.0885630.5097770.2470530.072*
H8E0.0467930.4695100.3313260.072*
H8F0.1490650.3680840.2778820.072*
O9B0.6339 (2)0.51264 (11)0.33720 (8)0.0385 (3)
H9B0.575 (3)0.514 (2)0.2964 (14)0.067 (8)*
O10B0.80286 (17)0.41603 (11)0.46072 (7)0.0348 (3)
C11B0.8942 (2)0.36313 (16)0.52674 (10)0.0337 (4)
H11D0.9211090.2724290.5261780.051*
H11E0.8166500.3871910.5696920.051*
H11F1.0075100.3935620.5295430.051*
C12B0.3161 (2)0.18486 (15)0.53019 (9)0.0259 (4)
C13B0.2925 (2)0.20527 (15)0.60577 (9)0.0265 (4)
H13B0.3235040.2772700.6234030.032*
C14B0.2250 (2)0.12222 (15)0.65462 (9)0.0265 (4)
C15B0.1776 (2)0.01716 (15)0.62843 (9)0.0268 (4)
C16B0.2012 (2)0.00287 (14)0.55426 (9)0.0276 (4)
H16B0.1694340.0748510.5369360.033*
C17B0.2700 (2)0.07911 (15)0.50431 (9)0.0264 (4)
O18B0.19864 (18)0.13309 (10)0.72899 (6)0.0338 (3)
C19B0.2269 (3)0.24458 (17)0.75752 (10)0.0398 (5)
H19D0.3554630.2490270.7526020.060*
H19E0.1896460.2451640.8096950.060*
H19F0.1548580.3162630.7298900.060*
O20B0.10809 (18)0.05989 (10)0.67998 (6)0.0336 (3)
C21B0.1288 (3)0.18709 (15)0.66423 (11)0.0385 (5)
H21D0.0584550.1930660.6207970.058*
H21E0.0850420.2343130.7066160.058*
H21F0.2569380.2211710.6544700.058*
C22B0.3017 (2)0.04457 (16)0.42521 (9)0.0308 (4)
H22D0.2050070.0933320.3945030.046*
H22E0.3017500.0440730.4228860.046*
H22F0.4188090.0621250.4070790.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0359 (10)0.0294 (9)0.0234 (9)0.0068 (8)0.0002 (7)0.0016 (7)
C2A0.0394 (11)0.0321 (9)0.0304 (10)0.0085 (8)0.0043 (8)0.0008 (7)
C3A0.0476 (12)0.0266 (9)0.0249 (9)0.0115 (8)0.0003 (8)0.0002 (7)
C4A0.0409 (11)0.0289 (9)0.0241 (9)0.0017 (8)0.0005 (8)0.0012 (7)
C5A0.0336 (10)0.0348 (9)0.0247 (9)0.0064 (8)0.0003 (8)0.0004 (7)
C6A0.0383 (11)0.0265 (8)0.0265 (9)0.0078 (8)0.0014 (8)0.0001 (7)
O7A0.0514 (9)0.0263 (6)0.0471 (8)0.0108 (6)0.0058 (7)0.0002 (6)
C8A0.0569 (14)0.0379 (11)0.0540 (14)0.0204 (10)0.0114 (11)0.0008 (9)
O9A0.0505 (9)0.0273 (7)0.0419 (8)0.0004 (6)0.0062 (7)0.0008 (6)
O10A0.0381 (8)0.0344 (7)0.0549 (9)0.0070 (6)0.0100 (7)0.0007 (6)
C11A0.0378 (12)0.0423 (11)0.0633 (15)0.0130 (9)0.0102 (10)0.0032 (10)
C12A0.0320 (10)0.0286 (8)0.0269 (9)0.0091 (7)0.0007 (7)0.0023 (7)
C13A0.0344 (10)0.0307 (9)0.0239 (9)0.0078 (8)0.0041 (7)0.0033 (7)
C14A0.0345 (10)0.0300 (9)0.0242 (9)0.0087 (8)0.0008 (7)0.0002 (7)
C15A0.0323 (10)0.0271 (8)0.0299 (10)0.0049 (7)0.0014 (8)0.0063 (7)
C16A0.0350 (10)0.0348 (9)0.0253 (9)0.0088 (8)0.0050 (8)0.0046 (7)
C17A0.0331 (10)0.0314 (9)0.0261 (9)0.0109 (7)0.0007 (7)0.0006 (7)
O18A0.0509 (8)0.0327 (6)0.0248 (7)0.0000 (6)0.0014 (6)0.0010 (5)
C19A0.0521 (13)0.0442 (11)0.0246 (10)0.0024 (9)0.0019 (9)0.0038 (8)
O20A0.0469 (8)0.0346 (7)0.0296 (7)0.0030 (6)0.0017 (6)0.0063 (5)
C21A0.0593 (14)0.0429 (11)0.0329 (11)0.0011 (10)0.0014 (10)0.0114 (9)
C22A0.0468 (12)0.0338 (9)0.0288 (10)0.0101 (8)0.0019 (8)0.0008 (8)
C1B0.0297 (9)0.0249 (8)0.0229 (9)0.0033 (7)0.0020 (7)0.0025 (6)
C2B0.0282 (9)0.0297 (9)0.0280 (9)0.0034 (7)0.0003 (7)0.0005 (7)
C3B0.0369 (10)0.0248 (8)0.0224 (9)0.0012 (7)0.0012 (7)0.0011 (7)
C4B0.0383 (10)0.0219 (8)0.0249 (9)0.0078 (7)0.0077 (7)0.0018 (6)
C5B0.0276 (9)0.0253 (8)0.0275 (9)0.0055 (7)0.0033 (7)0.0051 (7)
C6B0.0295 (9)0.0261 (8)0.0229 (9)0.0019 (7)0.0003 (7)0.0009 (7)
O7B0.0448 (8)0.0361 (7)0.0278 (7)0.0022 (6)0.0053 (6)0.0068 (5)
C8B0.0519 (14)0.0510 (12)0.0389 (12)0.0035 (10)0.0156 (10)0.0040 (9)
O9B0.0515 (9)0.0376 (7)0.0282 (7)0.0166 (6)0.0039 (7)0.0052 (6)
O10B0.0342 (7)0.0383 (7)0.0336 (7)0.0123 (6)0.0008 (6)0.0005 (5)
C11B0.0305 (10)0.0350 (9)0.0350 (10)0.0053 (8)0.0012 (8)0.0012 (8)
C12B0.0243 (9)0.0273 (8)0.0253 (9)0.0035 (7)0.0001 (7)0.0001 (7)
C13B0.0268 (9)0.0250 (8)0.0280 (9)0.0048 (7)0.0004 (7)0.0041 (7)
C14B0.0273 (9)0.0279 (8)0.0225 (8)0.0012 (7)0.0015 (7)0.0028 (7)
C15B0.0275 (9)0.0260 (8)0.0262 (9)0.0053 (7)0.0050 (7)0.0004 (7)
C16B0.0291 (9)0.0238 (8)0.0302 (9)0.0050 (7)0.0000 (7)0.0048 (7)
C17B0.0254 (9)0.0272 (8)0.0248 (9)0.0009 (7)0.0004 (7)0.0022 (7)
O18B0.0510 (8)0.0298 (6)0.0228 (6)0.0133 (6)0.0061 (6)0.0051 (5)
C19B0.0592 (13)0.0350 (10)0.0279 (10)0.0139 (9)0.0060 (9)0.0101 (8)
O20B0.0477 (8)0.0250 (6)0.0292 (7)0.0112 (5)0.0090 (6)0.0025 (5)
C21B0.0539 (13)0.0248 (9)0.0377 (11)0.0105 (9)0.0009 (9)0.0017 (8)
C22B0.0333 (10)0.0324 (9)0.0257 (9)0.0036 (8)0.0016 (7)0.0039 (7)
Geometric parameters (Å, º) top
C1A—C6A1.388 (2)C1B—C6B1.390 (2)
C1A—C2A1.404 (2)C1B—C2B1.394 (2)
C1A—C12A1.491 (2)C1B—C12B1.487 (2)
C2A—C3A1.387 (2)C2B—C3B1.386 (2)
C2A—H2A0.9500C2B—H2B0.9500
C3A—O7A1.379 (2)C3B—O7B1.370 (2)
C3A—C4A1.383 (3)C3B—C4B1.388 (3)
C4A—O9A1.379 (2)C4B—O9B1.373 (2)
C4A—C5A1.397 (2)C4B—C5B1.389 (2)
C5A—O10A1.362 (2)C5B—O10B1.367 (2)
C5A—C6A1.387 (2)C5B—C6B1.390 (2)
C6A—H6A0.9500C6B—H6B0.9500
O7A—C8A1.434 (2)O7B—C8B1.418 (2)
C8A—H8A0.9800C8B—H8D0.9800
C8A—H8B0.9800C8B—H8E0.9800
C8A—H8C0.9800C8B—H8F0.9800
O9A—H9A0.87 (3)O9B—H9B0.88 (3)
O10A—C11A1.424 (2)O10B—C11B1.432 (2)
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—C17A1.396 (2)C12B—C17B1.397 (2)
C12A—C13A1.408 (2)C12B—C13B1.409 (2)
C13A—C14A1.374 (2)C13B—C14B1.382 (2)
C13A—H13A0.9500C13B—H13B0.9500
C14A—O18A1.370 (2)C14B—O18B1.371 (2)
C14A—C15A1.402 (2)C14B—C15B1.397 (2)
C15A—C16A1.374 (2)C15B—O20B1.375 (2)
C15A—O20A1.3816 (19)C15B—C16B1.383 (2)
C16A—C17A1.400 (2)C16B—C17B1.390 (2)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C22A1.509 (2)C17B—C22B1.515 (2)
O18A—C19A1.421 (2)O18B—C19B1.424 (2)
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
O20A—C21A1.416 (2)O20B—C21B1.4284 (19)
C21A—H21A0.9800C21B—H21D0.9800
C21A—H21B0.9800C21B—H21E0.9800
C21A—H21C0.9800C21B—H21F0.9800
C22A—H22A0.9800C22B—H22D0.9800
C22A—H22B0.9800C22B—H22E0.9800
C22A—H22C0.9800C22B—H22F0.9800
C6A—C1A—C2A118.54 (16)C6B—C1B—C2B119.18 (16)
C6A—C1A—C12A119.64 (15)C6B—C1B—C12B120.36 (15)
C2A—C1A—C12A121.77 (17)C2B—C1B—C12B120.46 (16)
C3A—C2A—C1A120.20 (18)C3B—C2B—C1B119.59 (17)
C3A—C2A—H2A119.9C3B—C2B—H2B120.2
C1A—C2A—H2A119.9C1B—C2B—H2B120.2
O7A—C3A—C4A114.59 (15)O7B—C3B—C2B124.74 (17)
O7A—C3A—C2A124.54 (17)O7B—C3B—C4B114.14 (15)
C4A—C3A—C2A120.86 (16)C2B—C3B—C4B121.11 (16)
O9A—C4A—C3A122.70 (16)O9B—C4B—C3B121.01 (16)
O9A—C4A—C5A117.98 (17)O9B—C4B—C5B119.67 (17)
C3A—C4A—C5A119.29 (16)C3B—C4B—C5B119.32 (16)
O10A—C5A—C6A124.69 (16)O10B—C5B—C4B115.89 (15)
O10A—C5A—C4A115.43 (15)O10B—C5B—C6B124.43 (16)
C6A—C5A—C4A119.87 (17)C4B—C5B—C6B119.63 (17)
C5A—C6A—C1A121.23 (16)C5B—C6B—C1B120.98 (16)
C5A—C6A—H6A119.4C5B—C6B—H6B119.5
C1A—C6A—H6A119.4C1B—C6B—H6B119.5
C3A—O7A—C8A117.60 (14)C3B—O7B—C8B117.41 (15)
O7A—C8A—H8A109.5O7B—C8B—H8D109.5
O7A—C8A—H8B109.5O7B—C8B—H8E109.5
H8A—C8A—H8B109.5H8D—C8B—H8E109.5
O7A—C8A—H8C109.5O7B—C8B—H8F109.5
H8A—C8A—H8C109.5H8D—C8B—H8F109.5
H8B—C8A—H8C109.5H8E—C8B—H8F109.5
C4A—O9A—H9A110.6 (18)C4B—O9B—H9B103.3 (17)
C5A—O10A—C11A117.11 (14)C5B—O10B—C11B116.63 (14)
O10A—C11A—H11A109.5O10B—C11B—H11D109.5
O10A—C11A—H11B109.5O10B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
O10A—C11A—H11C109.5O10B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C17A—C12A—C13A119.18 (15)C17B—C12B—C13B119.40 (15)
C17A—C12A—C1A123.25 (15)C17B—C12B—C1B122.42 (14)
C13A—C12A—C1A117.51 (15)C13B—C12B—C1B118.17 (15)
C14A—C13A—C12A121.72 (16)C14B—C13B—C12B121.04 (15)
C14A—C13A—H13A119.1C14B—C13B—H13B119.5
C12A—C13A—H13A119.1C12B—C13B—H13B119.5
O18A—C14A—C13A125.46 (15)O18B—C14B—C13B125.47 (15)
O18A—C14A—C15A115.47 (15)O18B—C14B—C15B115.14 (15)
C13A—C14A—C15A119.07 (16)C13B—C14B—C15B119.38 (15)
C16A—C15A—O20A124.26 (15)O20B—C15B—C16B124.41 (15)
C16A—C15A—C14A119.45 (15)O20B—C15B—C14B116.08 (14)
O20A—C15A—C14A116.29 (15)C16B—C15B—C14B119.51 (15)
C15A—C16A—C17A122.33 (16)C15B—C16B—C17B122.00 (16)
C15A—C16A—H16A118.8C15B—C16B—H16B119.0
C17A—C16A—H16A118.8C17B—C16B—H16B119.0
C12A—C17A—C16A118.25 (15)C16B—C17B—C12B118.67 (15)
C12A—C17A—C22A123.36 (16)C16B—C17B—C22B117.84 (15)
C16A—C17A—C22A118.25 (15)C12B—C17B—C22B123.37 (16)
C14A—O18A—C19A116.66 (13)C14B—O18B—C19B117.53 (13)
O18A—C19A—H19A109.5O18B—C19B—H19D109.5
O18A—C19A—H19B109.5O18B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
O18A—C19A—H19C109.5O18B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C15A—O20A—C21A116.33 (14)C15B—O20B—C21B116.76 (12)
O20A—C21A—H21A109.5O20B—C21B—H21D109.5
O20A—C21A—H21B109.5O20B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
O20A—C21A—H21C109.5O20B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C17A—C22A—H22A109.5C17B—C22B—H22D109.5
C17A—C22A—H22B109.5C17B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
C17A—C22A—H22C109.5C17B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C6A—C1A—C2A—C3A0.3 (3)C6B—C1B—C2B—C3B1.8 (2)
C12A—C1A—C2A—C3A177.76 (16)C12B—C1B—C2B—C3B177.90 (14)
C1A—C2A—C3A—O7A179.41 (17)C1B—C2B—C3B—O7B176.54 (15)
C1A—C2A—C3A—C4A0.2 (3)C1B—C2B—C3B—C4B2.1 (2)
O7A—C3A—C4A—O9A1.2 (3)O7B—C3B—C4B—O9B5.7 (2)
C2A—C3A—C4A—O9A178.50 (16)C2B—C3B—C4B—O9B175.51 (14)
O7A—C3A—C4A—C5A179.23 (15)O7B—C3B—C4B—C5B174.06 (14)
C2A—C3A—C4A—C5A0.5 (3)C2B—C3B—C4B—C5B4.8 (2)
O9A—C4A—C5A—O10A1.5 (2)O9B—C4B—C5B—O10B0.7 (2)
C3A—C4A—C5A—O10A179.66 (16)C3B—C4B—C5B—O10B179.08 (14)
O9A—C4A—C5A—C6A178.27 (16)O9B—C4B—C5B—C6B176.83 (14)
C3A—C4A—C5A—C6A0.1 (3)C3B—C4B—C5B—C6B3.4 (2)
O10A—C5A—C6A—C1A179.81 (17)O10B—C5B—C6B—C1B176.82 (14)
C4A—C5A—C6A—C1A0.4 (3)C4B—C5B—C6B—C1B0.4 (2)
C2A—C1A—C6A—C5A0.6 (3)C2B—C1B—C6B—C5B3.0 (2)
C12A—C1A—C6A—C5A178.15 (16)C12B—C1B—C6B—C5B176.61 (14)
C4A—C3A—O7A—C8A175.72 (17)C2B—C3B—O7B—C8B4.4 (2)
C2A—C3A—O7A—C8A3.9 (3)C4B—C3B—O7B—C8B176.86 (15)
C6A—C5A—O10A—C11A2.1 (3)C4B—C5B—O10B—C11B179.75 (14)
C4A—C5A—O10A—C11A177.66 (17)C6B—C5B—O10B—C11B2.4 (2)
C6A—C1A—C12A—C17A123.53 (19)C6B—C1B—C12B—C17B124.34 (18)
C2A—C1A—C12A—C17A59.0 (2)C2B—C1B—C12B—C17B55.3 (2)
C6A—C1A—C12A—C13A53.5 (2)C6B—C1B—C12B—C13B54.1 (2)
C2A—C1A—C12A—C13A123.95 (19)C2B—C1B—C12B—C13B126.26 (17)
C17A—C12A—C13A—C14A0.1 (3)C17B—C12B—C13B—C14B0.2 (2)
C1A—C12A—C13A—C14A177.27 (17)C1B—C12B—C13B—C14B178.29 (15)
C12A—C13A—C14A—O18A179.88 (17)C12B—C13B—C14B—O18B179.38 (16)
C12A—C13A—C14A—C15A0.8 (3)C12B—C13B—C14B—C15B0.7 (2)
O18A—C14A—C15A—C16A179.86 (16)O18B—C14B—C15B—O20B1.1 (2)
C13A—C14A—C15A—C16A0.9 (3)C13B—C14B—C15B—O20B178.75 (15)
O18A—C14A—C15A—O20A0.2 (2)O18B—C14B—C15B—C16B179.25 (15)
C13A—C14A—C15A—O20A179.01 (16)C13B—C14B—C15B—C16B0.9 (2)
O20A—C15A—C16A—C17A179.45 (16)O20B—C15B—C16B—C17B179.13 (16)
C14A—C15A—C16A—C17A0.5 (3)C14B—C15B—C16B—C17B0.4 (3)
C13A—C12A—C17A—C16A0.3 (3)C15B—C16B—C17B—C12B0.1 (3)
C1A—C12A—C17A—C16A176.64 (17)C15B—C16B—C17B—C22B176.21 (16)
C13A—C12A—C17A—C22A175.88 (17)C13B—C12B—C17B—C16B0.2 (2)
C1A—C12A—C17A—C22A1.1 (3)C1B—C12B—C17B—C16B178.64 (16)
C15A—C16A—C17A—C12A0.1 (3)C13B—C12B—C17B—C22B175.87 (15)
C15A—C16A—C17A—C22A175.92 (17)C1B—C12B—C17B—C22B2.5 (3)
C13A—C14A—O18A—C19A12.0 (3)C13B—C14B—O18B—C19B6.2 (3)
C15A—C14A—O18A—C19A168.81 (17)C15B—C14B—O18B—C19B173.66 (15)
C16A—C15A—O20A—C21A22.8 (3)C16B—C15B—O20B—C21B25.8 (2)
C14A—C15A—O20A—C21A157.19 (18)C14B—C15B—O20B—C21B154.65 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9A—H9A···O7A0.87 (3)2.30 (3)2.703 (2)108 (2)
O9B—H9B···O7B0.88 (3)2.16 (3)2.659 (2)116 (2)
O9A—H9A···O20Ai0.87 (3)2.34 (3)3.0000 (19)133 (2)
O9B—H9B···O9A0.88 (3)2.23 (3)2.992 (2)146 (2)
C13A—H13A···O20Bii0.952.523.453 (2)166
C13B—H13B···O9Biii0.952.553.498 (2)172
C19A—H19C···O18Bii0.982.493.452 (3)167
C19B—H19D···O18Aiv0.982.543.475 (3)159
Symmetry codes: (i) x1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+2, y, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBringmann, G., Price Mortimer, A. J., Keller, P. A., Gresser, M. J., Garner, J. & Breuning, M. (2005). Angew. Chem. Int. Ed. 44, 5384–5427.  Web of Science CrossRef CAS Google Scholar
First citationCepanec, I. (2004). Synthesis of biaryls. Amsterdam: Elsevier.  Google Scholar
First citationDörr, M., Lips, S., Martínez–Huitle, C. A., Schollmeyer, D., Franke, R. & Waldvogel, S. R. (2019). Chem. Eur. J. 25, 7835–7838.  PubMed Google Scholar
First citationGrimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G. & Holmes, A. B. (2009). Chem. Rev. 109, 897–1091.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLips, S., Franke, R. & Waldvogel, S. R. (2019). Synlett, 30, 1174–1177.  CAS Google Scholar
First citationLips, S., Schollmeyer, D., Franke, R. & Waldvogel, S. R. (2018). Angew. Chem. Int. Ed. 57, 13325–13329.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoyori, R. (2003). Adv. Synth. Catal. 345, 15–32.  Web of Science CrossRef CAS Google Scholar
First citationSchulz, L., Enders, M., Elsler, B., Schollmeyer, D., Dyballa, K. M., Franke, R. & Waldvogel, S. R. (2017). Angew. Chem. Int. Ed. 56, 4877–4881.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1996). X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWaldvogel, S. R., Lips, S., Selt, M., Riehl, B. & Kampf, C. J. (2018). Chem. Rev. 118, 6706–6765.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWiebe, A., Gieshoff, T., Möhle, S., Rodrigo, E., Zirbes, M. & Waldvogel, S. R. (2018). Angew. Chem. Int. Ed. 57, 5594–5619.  Web of Science CrossRef CAS Google Scholar
First citationWiebe, A., Riehl, B., Lips, S., Franke, R. & Waldvogel, S. R. (2017). Sci. Adv. 3, eaao3920.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds