organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N-[3-(Prop-1-yn-1-yl)phen­yl]benzene­sulfonamide

aEscuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica, and bCentro de Electroquímica y Energía Química (CELEQ), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
*Correspondence e-mail: jorge.cabezas@ucr.ac.cr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 30 July 2019; accepted 26 August 2019; online 3 September 2019)

In the title sulfanilamide derivative, C15H13NO2S, which shows significant activity against Staphylococcus aureus and Escherichia coli, the dihedral angle between the planes of the aromatic rings is 62.15 (19)° and the four-coordinate S atom adopts an almost ideal tetra­hedral geometry. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

In 1932, a drug called Prontosil was discovered by the pharmaceutical division of IG Farbenindustrie, an industrial conglomerate of German companies, including Bayer Company. It was found to be very successful treating several diseases in humans, provoked by Staphylococcus and Streptococcus. Prontosil was the first anti­bacterial drug, with life-saving capability, to be used systematically for the treatment of bacterial infections in the body. It belongs to a family of compounds called sulfa drugs or sulfonamides. In the 1940s and 1950s, most of the sulfa drugs were replaced by penicillin and other drugs, which proved to be more effective against more types of bacteria. However, nowadays, some sulfa drugs such as sulfamethoxazole, in combination with trimethoprim (co-trimoxazole), are still used extensively to inhibit the growth of bacteria that produce opportunistic infections in patients with AIDS, and bacterial infections such as pneumonia, bronchitis and infections of the urinary tract, ears and intestines (Brumfitt & Hamilton-Miller, 1993[Brumfitt, W. & Hamilton-Miller, J. M. (1993). J. Chemother. 5, 465-469.]).

As part of our studies in this area we now report the synthesis of of the title sulfanilamide derivative, 1, and its crystal structure. This compound, has been found to be very effective against Staphylococcus aureus and Escherichia coli, and minimal inhibitory concentrations (MIC) of 12.5 µg ml−1 and 25.0 µg ml−1 have been obtained respectively (Cabezas & Arias, 2019[Cabezas, J. A. & Arias, M. L. (2019). Int. J. Curr. Res, 11, 5224-5227.]).

The crystal structure of 1 has monoclinic symmetry with one mol­ecule in the asymmetric unit: the mol­ecular structure consists of a benzene­sulfonamide fragment bound to a benzene ring bearing in its 3-position a propyne substituent (Fig. 1[link]): the dihedral angle between the C1–C6 and C10–C15 benzene rings is 62.15 (19)°. The length of the carbon–carbon triple bond (C7≡C8) is 1.181 (5) Å, with the C7—C8—C9 and C8—C7—C1 angles being 178.8 (4) and 178.1 (4)°, respectively, which are slightly distorted from the expected linear geometry. The calculation of the angular structural index (τ4 = 0.94; and τ4' = 0.90) for the four-coordinate S1 atom, which binds to O1, O2, N1 and C10 from the benzene ring (Yang et al., 2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]; Okuniewski et al., 2015[Okuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47-57.]; Rosiak et al., 2018[Rosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35-41.]) indicates that it adopts an almost ideal tetra­hedral geometry (τ4 = 0 for an ideal square and 1 for an ideal tetra­hedron). In the extended structure of 1, weak N1—H1⋯O2, C4—H4⋯O1 and C6—H6⋯O1 hydrogen bonds are observed (Table 1[link], Fig. 2[link]), leading to the formation of a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 2.55 2.984 (4) 111
C4—H4⋯O1ii 0.95 2.45 3.256 (4) 143
C6—H6⋯O1 0.95 2.39 2.955 (4) 118
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) x, y, z+1.
[Figure 1]
Figure 1
The title mol­ecule with 50% probability ellipsoids.
[Figure 2]
Figure 2
Part of an [001] hydrogen-bonded chain with N—H⋯O2, C—H⋯O1 hydrogen bonds shown as green lines.

Synthesis and crystallization

The title compound, 1, was synthesized by treatment of 3-iodo­aniline, 2, with benzene­sulfonyl chloride, 3, in the presence of pyridine, at room temperature to obtain, after purification by column chromatography (ether:hexane, 40:60), iodo­sulfonamide, 4, in 75% yield. This aromatic iodide 4, was treated with propyne, under Sonogashira's reaction conditions (Sonogashira et al., 1975[Sonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467-4470.]), using CuI and (Ph3P)2PdCl2 as catalysts, (Fig. 3[link]). After purification by column chromatography, using a solvent mixture of hexa­ne:ethyl acetate (75:25), compound 1 was isolated in 70% yield, and with an overall yield of 53%. The product was recrystallized from ethyl acetate solution at room temperature to result in light-yellow blocks of the title compound.

[Figure 3]
Figure 3
A synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H13NO2S
Mr 271.32
Crystal system, space group Monoclinic, Cc
Temperature (K) 100
a, b, c (Å) 8.4596 (4), 24.9769 (13), 7.1310 (4)
β (°) 117.557 (2)
V3) 1335.80 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.24
Crystal size (mm) 0.35 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker D8 Venture CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.704, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9630, 3028, 2716
Rint 0.037
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.089, 1.03
No. of reflections 3028
No. of parameters 173
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.39, −0.47
Absolute structure Flack x determined using 1163 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013)
Absolute structure parameter 0.02 (3)
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

N-[3-(Prop-1-yn-1-yl)phenyl]benzenesulfonamide top
Crystal data top
C15H13NO2SF(000) = 568
Mr = 271.32Dx = 1.349 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 8.4596 (4) ÅCell parameters from 4995 reflections
b = 24.9769 (13) Åθ = 2.8–27.5°
c = 7.1310 (4) ŵ = 0.24 mm1
β = 117.557 (2)°T = 100 K
V = 1335.80 (12) Å3Block, clear light yellow
Z = 40.35 × 0.20 × 0.15 mm
Data collection top
Bruker D8 Venture CCD
diffractometer
3028 independent reflections
Radiation source: Incoatec Microsource2716 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.037
Detector resolution: 10.4167 pixels mm-1θmax = 27.5°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
k = 3232
Tmin = 0.704, Tmax = 0.746l = 99
9630 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0401P)2 + 1.2876P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3028 reflectionsΔρmax = 0.39 e Å3
173 parametersΔρmin = 0.47 e Å3
2 restraintsAbsolute structure: Flack x determined using 1163 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed geometrically and refined using a riding-atom model approximation, with C—H = 0.95–1.00 Å, with Uiso(H) = 1.2Ueq(C). A rotating group model was used for the methyl groups.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73168 (11)0.55417 (3)0.33500 (12)0.01205 (19)
O10.7499 (3)0.58926 (10)0.1883 (4)0.0159 (5)
O20.7908 (3)0.49971 (10)0.3513 (4)0.0171 (6)
N10.8464 (4)0.57903 (11)0.5727 (4)0.0138 (6)
H10.92790.55930.67320.017*
C10.7946 (5)0.72772 (15)0.5484 (6)0.0188 (8)
C20.7594 (6)0.73618 (15)0.7189 (6)0.0243 (9)
H20.74030.77150.75340.029*
C30.7522 (6)0.69340 (15)0.8383 (8)0.0267 (9)
H30.72970.69940.95530.032*
C40.7781 (5)0.64153 (15)0.7865 (6)0.0176 (8)
H40.77050.6120.86610.021*
C50.8149 (4)0.63297 (13)0.6184 (5)0.0134 (7)
C60.8256 (5)0.67587 (14)0.5006 (5)0.0156 (7)
H60.85380.66990.3880.019*
C70.7989 (5)0.77163 (15)0.4189 (6)0.0216 (9)
C80.7988 (5)0.80679 (16)0.3081 (6)0.0232 (9)
C90.7969 (7)0.85150 (17)0.1717 (8)0.0345 (11)
H9A0.84630.83930.07880.052*
H9B0.86920.88110.260.052*
H9C0.67410.86370.08550.052*
C100.5068 (4)0.55427 (14)0.2802 (5)0.0138 (7)
C110.4331 (5)0.50847 (14)0.3182 (5)0.0159 (7)
H110.50290.4770.37180.019*
C120.2569 (5)0.50936 (17)0.2771 (6)0.0207 (8)
H120.2050.47820.30230.025*
C130.1549 (5)0.55524 (16)0.1993 (6)0.0202 (8)
H130.03430.55570.17370.024*
C140.2302 (5)0.60067 (15)0.1587 (6)0.0215 (8)
H140.15970.63190.10250.026*
C150.4069 (5)0.60055 (14)0.1997 (6)0.0168 (7)
H150.45880.63150.17330.02*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0130 (4)0.0114 (4)0.0127 (4)0.0013 (4)0.0067 (3)0.0001 (4)
O10.0207 (14)0.0150 (12)0.0146 (12)0.0001 (10)0.0103 (11)0.0000 (10)
O20.0190 (13)0.0147 (12)0.0183 (13)0.0030 (10)0.0094 (11)0.0010 (10)
N10.0139 (15)0.0131 (14)0.0117 (14)0.0025 (12)0.0035 (12)0.0011 (11)
C10.0196 (19)0.0142 (17)0.0189 (19)0.0017 (15)0.0057 (15)0.0006 (15)
C20.037 (2)0.0141 (19)0.022 (2)0.0016 (17)0.0139 (19)0.0035 (16)
C30.040 (3)0.0230 (19)0.0225 (19)0.001 (2)0.0188 (19)0.002 (2)
C40.0222 (19)0.0162 (18)0.0174 (18)0.0003 (15)0.0119 (16)0.0039 (15)
C50.0119 (17)0.0106 (17)0.0132 (17)0.0002 (13)0.0019 (14)0.0016 (13)
C60.0148 (17)0.0169 (18)0.0140 (17)0.0019 (14)0.0058 (14)0.0005 (14)
C70.026 (2)0.0125 (19)0.025 (2)0.0011 (16)0.0105 (17)0.0060 (16)
C80.028 (2)0.017 (2)0.025 (2)0.0021 (17)0.0128 (19)0.0025 (18)
C90.043 (3)0.024 (2)0.039 (3)0.001 (2)0.021 (2)0.011 (2)
C100.0132 (15)0.0171 (17)0.0110 (16)0.0015 (15)0.0054 (14)0.0030 (14)
C110.0180 (18)0.0158 (18)0.0129 (16)0.0009 (15)0.0062 (14)0.0010 (14)
C120.0190 (19)0.028 (2)0.0158 (18)0.0072 (16)0.0088 (15)0.0017 (16)
C130.0142 (18)0.030 (2)0.0172 (18)0.0017 (17)0.0078 (15)0.0075 (17)
C140.0182 (19)0.019 (2)0.022 (2)0.0015 (16)0.0046 (16)0.0051 (16)
C150.0194 (19)0.0125 (17)0.0168 (17)0.0014 (14)0.0069 (15)0.0034 (14)
Geometric parameters (Å, º) top
S1—O11.427 (3)C7—C81.181 (5)
S1—O21.435 (3)C8—C91.477 (5)
S1—N11.636 (3)C9—H9A0.98
S1—C101.756 (3)C9—H9B0.98
N1—C51.440 (4)C9—H9C0.98
N1—H10.88C10—C111.388 (5)
C1—C61.394 (5)C10—C151.390 (5)
C1—C21.396 (6)C11—C121.380 (5)
C1—C71.445 (5)C11—H110.95
C2—C31.385 (6)C12—C131.387 (6)
C2—H20.95C12—H120.95
C3—C41.392 (5)C13—C141.395 (5)
C3—H30.95C13—H130.95
C4—C51.387 (5)C14—C151.384 (5)
C4—H40.95C14—H140.95
C5—C61.390 (5)C15—H150.95
C6—H60.95
O1—S1—O2119.34 (15)C8—C7—C1178.1 (4)
O1—S1—N1108.24 (15)C7—C8—C9178.8 (4)
O2—S1—N1104.96 (15)C8—C9—H9A109.5
O1—S1—C10108.01 (16)C8—C9—H9B109.5
O2—S1—C10108.67 (16)H9A—C9—H9B109.5
N1—S1—C10107.00 (15)C8—C9—H9C109.5
C5—N1—S1120.4 (2)H9A—C9—H9C109.5
C5—N1—H1119.8H9B—C9—H9C109.5
S1—N1—H1119.8C11—C10—C15121.6 (3)
C6—C1—C2119.5 (3)C11—C10—S1119.6 (3)
C6—C1—C7119.1 (3)C15—C10—S1118.8 (3)
C2—C1—C7121.4 (3)C12—C11—C10118.9 (3)
C3—C2—C1120.4 (4)C12—C11—H11120.5
C3—C2—H2119.8C10—C11—H11120.5
C1—C2—H2119.8C11—C12—C13120.6 (4)
C2—C3—C4119.9 (4)C11—C12—H12119.7
C2—C3—H3120.1C13—C12—H12119.7
C4—C3—H3120.1C12—C13—C14119.7 (3)
C5—C4—C3119.9 (4)C12—C13—H13120.1
C5—C4—H4120.1C14—C13—H13120.1
C3—C4—H4120.1C15—C14—C13120.4 (4)
C4—C5—C6120.4 (3)C15—C14—H14119.8
C4—C5—N1118.6 (3)C13—C14—H14119.8
C6—C5—N1120.9 (3)C14—C15—C10118.7 (3)
C5—C6—C1119.8 (3)C14—C15—H15120.7
C5—C6—H6120.1C10—C15—H15120.7
C1—C6—H6120.1
O1—S1—N1—C554.7 (3)O1—S1—C10—C11148.8 (3)
O2—S1—N1—C5176.8 (3)O2—S1—C10—C1118.0 (3)
C10—S1—N1—C561.5 (3)N1—S1—C10—C1194.9 (3)
C6—C1—C2—C31.1 (6)O1—S1—C10—C1531.3 (3)
C7—C1—C2—C3178.6 (4)O2—S1—C10—C15162.1 (3)
C1—C2—C3—C40.8 (6)N1—S1—C10—C1585.0 (3)
C2—C3—C4—C51.4 (6)C15—C10—C11—C120.7 (5)
C3—C4—C5—C60.2 (5)S1—C10—C11—C12179.1 (3)
C3—C4—C5—N1178.1 (4)C10—C11—C12—C130.1 (5)
S1—N1—C5—C4126.3 (3)C11—C12—C13—C141.1 (6)
S1—N1—C5—C655.4 (4)C12—C13—C14—C151.3 (6)
C4—C5—C6—C11.6 (5)C13—C14—C15—C100.5 (5)
N1—C5—C6—C1179.9 (3)C11—C10—C15—C140.5 (5)
C2—C1—C6—C52.3 (5)S1—C10—C15—C14179.3 (3)
C7—C1—C6—C5177.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.882.552.984 (4)111
C4—H4···O1ii0.952.453.256 (4)143
C6—H6···O10.952.392.955 (4)118
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1.
 

Acknowledgements

CELEQ is thanked for supplying liquid nitro­gen for the X-ray measurements.

Funding information

Funding for this research was provided by: Vicerrectoría de Investigación, Universidad de Costa Rica (UCR); Escuela de Química (UCR).

References

First citationBruker (2015). APEX3, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrumfitt, W. & Hamilton-Miller, J. M. (1993). J. Chemother. 5, 465–469.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCabezas, J. A. & Arias, M. L. (2019). Int. J. Curr. Res, 11, 5224–5227.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOkuniewski, A., Rosiak, D., Chojnacki, J. & Becker, B. (2015). Polyhedron, 90, 47–57.  Web of Science CSD CrossRef CAS Google Scholar
First citationRosiak, D., Okuniewski, A. & Chojnacki, J. (2018). Polyhedron, 146, 35–41.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K., Tohda, Y. & Hagihara, N. (1975). Tetrahedron Lett. 16, 4467–4470.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds