organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N,N,N-Tri­methyl-1-[4-(pyridin-2-yl)phen­yl]meth­anaminium hexa­fluorido­phosphate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Anhui University, Hefei, Anhui 230039, People's Republic of China
*Correspondence e-mail: chemlidd@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 23 July 2019; accepted 31 August 2019; online 6 September 2019)

In the cation of the title mol­ecular salt, C15H19N2+·PF6, the dihedral angle between the benzene and pyridine rings is 38.21 (10)°. In the crystal, weak C—H⋯F inter­actions arising from methyl and methyl­ene groups adjacent to the quaternary N atom generate (001) sheets.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Quaternary ammonium derivatives have been investigated as fluorescent probes for biological applications (Choi et al., 2014[Choi, S., Bouffard, J. & Kim, Y. (2014). Chem. Sci. 5, 751-755.]) because of their favourable water solubility (Du et al., 2017[Du, W., Wang, H., Zhu, Y., Tian, X., Zhang, M., Zhang, Q., De Souza, S. C., Wang, A., Zhou, H., Zhang, Z., Wu, J. & Tian, Y. (2017). Appl. Mater. Interfaces, 9, 31424-31432.]).

As part of our studies in this area, we now describe the synthesis and structure of the title mol­ecular salt (Fig. 1[link]). The dihedral angle between the C6–C11 benzene ring and its attached C1–C5/N1 pyridine ring is 37.86 (10)° and the C11—C12—N2—C13 torsion angle is 175.60 (15)°. In the crystal, weak C—H⋯F inter­actions (Table 1[link]) link the components into (001) sheets.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯F4i 0.97 2.50 3.441 (2) 163
C14—H14A⋯F5ii 0.96 2.55 3.070 (3) 114
C15—H15C⋯F3 0.96 2.54 3.414 (2) 151
Symmetry codes: (i) x, y-1, z; (ii) x-1, y-1, z.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% displacement ellipsoids.

Synthesis and crystallization

Phenyl­pyridine benzyl­bromide (2.48 g, 0.1 mol) was dissolved in 20 ml of tetra­hydro­furan and 60 ml of tri­methyl­amine (40%) were added and the mixture stirred at 363 K for 12 h. Then, excess NH4PF6 was added after the reaction had cooled to room temperature, and the solid product recovered by filtration (1.2 g, 80%). Yellow blocks were recrystallized from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C15H19N2+·F6P
Mr 372.29
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 5.9107 (14), 8.5110 (19), 33.155 (8)
β (°) 90.726 (3)
V3) 1667.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.19 × 0.18 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.615, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 9197, 2929, 2642
Rint 0.024
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.04
No. of reflections 2929
No. of parameters 221
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N,N,N-Trimethyl-1-[4-(pyridin-2-yl)phenyl]methanaminium hexafluoridophosphate top
Crystal data top
C15H19N2+·F6PF(000) = 768
Mr = 372.29Dx = 1.483 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.9107 (14) ÅCell parameters from 5626 reflections
b = 8.5110 (19) Åθ = 2.4–27.5°
c = 33.155 (8) ŵ = 0.23 mm1
β = 90.726 (3)°T = 296 K
V = 1667.7 (7) Å3Block, yellow
Z = 40.19 × 0.18 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
2642 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 75
Tmin = 0.615, Tmax = 0.746k = 1010
9197 measured reflectionsl = 3939
2929 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0518P)2 + 1.2216P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.50 e Å3
2929 reflectionsΔρmin = 0.32 e Å3
221 parametersExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0052 (9)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.90293 (8)0.73732 (5)0.07069 (2)0.02656 (17)
F11.1645 (2)0.72985 (18)0.07985 (6)0.0716 (5)
F20.9394 (3)0.63740 (16)0.03048 (4)0.0637 (5)
F30.6414 (2)0.74621 (18)0.05956 (5)0.0631 (5)
F40.8649 (3)0.83845 (17)0.10989 (4)0.0653 (5)
F50.9381 (2)0.89666 (14)0.04538 (4)0.0480 (4)
F60.8645 (2)0.57788 (14)0.09500 (4)0.0446 (3)
N10.0843 (3)0.2266 (2)0.26972 (5)0.0409 (4)
N20.5066 (3)0.24358 (17)0.05910 (5)0.0260 (4)
C10.3375 (4)0.0822 (3)0.26267 (7)0.0453 (5)
H10.4784240.0343250.2601600.054*
C20.2701 (4)0.1496 (3)0.29865 (7)0.0421 (5)
H20.3645100.1488300.3208810.051*
C30.0590 (4)0.2184 (3)0.30082 (7)0.0451 (6)
H30.0128980.2617690.3253240.054*
C40.1916 (4)0.0870 (3)0.23029 (6)0.0404 (5)
H40.2327930.0413130.2057970.048*
C50.0170 (3)0.1608 (2)0.23482 (6)0.0318 (4)
C60.1751 (3)0.1712 (2)0.20039 (6)0.0310 (4)
C70.3061 (4)0.3046 (2)0.19437 (6)0.0371 (5)
H70.2991210.3873480.2126370.045*
C80.4471 (4)0.3154 (2)0.16140 (6)0.0357 (5)
H80.5297100.4068680.1572650.043*
C90.1968 (4)0.0460 (2)0.17366 (6)0.0344 (5)
H90.1119370.0446790.1774720.041*
C100.3437 (4)0.0551 (2)0.14138 (6)0.0333 (5)
H100.3599110.0307220.1242920.040*
C110.4664 (3)0.1911 (2)0.13441 (6)0.0292 (4)
C120.6243 (3)0.2045 (2)0.09932 (5)0.0282 (4)
H12A0.7049600.1059710.0964520.034*
H12B0.7351730.2855290.1052670.034*
C130.6872 (4)0.2653 (2)0.02812 (6)0.0336 (5)
H13A0.6179770.2869570.0023690.050*
H13B0.7761800.1712790.0263610.050*
H13C0.7828710.3516840.0358420.050*
C140.3537 (4)0.1130 (2)0.04599 (6)0.0336 (5)
H14A0.2320470.1029030.0647400.050*
H14B0.4376190.0164750.0451900.050*
H14C0.2930170.1355650.0196300.050*
C150.3718 (3)0.3917 (2)0.06230 (6)0.0344 (5)
H15A0.2542100.3776930.0816840.052*
H15B0.3055060.4164540.0364890.052*
H15C0.4691210.4761110.0707780.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0267 (3)0.0212 (3)0.0319 (3)0.00140 (19)0.0044 (2)0.00271 (19)
F10.0331 (8)0.0500 (9)0.1314 (16)0.0012 (6)0.0107 (9)0.0026 (9)
F20.1072 (13)0.0403 (8)0.0442 (8)0.0088 (8)0.0261 (8)0.0127 (6)
F30.0327 (8)0.0586 (9)0.0977 (12)0.0065 (6)0.0076 (7)0.0213 (8)
F40.1109 (14)0.0430 (8)0.0423 (8)0.0112 (8)0.0106 (8)0.0130 (6)
F50.0593 (9)0.0290 (7)0.0557 (8)0.0117 (6)0.0046 (6)0.0070 (6)
F60.0606 (9)0.0323 (7)0.0410 (7)0.0053 (6)0.0017 (6)0.0085 (5)
N10.0478 (11)0.0399 (10)0.0352 (9)0.0055 (8)0.0093 (7)0.0068 (8)
N20.0297 (9)0.0213 (8)0.0272 (8)0.0011 (6)0.0044 (6)0.0004 (6)
C10.0378 (12)0.0524 (14)0.0458 (12)0.0019 (10)0.0056 (8)0.0123 (11)
C20.0489 (13)0.0387 (12)0.0391 (11)0.0057 (10)0.0164 (10)0.0081 (9)
C30.0623 (15)0.0405 (12)0.0330 (11)0.0039 (11)0.0133 (9)0.0059 (9)
C40.0416 (11)0.0472 (13)0.0323 (10)0.0045 (9)0.0005 (8)0.0042 (9)
C50.0384 (10)0.0278 (10)0.0293 (9)0.0026 (8)0.0039 (8)0.0024 (8)
C60.0349 (11)0.0301 (10)0.0281 (9)0.0001 (8)0.0022 (8)0.0001 (8)
C70.0453 (13)0.0309 (11)0.0354 (11)0.0041 (9)0.0082 (9)0.0105 (9)
C80.0405 (12)0.0292 (10)0.0375 (11)0.0090 (9)0.0087 (9)0.0069 (9)
C90.0465 (12)0.0274 (10)0.0294 (10)0.0065 (9)0.0040 (8)0.0018 (8)
C100.0484 (12)0.0243 (10)0.0272 (9)0.0001 (9)0.0040 (8)0.0027 (7)
C110.0338 (11)0.0270 (10)0.0270 (9)0.0006 (8)0.0018 (8)0.0015 (8)
C120.0291 (10)0.0267 (9)0.0287 (9)0.0017 (8)0.0005 (8)0.0012 (7)
C130.0364 (11)0.0338 (11)0.0308 (10)0.0031 (9)0.0109 (8)0.0022 (8)
C140.0405 (12)0.0288 (10)0.0315 (10)0.0092 (9)0.0006 (8)0.0015 (8)
C150.0335 (11)0.0248 (10)0.0451 (11)0.0054 (8)0.0030 (9)0.0022 (8)
Geometric parameters (Å, º) top
P1—F11.5729 (15)C6—C91.392 (3)
P1—F21.5982 (14)C7—H70.9300
P1—F31.5865 (15)C7—C81.386 (3)
P1—F41.5774 (14)C8—H80.9300
P1—F51.6096 (13)C8—C111.391 (3)
P1—F61.5960 (13)C9—H90.9300
N1—C31.345 (3)C9—C101.389 (3)
N1—C51.341 (3)C10—H100.9300
N2—C121.532 (2)C10—C111.387 (3)
N2—C131.502 (2)C11—C121.505 (3)
N2—C141.494 (2)C12—H12A0.9700
N2—C151.496 (2)C12—H12B0.9700
C1—H10.9300C13—H13A0.9600
C1—C21.378 (3)C13—H13B0.9600
C1—C41.386 (3)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C2—C31.379 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—H40.9300C15—H15A0.9600
C4—C51.390 (3)C15—H15B0.9600
C5—C61.487 (3)C15—H15C0.9600
C6—C71.391 (3)
F1—P1—F289.82 (10)C6—C7—H7119.7
F1—P1—F3177.64 (10)C8—C7—C6120.58 (18)
F1—P1—F490.74 (10)C8—C7—H7119.7
F1—P1—F590.10 (8)C7—C8—H8119.6
F1—P1—F690.81 (8)C7—C8—C11120.80 (19)
F2—P1—F589.64 (8)C11—C8—H8119.6
F3—P1—F288.43 (10)C6—C9—H9119.6
F3—P1—F588.30 (8)C10—C9—C6120.75 (18)
F3—P1—F690.77 (8)C10—C9—H9119.6
F4—P1—F2178.94 (9)C9—C10—H10119.7
F4—P1—F390.98 (10)C11—C10—C9120.55 (18)
F4—P1—F589.46 (8)C11—C10—H10119.7
F4—P1—F691.44 (8)C8—C11—C12119.77 (18)
F6—P1—F289.45 (7)C10—C11—C8118.68 (18)
F6—P1—F5178.71 (7)C10—C11—C12121.51 (17)
C5—N1—C3117.2 (2)N2—C12—H12A108.7
C13—N2—C12107.65 (15)N2—C12—H12B108.7
C14—N2—C12110.97 (14)C11—C12—N2114.22 (15)
C14—N2—C13108.99 (14)C11—C12—H12A108.7
C14—N2—C15109.06 (15)C11—C12—H12B108.7
C15—N2—C12110.95 (14)H12A—C12—H12B107.6
C15—N2—C13109.17 (14)N2—C13—H13A109.5
C2—C1—H1120.6N2—C13—H13B109.5
C2—C1—C4118.8 (2)N2—C13—H13C109.5
C4—C1—H1120.6H13A—C13—H13B109.5
C1—C2—H2120.9H13A—C13—H13C109.5
C1—C2—C3118.2 (2)H13B—C13—H13C109.5
C3—C2—H2120.9N2—C14—H14A109.5
N1—C3—C2124.1 (2)N2—C14—H14B109.5
N1—C3—H3118.0N2—C14—H14C109.5
C2—C3—H3118.0H14A—C14—H14B109.5
C1—C4—H4120.4H14A—C14—H14C109.5
C1—C4—C5119.3 (2)H14B—C14—H14C109.5
C5—C4—H4120.4N2—C15—H15A109.5
N1—C5—C4122.33 (19)N2—C15—H15B109.5
N1—C5—C6117.06 (18)N2—C15—H15C109.5
C4—C5—C6120.60 (18)H15A—C15—H15B109.5
C7—C6—C5121.02 (18)H15A—C15—H15C109.5
C7—C6—C9118.53 (18)H15B—C15—H15C109.5
C9—C6—C5120.44 (18)
N1—C5—C6—C736.7 (3)C6—C7—C8—C112.2 (3)
N1—C5—C6—C9142.5 (2)C6—C9—C10—C112.0 (3)
C1—C2—C3—N11.4 (4)C7—C6—C9—C100.9 (3)
C1—C4—C5—N10.7 (3)C7—C8—C11—C100.7 (3)
C1—C4—C5—C6178.6 (2)C7—C8—C11—C12178.75 (19)
C2—C1—C4—C50.7 (3)C8—C11—C12—N2101.0 (2)
C3—N1—C5—C40.2 (3)C9—C6—C7—C83.0 (3)
C3—N1—C5—C6179.52 (19)C9—C10—C11—C82.8 (3)
C4—C1—C2—C30.3 (3)C9—C10—C11—C12179.17 (18)
C4—C5—C6—C7142.6 (2)C10—C11—C12—N281.1 (2)
C4—C5—C6—C938.2 (3)C13—N2—C12—C11175.60 (15)
C5—N1—C3—C21.3 (3)C14—N2—C12—C1165.2 (2)
C5—C6—C7—C8177.7 (2)C15—N2—C12—C1156.2 (2)
C5—C6—C9—C10179.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···F4i0.972.503.441 (2)163
C14—H14A···F5ii0.962.553.070 (3)114
C15—H15C···F30.962.543.414 (2)151
Symmetry codes: (i) x, y1, z; (ii) x1, y1, z.
 

Funding information

The authors thank the National Nature Science Foundation of China (award No. 21701160) and Anhui University (Start-up Grant No. S020118002/026) for financial support of this project.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, S., Bouffard, J. & Kim, Y. (2014). Chem. Sci. 5, 751–755.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, W., Wang, H., Zhu, Y., Tian, X., Zhang, M., Zhang, Q., De Souza, S. C., Wang, A., Zhou, H., Zhang, Z., Wu, J. & Tian, Y. (2017). Appl. Mater. Interfaces, 9, 31424–31432.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds